
Disretisation and Solver Methods for aModel for Solid-Gas-Phase of a CrystalGrowth Apparatus.J�urgen GeiserHumboldt-Universit�at zu Berlin, Department of Mathematis, Unter den Linden 6,D-10099 Berlin, GermanyAbstratWe present disretisation and solver methods for a model for a solid-gas phase ofa rystal growth apparatus. The model-equations are oupled Eulerian- and Heat-transfer-equations with ux-boundary onditions. For more detailed disussion weonsider simpler equations and present time- and spae-deomposition methods asa solver methods to deouple the multi-physis proesses. We present the error-analysis for the disretisation methods and solver methods. Numerial experimentsare done for the eulerrian- and heat-transfer-equation with deomposition meth-ods. We present a real-life appliation of a rystal growth apparatus, based on theunderlying stationary heat ondution. Finally we disuss the further works in theerror-analysis and the appliation to a more omplex model of rystal growth.Key words: deomposition methods, �nite volume disretisation, error-analysis,heat-eqaution, rystal growthPACS: 02.60.Cb, 02.60.-x, 44.05.+e, 47.10.ab, 47.11.Df, 47.11.St, 47.27.te1 IntrodutionModeling and numerial simulation of solid-gas phase in omplex apparatushave beome powerful tools in aiding the design and optimization of numer-ous industrial proesses suh as rystal growth, e.g. by the physial vaportransport (PVT) method Klein et al. [19℄. Beause of the omplex proessesa arefully study is important to design orret the numerial simulations,Parashar et al. [29℄. Based on this bakground the ombination of disretisa-tion and solver methods is an important task. We propose the deompostionmethods of breaking down ompliate multiphysis in simpler physis. Thetime-deomposition methods are based on Operator-Splitting methods andPreprint submitted to Elsevier Siene 18 May 2006



their extended versions with more stabilised behaviour, see Farago & Geiser[12℄. With this methods a useful deoupling of the time-sales are possible andthe solvers ould be onentrate on the di�erent time-sales. Further the spae-deomposition methods are based on the Shwarz wave form relaxation meth-ods and their aurate error-estimates, see Daoud & Geiser [8℄. The methodsdeouple into domains with the same equation-parameters, therefore e�etivespatial disretisation and solver methods are appliable.The paper is organized as follows: The mathematial model is stated in Se-tion 2, the spae-disretisation methods are done with �nite volume dis-retization and desribed in Setion 3, followed by the time-disretisationmethods as Runge-Kutta- and BDF-methods presented in Setion 4. Thetime-deomposition methods are introdued as Operator-Splitting methodwith extended variations in Setion 5. In Setion 6, we desribe the spae-deompostion methods in the sense of Shwarz wave form relaxation methodsand desribe the analytial error-estimates. In Setion 7 we desribe the nu-merial methods in whih we verify our deomposition methods and simulatea realisti rystal-growth apparatus.2 Mathematial modelThe motivation for this study omes from the tehnial demand to simulate arystal growth apparatus for SiC single rystals. The single rystals are usedas a high-valued and expensive material for optoeletronis and eletronis,see M�uller et al. [27℄. The silion arbide (SiC) bulk single rystal are produedby a growth proess through physial vapor transport (PVT), alled modi�edLely-method. The modeling for the thermal proesses within the growth appa-ratus is done in Klein & Philip [20℄ and Philip [30℄. The underlying equationsof the model are given as follows:a.) In this work, we assume that the temperature evolution inside the gasregion 
g an be approximated by onsidering the gas as pure argon. Theredued heat equation is�g�tUg � r � (�grT ) = 0; (1)Ug = zAr RAr T; (2)where T is the temperature, t is the time, and Ug is the internal energy of theargon gas. The parameters are given as �g being the density of the argon gas,�g being the thermal ondutivity, zAr being the on�guration number, andRAr being the gas onstant for argon.b.) The temperature evolution inside the region of solid materials 
s, e.g. in-2



side the silion arbide rystal, silion arbide powder, graphite, and graphiteinsulation, is desribed by the heat equation�s �tUs � r � (�srT ) = f; (3)Us = Z T0 s(S) dS; (4)where �s is the density of the solid material, Us is the internal energy, �s isthe thermal ondutivity, and s is the spei� heat.The equations hold in the domains of the respetive materials and are oupledby interfae onditions, e.g. requiring the ontinuity for the temperature andfor the normal omponents of the heat ux on the interfaes between opaquesolid materials. On the boundary of the gas domain, i.e. on the interfaebetween the solid material and the gas domain, we onsider the interfaeondition�g rT � ng +R� J = �s rT � ng; (5)where ng is the normal vetor of the gas domain, R is the radiosity, and J isthe irradiosity. The irradiosity is determined by integrating R along the wholeboundary of the gas domain, see Klein & Philip [20℄. Moreover, we haveR=E + Jref; (6)E= � � T 4 (Stefan-Boltzmann equation); (7)Jref=(1� �) J; (8)where E is the radiation, Jref is the reexed radiation, � is the emissivity, and� is the Boltzmann radiation onstant.In the next setion, we fous on deoupling the ompliate proess in simplerproesses. We disretise and solve the simpler equations by more auratemethods with embedded analytial solutions, see Geiser [15℄, Geiser [16℄.
3 Spae disretizationIn the spae disretisation methods we disuss the �nite volume methods asonservation preserved methods for the balane-equations.3



3.1 Disretization with Finite Volume MethodsThe Finite Volume methods are robust disretisation methods for onservativeproblems. We apply the disretisation beause of the simple modi�ations forthe di�erent material behaviour, for instane the anisotropi thermal ondu-tivity is important.There exists standard tehniques inluding the �nite element method Ciarletet al. [7℄ (used in Dupret et al. [9℄) and the �nite volume method Eymard et al.[10℄ to treat suh problems. The extension of suh standard methods to mate-rials with anisotropi thermal ondutivity an be straightforward for simplegeometries (e.g. if the geometry admits a disretization into a strutured gridof retangles or parallelepipeds). However, the treatment of anisotropi mate-rials within omplex geometries as they are typial in industrial appliationsare neessary are muh more involved. To the authors' knowledge, even fortwo-dimensional domains, all the methods previously desribed in the liter-ature are restrited to simple lasses of domains, need to be adapted to �tthe type of anisotropy, or show instabilities for strongly anisotropi materials(see, e.g., Aavatsmark et al. [1, 2℄, Braianov & Volkov [5℄, Faille [11℄ and [10,Se. 11℄).We use a onstrained Delaunay triangulation to disretize polyhedral domains,followed by a Vorono�� onstrution to de�ne �nite volumes, is a well-knownproedure (see [FL01, Se. 3.2℄ and referenes therein). Here, we briey reviewsome de�nitions and properties that are subsequently used in the formulationof the �nite volume sheme for the anisotropi ase.Following [FL01, Se. 3.2℄, an admissible disretization of material domain
m, m 2 M , onsists of a �nite family �m := (�m;i)i2Im of subsets of 
msatisfying a number of assumptions, subsequently denoted by (DA-�).Notation 1 For d 2 f1; 2g, let �d denote d-dimensional Lebesgue measure.(DA-1) For eah m 2 M , �m = (�m;i)i2Im forms a �nite onforming triangu-lation of 
m. In partiular, for eah i 2 Im, �m;i is an open triangle.Moreover, letting I := Sm2M Im, � := (�i)i2I forms a onformingtriangulation of 
.(DA-2) For eah m 2M , the triangulation �m = (�m;i)i2Im respets �Dir and�Rob in the sense that, for eah i 2 Im, either �1(�Dir \ ��m;i) = 0 or�1(�Rob \ ��m;i) = 0.For eah �m;i, let V (�m;i) = nvmi;j : j 2 f1; 2; 3go denote the set of verties of�m;i, and let V := Sm2M; i2Im V (�m;i) be the set of all verties in the trian-gulation. One an then de�ne the ontrol volumes as the Vorono�� ells with4



respet to the verties. Using k � k2 to denote Eulidean distane, de�nefor all v 2 V : !v := nx 2 
 : kx� vk2 < kx� zk2 for eah z 2 V n fvgo;for all m 2M : !m;v := !v \ 
m; Vm := fz 2 V : !m;z 6= ;g:Letting T := (!v)v2V , Tm := (!m;v)v2Vm , m 2 M , T forms a partition of 
,and Tm forms a partition of 
m.Remark 2 Sine T is a Vorono�� disretization, eah intersetion �!v \ �!z,(v; z) 2 V 2, v 6= z, is ontained in the set fx 2 
 : kv � xk2 = kz � xk2g. Inpartiular, z�vkz�vk2 = n!v ��reg!v\�reg!z , where �reg denotes the regular boundaryof a polyhedral set, i.e. the points of the boundary, where a unique outer unitnormal vetor exists, �reg; := ;; and n!v ��reg!v\�reg!z is the outer unit normalto !v restrited to the fae �reg!v \ �reg!z (see Fig. 1).Notation 3 If A � R2 , then onvA denotes the onvex hull of A. For eahpair of points (x; y) 2 R2 �R2 , let [x; y℄ := onvfx; yg denote the line segmentbetween x and y.
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Fig. 1. The pitures show the Vorono�� ells of the triangulation vertiesu0; u1; u2; v; z. In (a), the triangulation violates the onstrained Delaunay property(�1 + �2 > �, f. (DA-1) and Rem. 4); in (b) the onstrained Delaunay propertyis satis�ed if, and only if, the edge [v; z℄ is not a material interfae (�=2 < �1,�1 + �2 < �).(DA-1) For eah m 2M , the triangulation �m has the onstrained Delaunayproperty: If ~Vm := Si2Im V (�m;i); then, for eah (v; z) 2 ~V 2m suh thatv 6= z, the following onditions (a) and (b) are satis�ed:(a) If the boundaries of the Vorono�� ells orresponding to v and zhave a one-dimensional intersetion, i.e. if �1(�!m;v \ �!m;z) 6= 0,then [v; z℄ is an edge of at least one � 2 �m.5



(b) If [v; z℄ is an edge of at least one � 2 �m, then the boundariesof the orresponding Vorono�� ells have a nonempty intersetion,i.e. �!m;v \ �!m;z 6= ;.Also see Fig. 1, Rem. 4, and [FL01, Se. 3.2℄.Remark 4 Due to the two-dimensional setting, (DA-1) an be expressed equiv-alently in terms of the angles in the triangulation: For eah m 2M , if  is aninterior edge of the triangulation �m, and � and � are the angles opposite to, then � + � � �. If  � �
m is a boundary edge of �m, and � is the angleopposite , then � � �=2.The following Rem. 5 allows the inorporation of the interfae ondition (78)into the �nite volume sheme.Remark 5 Using Rem. 2, it is not hard to show that (DA-1) and (DA-1)imply the following assertions (a) and (b):(a) For eah m 2 M , the set Vm de�ned in (9a) is idential to the set ~Vmde�ned in (DA-1).(b) Let � be a one-dimensional material interfae: � = �
m\�
 ~m, �1(�) 6= 0.For eah v 2 V , if some !v has a one-dimensional intersetion with theinterfae �, then it lies on both sides of the intersetion; in other words,�reg!m;v \ � = �reg! ~m;v \ �, in partiular, �1(�!m;v \ �) 6= 0 if, and onlyif �1(�! ~m;v \�) 6= 0. However, Fig. 1(a) shows that this an generally notbe expeted in ases where the onstrained Delaunay property is violated:If the edge [v; w℄ =: � onstitutes a material interfae, then both !u1 and!u2 have one-dimensional intersetions with �, but lie on just one side of�.Integrating (76) over !m;v and applying the Gauss-Green integration theoremyields � Z�!m;v(Km(�)r �) � n!m;v = Z!m;v fm; (10)where n!m;v denotes the outer unit normal vetor to !m;v.4 Time-disretisation methodsFor the time-disretization of the spatial disretised equation we apply Runge-Kutta methods and BDF methods.For the equation treated with operator-splitting, we propose we propose higherorder methods as best �tted methods for eah time-sale. A next importantlass of time-disretisation methods are the IMEX (impliit-expliit) methods6



as ombination of mixed disretisation methods for a sti�-operators (impliitmethod) and nonsti�-operators (expliit method).Based on the iterative methods the start-solution for the �rst iteration-stepis important to obtain higher order results, see setion 5. For the next iter-ation steps the order have to inreased till the proposed order of the time-disretization.The methods are desribed in the following setions.4.1 Runge-Kutta methodWe use the impliit trapezoidal rule:01 12 1212 12 (11)Further more we use the following Gau� Runge-Kutta method :12 � p36 14 14 � p3612 + p36 14 + p36 1412 12 (12)
To use this Runge-Kutta methods with our operator-splitting method we haveto take into aount that we solve in eah iteration step equations of the form�tui = Aui + b. Where b = Bui�1 is a disrete funtion as we only have adisrete solution for ui�1.For the impliit trapezoidal rule this is no problem, beause we do not needthe values at any sub-points. Where on the other hand for the Gau� methodwe need to now the values of b at the sub-points t0 + 1h and t0 + 2h with = (12 � p36 ; 12 + p36 )T . Therefor we must interpolate b. To do so we hoosethe ubi spline funtions.Numerial experiments show that this works properly with non-sti� problems,but worth with sti�-problems. 7



4.2 BDF methodBeause the higher order Gau� Runge-Kutta method ombined with ubispline interpolation does not work properly with sti� problems we use thefollowing BDF method of order 3 whih does not need any sub-points andtherefor no interpolation is needed.BDF31=k(11=6un+2 � 3un+1 + 3=2un � 1=3un�1 = A(un+3) (13)For the prestepping, i.e. to obtain u1; u2, we use the above impliit trapezoidalrule.4.3 Impliit-expliit methodsThe impliit-expliit (IMEX) shemes have been widely developed for timeintegration of spatial disretised partial di�erential equations of di�usion-onvetion type. These methods are applied to deouple the impliit and ex-pliit terms. So for example the onvetion-di�usion equation, one use theexpliit part for the onvetion term and the impliit part for the di�usion.In our appliation we divide between the sti� and nonsti� term, so we applythe impliit part for the sti� operators and the expliit part for the nonsti�operators.4.3.1 FS-RK-methodWe propose the A-stable FSRK-sheme, see ? ℄, of �rst and seond order forour appliations.The tableau in the Buther-form is given as1 1 01 1 0 0 149 �8845 0 125 0 0 59 013 �40775 0 14425 0 0 �3115 0 125order1 1 0 0 0 0 1 0 0order2 110 0 910 0 0 14 0 34
(14)

8



To obtain seond order onvergene in numerial examples it is important tosplit the operator in the right way as we will show later.4.3.2 SBDF-MethodWe use the following SBDF method whih is a modi�ation of the BDF3method.As prestepping method we use again the impliit trapezoidal rule.1=k(11=6un+1 � 3un + 3=2un�1 � 1=3un�2) (15)= 3A(un)� 3A(un�1) + A(un�2) +B(un+1) (16)Again it is important to split the operator in the right way.
5 Time-Deomposition methods: Operator-Splitting MethodsThe operator-splitting methods are used to solve omplex models in the geo-physial and environmental physis, they are developed and applied in Strang[36℄ and Verwer & Sportisse [37℄. This ideas based in this artile are solvingsimpler equations with respet to reeive higher order disretization methodsfor the remain equations. For this aim we use the operator-splitting methodand deouple the equation as follows desribed.5.1 Splitting methods of �rst order for linear equationsFirst we desribe the simplest operator-splitting, whih is alled � for thefollowing system of ordinary linear di�erential equations:�t(t) = A (t) + B (t) ; (17)whereby the initial-onditions are n = (tn). The operators A and B arespatially disretised operators, e.g. they orrespond to the disretised in spaeonvetion and di�usion operators (matries). Hene, they an be onsideredas bounded operators.The sequential operator-splitting method is introdued as a method whihsolve the two sub-problems sequentially, where the di�erent sub-problems areonneted via the initial onditions. This means that we replae the originalproblem (17) with the sub-problems 9



��(t)�t = A�(t) ; with �(tn) = n ; (18)���(t)�t = B��(t) ; with ��(tn) = �(tn+1) ;whereby the splitting time-step is de�ned as �n = tn+1�tn. The approximatedsplit solution is de�ned as n+1 = ��(tn+1).Clearly, the hange of the original problems with the sub-problems usuallyresults some error, alled splitting error. Obviously, the splitting error of the� method an be derived as follows (f. e.g.? ℄)�n= 1� (exp(�n(A+B))� exp(�nB) exp(�nA)) (tn)= 12�n[A;B℄ (tn) +O(� 2) : (19)whereby [A;B℄ := AB � BA is the ommutator of A and B. Consequently,the splitting error is O(�n) when the operators A and B do not ommute,otherwise the method is exat. Hene, by de�nition, the � is alled �rst ordersplitting method .In the next subsetion we present the iterative-splitting method.5.2 Iterative splitting methodThe following algorithm is based on the iteration with �xed splitting disretiza-tion step-size � , namely, on the time interval [tn; tn+1℄ we solve the followingsub-problems onseutively for i = 0; 2; : : : 2m. (f. Kanney et al. [18℄ andFarago & Geiser [12℄.)�i(t)�t = Ai(t) + Bi�1(t); with i(tn) = n (20)and 0(tn) = n ; �1 = 0:0;�i+1(t)�t = Ai(t) + Bi+1(t); (21)with i+1(tn) = n ;where n is the known split approximation at the time level t = tn. The splitapproximation at the time-level t = tn+1 is de�ned as n+1 = 2m+1(tn+1).(Clearly, the funtion i+1(t) depends on the interval [tn; tn+1℄, too, but, forthe sake of simpliity, in our notation we omit the dependene on n.)10



In the following we will analyze the onvergene and the rate of the onver-gene of the method (20){(21) for m tends to in�nity for the linear operatorsA;B : X ! X where we assume that these operators and their sum aregenerators of the C0 semigroups. We emphasize that these operators aren'tneessarily bounded, so, the onvergene is examined in general Banah spaesetting.Theorem 6 Let us onsider the abstrat Cauhy problem in a Banah spaeX �t(t) = A(t) +B(t); 0 < t � T(0) = 0 (22)where A;B;A + B : X ! X are given linear operators being generators ofthe C0-semigroup and 0 2 X is a given element. Then the iteration proess(20){(21) is onvergent and the and the rate of the onvergene is of seondorder.Remark 7 When A and B are matries (i.e. (20){(21) is a system of theordinary di�erential equations), for the growth estimation we an use theonept of the logarithmi norm. (See e.g.Hundsdorfer & Verwer [17℄.) Hene,for many important lass of matries we an prove the validity.Remark 8 We note that a huge lass of important di�erential operators gen-erate ontrative semigroup. This means that for suh problems -assuming theexat solvability of the split sub-problems- the iterative splitting method isonvergent in seond order to the exat solution.
5.3 Weighted Iterative splitting methodWe assume an improved iterative splitting method with respet to more stablebehavior in the ontinuous ase.As a �rst method the unsymmetri weighted iterative splitting method isintrodued. The algorithm is based on the iteration with �xed splitting dis-retization step-size � . On the time interval [tn; tn+1℄ we solve the followingsub-problems onseutively for i = 0; 2; : : : 2m.11



�i(t)�t = Ai(t) + ! Bi�1(t); with i(tn) = n (23)and 0(tn) = 0 ; �1 = 0;�i+1(t)�t = ! Ai(t) + Bi+1(t); (24)with i+1(tn) = ! n + (1� !) i(tn+1) ;where n is the known split approximation at the time level t = tn. The splitapproximation at the time-level t = tn+1 is de�ned as n+1 = 2m+1(tn+1). Ourparameter ! 2 [0; 1℄. For ! = 0 we have the A-B-splitting and for ! = 1 wehave the iterative splitting method.In the same manner the initial onditions of the weighted iterative splittingmethod are weighted between the sequential splitting and iterative splittingmethod.5.4 Stability TheoryIn the following we present the stability analysis for the ontinuous ase withommutative operators. First we apply the reursion for the general ase andthen we onentrate on the ommutative ase.5.4.1 ReursionWe study the stability for the linear system (23) and (24). We treat the speialase for the initial-values with i(tn) = n and i+1(tn) = n for an overview.The general ase i+1(tn) = !n+(1�!)i(tn+1) ould be treated in the samemanner.We onsider the suitable vetor norm jj � jj on IRM , together with its induedoperator norm. The matrix exponential of Z 2 IRM�M is denoted by exp(Z).We assume thatjj exp(� A) � 1jj and jj exp(� B) � 1jj for all � > 0:It an be shown that the system (17) implies jj exp(� (A + B))jj � 1 and isitself stable.For the linear problem (23) and (24) it follows by integration that12



i(t) = exp((t� tn)A)n + Z ttn exp((t� s)A) ! Bi�1(s) ds ; (25)i+1(t) = exp((t� tn)B)n + Z ttn exp((t� s)B) ! Ai(s) ds : (26)With elimination of i we geti+1(t) = exp((t� tn)B)n + ! Z ttn exp((t� s)B) A exp((s� tn)A) n ds+!2 Z ts=tn Z ss0=tn exp((t� s)B) A exp((s� s0)A) B i�1(s0) ds0 ds :(27)For the following ommuting ase we ould evaluate the double integral R ts=tn R ss0=tnas R ts0=tn R ts=s0 and ould derive the weighted stability-theory.5.4.2 Commuting operatorsFor more transpareny of the formula (27) we onsider a well-onditionedsystem of eigenvetors and the eigenvalues �1 of A and �2 of B instead of theoperators A;B themselves. Replaing the operators A and B by �1 and �2respetively, we obtain after some alulationsi+1(t)= n 1�1 � �2 (!�1 exp((t� tn)�1) + ((1� !)�1 � �2) exp((t� tn)�2))+ n !2 �1�2�1 � �2 Z ts=tn (exp((t� s)�1) � exp((t� s)�2)) ds : (28)Note that this relation is symmetri in �1 and �2.5.4.3 A(�)-stabilityWe de�ne zk = ��k, k = 1; 2. We start with 0(t) = un and we obtain2m(tn+1)=Sm(z1; z2) n ; (29)where Sm is the stability funtion of the sheme with m-iterations. We use(28) and obtain after some alulations13



S1(z1; z2)=!2 n + ! z1 + !2 z2z1 � z2 exp(z1) n (30)+ (1� ! � !2) z1 � z2z1 � z2 exp(z2) n
S2(z1; z2)=!4 n + ! z1 + !4 z2z1 � z2 exp(z1) n (31)+ (1� ! � !4) z1 � z2z1 � z2 exp(z2) n+ !2 z1 z2(z1 � z2)2 ((!z1 + !2z2) exp(z1)+(�(1� ! � !2)z1 + z2) exp(z2)) n+ !2 z1 z2(z1 � z2)3 ((�!z1 � !2z2)(exp(z1)� exp(z2))+((1� ! � !2)z1 � z2)(exp(z1)� exp(z2))) nLet us onsider the A(�)-stability given by the following eigenvalues in a wedgeW = f� 2 C : j arg(�) � �gFor the A-stability we have jSm(z1; z2)j � 1 whenever z1; z2 2 W�=2.The stability of the two iterations is given in the following theorem with respetto A and A(�)-stability.Theorem 9 We have the following stability :For S1 we have the A-stabilitymaxz1�0;z22W� jS1(z1; z2)j � 1 ; 8 � 2 [0; �=2℄ with ! = 14p3For S2 we have the A(�)-stabilitymaxz1�0;z22W� jS2(z1; z2)j � 1 ; 8 � 2 [0; �=2℄ with ! � � 18 tan2(�)+1�1=8Proof 10 We onsider a �xed z1 = z; Re(z) < 0 and z2 ! �1 . Then weobtainS1(z;1) = !2(1� ez) (32)and 14



S2(z;1) = !4(1� (1� z)ez) (33)If z = x + iy; x < 0 then :1.) For S1jS1(z;1)j2 = !4(1� 2 exp(x)osy + exp(2x)) (34)HenejS1(z;1)j � 1, !4 � 11� 2 exp(x) os y + exp(2x) (35)Beause of x < 0 and y 2 IR we ould estimate �2 � 2 exp(x) os(y) andexp(2x) � 0.From (35) we obtain ! � 14p3 .2.) For S2jS2(z;1)j2=!8f1� 2 exp(x)[(1� x) os y + y sin y℄ (36)+ exp(2x)[(1� x)2 + y2℄gafter some alulations we ould obtainjS2(z;1)j � 1, exp(x) � ( 1!8 � 1) exp(�x)(1� x)2 + y2 + 2 j1� xj+ jyj(1� x)2 + y2 (37)we ould estimate for x < 0 and y 2 IR j1�xj+jyj(1�x)2+y2 � 3=2 and 12 tan2(�) < exp(�x)(1�x)2+y2where tan(�) = y=x.Finally, we get the bound ! � � 18 tan2(�)+1�1=8.6 Domain Deomposition methods : Shwarz wave form relaxationmethodsIn this setion we shall present the neessary onditions for the onvergeneof the overlapping Shwarz wave form relaxation method for the solution ofthe onvetion-reation di�usion equation with onstant oeÆients. We willutilize the onvergene analysis for the solution of the deoupled and oupledsystem of onvetion reation di�usion equation to elaborate the impat of theoupling on the onvergene of the overlapping Shwarz wave form relaxation.15



6.1 Overlapping Shwarz wave form relaxation for the salar onvetion re-ation di�usion equationWe onsider the onvetion di�usion reation equation, given byut = Duxx � �ux � �u ; (38)de�ned on the domain 
 = [0; L℄ for T = [T0; Tf ℄, with the following initialand boundary onditionsu(0; t) = f1(t); u(L; t) = f2(t); u(x; T0) = u0 :To solve the model problem using overlapping Shwarz wave form relax-ation method, we subdivide the domain 
 in two overlapping sub-domains
1 = [0; L2℄ and 
2 = [L1; L℄, where L1 < L2 and 
1 T
2 = [L1; L2℄ is theoverlapping region for 
1 and 
2:To start the wave form relaxation algorithm we �rstly onsider the solutionof the model problem (38) over 
1 and 
2 as followsvt = Dvxx � �vx � �v over 
2 ; t 2 [T0; Tf ℄v(0; t) = f1(t) ; t 2 [T0; Tf ℄v(L2; t) = w(L2; t) ; t 2 [T0; Tf ℄v(x; T0) = u0 x 2 
1; (39)
wt = Dwxx � �wx � �w over 
2 ; t 2 [T0; Tf ℄w(L1; t) = v(L1; t) ; t 2 [T0; Tf ℄w(L; t) = f2(t) ; t 2 [T0; Tf ℄w(x; T0) = u0 x 2 
2; (40)where v(x; t) = u(x; t)j
1 and w(x; t) = u(x; t)j
2.Then the Shwarz wave form relaxation is given byvk+1t = Dvk+1xx � �vk+1x � �vk+1 over 
1 ; t 2 [T0; Tf ℄vk+1(0; t) = f1(t) ; t 2 [T0; Tf ℄vk+1(L2; t) = wk(L2; t) ; t 2 [T0; Tf ℄vk+1(x; T0) = u0 x 2 
1; (41)

16



wk+1t = Dwk+1xx � �wk+1x � �wk+1 over 
2 ; t 2 [T0; Tf ℄wk+1(L1; t) = vk(L1; t) ; t 2 [T0; Tf ℄wk+1(L; t) = f2(t) ; t 2 [T0; Tf ℄wk+1(x; T0) = u0 x 2 
2: (42)
We are interested in estimating the deay of the error of the solution overthe overlapping subdomains by the overlapping Shwarz wave form relaxationmethod over long time interval.Let us assume that ek+1(x; t) = u(x; t)� vk+1(x; t) and dk+1(x; t) = u(x; t)�wk+1(x; t) is the error of (41) and (42) over 
1 and 
2 respetively. The or-responding di�erential equations satis�ed ek+1(x; t) and dk+1(x; t) are givenby ek+1t = Dek+1xx � �ek+1x � �ek+1 over 
1 ; t 2 [T0; Tf ℄ek+1(0; t) = 0 ; t 2 [T0; Tf ℄ek+1(L2; t) = dk(L2; t) ; t 2 [T0; Tf ℄ek+1(x; T0) = 0 x 2 
1; (43)

dk+1t = Ddk+1xx � �dk+1x � �dk+1 over 
2 ; t 2 [T0; Tf ℄dk+1(L1; t) = ek(L1; t) ; t 2 [T0; Tf ℄dk+1(L; t) = 0 ; t 2 [T0; Tf ℄dk+1(x; T0) = 0 ; x 2 
2: (44)
De�ning for bounded funtions h(x; t) : 
� [T0; T ℄! R the normjjh(:; :)jj1 := supx2
;t2[T0;Tf ℄ jh(x; t)j:The theory behind our error-estimates are based on the positivity lemma byPao (or the maximum priniple theorem), see Pao [28℄, that is introdued asLemma 11 Let u 2 C(
T ) \ C1;2(
T ), where 
T = 
 � (0; T ℄ and �
T =�
 � (0; T ℄, be suh thatut �D uxx + � ux +  u � 0 ; in 
T (45)�0 �u�� + �0 u � 0 ; on �
T (46)u(x; 0) � 0 ; in 
 (47)17



where �0 � 0, �0 � 0, �0 + �0 > 0 on �
T , and  � (x; t) is a boundedfuntion in 
T , Then u(x; t) � 0 in 
TThe onvergene and error-estimates of ek+1 and dk+1 given by (43) and (44)respetively, are presented by the following theoremTheorem 12 Let ek+1 and dk+1 be the error from the solution of the sub-problems (39) and (40) by Shwarz wave form relaxation over 
1 and 
2,respetively, then jjek+2(L1; t)jj1 � jjek(L1; t)jj1 ;and jjdk+2(L2; t)jj1 � jjdk(L1; t)jj1 ;where  = sinh(�L1)sinh(�L2) sinh(�(L2 � L)sinh(�(L1 � L)) < 1 ;with � = p�2+4D�2D :Proof 13 For the error ek+1 and dk+1; onsider the following di�erential equa-tions de�ned by êk+1 and d̂k+1 given byêk+1t = Dêk+1xx � �êk+1x � �êk+1 over 
1 ; t 2 [T0; Tf ℄êk+1(0; t) = 0 ; t 2 [T0; Tf ℄êk+1(L2; t) = jjdk(L2; t)jj1 ; t 2 [T0; Tf ℄êk+1(x; T0) = e(x�L2)� sinh(�x)sinh(�L2) jjdk(L2; t)jj1 ; x 2 
1 (48)
and d̂k+1t = Dd̂k+1xx � �d̂k+1x � �d̂k+1 over 
2 ; t 2 [T0; Tf ℄d̂k+1(L1; t) = jjek(L1; t)jj1 ; t 2 [T0; Tf ℄d̂k+1(L; t) = 0 ; t 2 [T0; Tf ℄d̂k+1(x; T0) = e(x�L1)� sinh�(x�L)sinh�(L1�L) jjek(L1; t)jj1 ; x 2 
2 (49)
where � = �2D and � = p�2+4D�2D : 18



The solution to (48) and (49) is the steady state solution given byêk+1(x) = e(x�L2)� sinh(�x)sinh(�L2) jjdk(L2; t)jj1 ;and d̂k+1(x) = e(x�L1)� sinh�(x� L)sinh �(L1 � L) jjek(L1; t)jj1 ;respetively.Hene, de�ne E(x; t) = êk+1 � ek+1 thereforeEt �DExx + �Ex + �E � 0 ; over 
1 ; t 2 [T0; Tf ℄E(0; t) = 0 ; t 2 [T0; Tf ℄E(L2; t) � 0 ; t 2 [T0; Tf ℄E(x; T0) � 0 ; x 2 
1 (50)
satis�es the Lemma 11 therefore E(x; t) � 0i.e. jek+1j � êk+1 ;for all (x; t) and similarly we onlude thatjdk+1j � d̂k+1 ;for all (x; t):Then jek+1(x; t)j � e(x�L2)� sinh(�x)sinh(�L2) jjdk(L2; t)jj1 ; (51)and jdk+1(x; t)j � e(x�L1)� sinh�(x� L1)sinh �(L1 � L) jjek(L1; t)jj1 ; (52)Evaluate dk(x; t) at L2jdk(L2; t)j � sinh �(L2 � L)sinh �(L1 � L) jjek�1(L1; t)jj1 ; (53)and substitute in (51) onluding that19



jek+1(x; t)j � e(x�L2)� sinh(�x)sinh(�L2)e(L2�L1)� sinh �(L2 � L)sinh �(L1 � L) jjek�1(L1; t)jj1 ;thereforejek+1(L1; t)j � e(L1�L2)� sinh(�L1)sinh(�L2)e(L2�L1)� sinh �(L2 � L)sinh �(L1 � L) jjek�1(L1; t)jj1 ;i.e. jek+2(L1; t)j � sinh(�L1)sinh(�L2) sinh�(L2 � L)sinh�(L1 � L) jjek(L1; t)jj1 :Similarly for dk+1(x; t) we onlude thatjdk+2(L2; t)j � sinh(�L1)sinh(�L2) sinh�(L2 � L)sinh�(L1 � L) jjdk(L1; t)jj1 :Theorem 12 shows that the onvergene of of the overlapping Shwarz methoddepend on  = sinh(�L1)sinh(�L2) sinh�(L2�L)sinh�(L1�L) : Due to the harateristi of the sinh fun-tion we will have sharp deay of the error for any L1 < L2; and also for largesize of overlapping.7 Numerial Results7.1 Test-example : Convetion-reation equation for the simulation of thegas-mixtureWe apply the operator-splitting methods for the onmvetion-reation equa-tion.We deal with a �rst order partial di�erential-equation given as a transportequation in the following:�tu1=�v1�xu1 � �u1 ; (54)�tu2=�v2�xu2 + �u1 ; (55)u1(x; 0)= 1 ; for 0:1 � x � 0:3 ; (56)u1(x; 0)= 0 ; otherwise ;u2(x; 0)= 0 ; for x 2 [0; X℄ ; (57)20



where � 2 IR+ and v1; v2 2 IR+. We have the time-interval t 2 [0; T ℄ and thespae-interval x 2 [0; X℄.We rewrite the equation-system (54){(57) in operator notation, and end upwith the following equations :�tu=Au+Bu ; (58)u(x; 0)= (1; 0)T ; for 0:1 � x � 0:3 ; (59)u(x; 0)= (0; 0)T ; otherwise ; (60)where u = (u1; u2)T .Our splitted operators areA = 0B��v1�x 00 �v2�x1CA ; B = 0B��� 0� 01CA : (61)We use the �nite di�erene method as spatial disretization method and solvethe time-disretization analytially.The spatial disretization is done as follows, we onentrate on the intervalx 2 [0; 1:5℄ and we onsider a uniform partition of it with step �x = 0:1. Forthe transport-term we use an upwind �nite di�erene disretization given as :�xui = ui � ui�1�x : (62)We use for the initial-values the given impulses :u1(x) = 8><>: 1 ; 0:1 � x � 0:30 ; otherwise : (63)and u2(x) = 0 ; x 2 [0; 1:5℄ (64)For the iterative operator-splittingmethod and the appliation to our transport-equation we deal for the disretised equation with two indies. The index i isfor the spatial disretization and the index j is for the iteration-steps.We �rst solve all the equations with the index i, that means all 16 equationsfor eah point. Then we do our iterative steps and we have the �rst time-step.21



We are �nished for 1 time-partition and we repeat this 4 times more for theomputations of 5 partitions et.In the following equations we write the iterative operator splitting algorithmby taking into aount the disretization in spae. The time-disretizationis solved analytially. On the time interval [tn; tn+1℄ we solve the followingproblems onseutively for j = 1; 3; 5; : : :. The split approximation at the timelevel t = tn+1 is de�ned as un+1i � ui;iter(tn+1).We have the following algorithm :�tu1;i;j =�v1=�x(u1;i;j � u1;i�1;j)� �u1;i;j�1 ; (65)�tu2;i;j =�v2=�x(u2;i;j � u2;i�1;j) + �u1;i;j�1 ; (66)�tu1;i;j+1=�v1=�x(u1;i;j � u1;i�1;j)� �u1;i;j+1 ; (67)�tu2;i;j+1=�v2=�x(u2;i;j � u2;i�1;j) + �u1;i;j+1 ; (68)u1;i;j(0)=1 ; for i = 1; 2; 3; (69)u1;i;j(0)=0 ; otherwise; (70)u2;i;j(0)=0 ; for i = 0; : : : ; 15 ; (71)where � = 0:5 and v1 = 0:5 and v2 = 1:0. For the time-interval we use t 2 [0; 1℄.The analytial solution of the equation-system (54){(57) isu1(x; t) = 8><>: exp(��t) ; for 0:1 + v1t � x � 0:3 + v1t ;0 ; otherwiseand u2(x; t) = �(L1;2 + L2;2 +M12;2)
L1;2 = 8><>:� 1� exp(��t) ; for 0:1 + v1t � x � 0:3 + v1t ;0 ; otherwiseL2;2 = 8><>: 1� ; for 0:1 + v2t � x � 0:3 + v2t ;0 ; otherwise22



M12;2 = 8>>>>><>>>>>: 1� exp(��t) ; for 0:1 + v1t � x � 0:1 + v2t ;� 1� exp(��t) exp(�( �v1�v2 )(x� v1t� 0:3)) ; for 0:3 + v1t � x � 0:3 + v2t ;0 ; otherwiseSo, for the end-time tend = 1, we hek the results for the end-point x1 =v1t+ 0:3. We get the exat solution of our equation:u1(x1; tend) = 0:60653 ; u2(x1; tend) = 0For the steps j and j + 1, whih are now atually ODE's, we an deriveanalytial solutions and apply them to our numerial sheme. The analytialsolutions are given asu1;i;j = u1;i�1;j � ��xv1 u1;i;j�1 + 2;iexp(�v1t=�x)u2;i;j = u2;i�1;j + ��xv1 u1;i;j�1 + 1;iexp(�v2t=�x);and u1;i;j+1= v1��x(u1;i�1;j � u1;i;j) + d2;iexp(��t)u2;i;j+1= v2�x(u2;i�1;j � u2;i;j)t+ v1�x(u1;i�1;j � u1;i;j)t� d2;iexp(��t) + d1;i;where 1;i; 2;i; d1;i; d2;i are onstants depending on i and they an be om-puted from the initial values for t = 0 (as it was done in the ODE example).For t = 0, we get from the above four equations:2;i=u1;i;j(0)� u1;i�1;j(0) + ��xv1 u1;i;j�1(0)1;i=u2;i;j(0)� u2;i�1;j(0)� ��xv2 u1;i;j�1(0)d2;i=u1;i;j+1(0)� v1��x(u1;i;j�1(0)� u1;i;j(0))d1;i=u2;i;j+1(0) + d2;i 23



We implemented this algorithm on the omputer but it didn't lead to satisfyingresults, as the appearing error ould not reah values less than of order 10�1,no matter how many time partitions or iterations we had. So we were led touse another algorithm for the expression of the analytial solutions in steps jand j + 1.For the time-integration we apply impliit Euler methods for the semi-disretizedequations (65)-(71).We have the following full-disretization :u1;i;j(tn+1)= (1 + � v1�x )�1(u1;i;j(tn) + �v1�x u1;i�1;j(tn+1)� � �u1;i;j�1(tn+1)) ;u2;i;j(tn+1)= (1 + � v2�x )�1(u2;i;j(tn) + �v2�x u2;i�1;j(tn+1) + � �u1;i;j�1(tn+1)) ;u1;i;j+1(tn+1)= (1 + ��)�1(u1;i;j+1(tn)� �v1�x (u1;i;j(tn+1)� u1;i�1;j(tn+1))) ;u2;i;j+1(tn+1)=u2;i;j+1(tn)� �v2�x (u2;i;j(tn+1)� u2;i�1;j(tn+1)) + ��u1;i;j+1(tn+1) ;j = 1; 3; 5; : : : ; � = tn+1 � tn.u1;i;0(tn+1) = 1 ; for i = 1; 2; 3 ,u1;i;0(tn+1) = 0 ; else;u2;i;0(tn+1) = 0 ; for i = 0; : : : ; 15;u1;i;j(0) = 0 ;u2;i;j(0) = 0 ;u1;�1;j(0) = 0 ;u2;�1;j(0) = 0 ;In order to implement the algorithm on the omputer, we tried to work sim-ilarly to the ODE example. In the implementation of the ODE example weused in our omputer program a vetor a, in whih we stored for every timepartition the values of all the appearing ui1 during the iterations. Similarly,vetor b was used for ui2. Preisely, vetor a was [u10 u�11 (0) u01 u11 u21 : : : uiter1 ℄,where the �rst two oordinates are the initial values, whih for our examplewere 1 and 0 respetively, and the rest of the oordinates are the solutionsalulated during all the iterations. (total number of iterations=iter)Now, in the ase of a PDE we have two dimensions, so it makes sense to use amatrix A instead of a vetor. Supposing we have a total number of iterations= iter and sine we have 16 points in our spatial partition, the matrix A willbe of the following form: 24



A =
2666666666666666666666666664

� u1;0;0(tn+1) u1;1;0(tn+1) : : : u1;15;0(tn+1)� u1;0;1(tn) u1;1;1(tn) : : : u1;15;1(tn)u1;�1;1(tn+1) u1;0;1(tn+1) u1;1;1(tn+1) : : : u1;15;1(tn+1)� u1;0;2(tn) u1;1;2(tn) : : : u1;15;2(tn)u1;�1;2(tn+1) u1;0;2(tn+1) u1;1;2(tn+1) : : : u1;15;2(tn+1)... ...� u1;0;iter(tn) u1;1;iter(tn) : : : u1;15;iter(tn)u1;�1;iter(tn+1) u1;0;iter(tn+1) u1;1;iter(tn+1) : : : u1;15;iter(tn+1)

3777777777777777777777777775
;

where the elements � do not play any role. Similarly, we onstrut the matrixB for u2. The �rst row represents the given initial values for the 16 pointsof the partition (they are 0 or 1, aording to x) and they orrespond to theinitial values u10 and u20 in the ODE example. The �rst olumn also ontainsinitial values, whih orrespond to the value u�11 (0) in the ase of the ODE,and they are equal to 0.In table 1 we give the errors for the exat solutions at the end-time t = 1 andend-point x = v1t + 0:3 = 0:8.7.2 First example: Di�usion-equationWe onsider the two-dimensional di�usion equation given by�rDru = f in
 = [0; 1℄2; (72)u = 0 on � 
 (73)We have the following domain :We deal with the following domain, where we have the in the domain 
1 thedi�usion-oeÆient D1, in the domain 
� the di�usion-oeÆient D�, in thedomain 
2 the di�usion-oeÆient D2, the thikness of the small strip is �.The right hand side f = 1, the boundary-onditions are omplete dirihlet-boundary-onditions with zero boundary. The oeÆients are D1 = 1:0, D2 =25



Number of Iterative err1 err2time-partitions Steps1 2 2:679116 � 10�1 2:465165 � 10�11 4 1:699365 � 10�1 3:584424 � 10�11 10 2:702681 � 10�1 5:327567 � 10�21 50 6:065295 � 10�1 6:170954 � 10�71 100 6:065307 � 10�1 7:152770 � 10�175 2 2:472959 � 100 6:812055 � 10�15 4 1:181408 � 101 4:757047 � 1005 10 4:680711 � 100 1:496981 � 1005 50 8:208500 � 10�2 7:325327 � 10�255 100 8:208500 � 10�2 1:299116 � 10�7010 2 2:289850 � 102 7:246663 � 10110 4 1:121958 � 104 4:498364 � 10310 10 8:999232 � 104 2:819985 � 10410 50 6:737947 � 10�3 2:593585 � 10�3410 100 6:737947 � 10�3 3:160841 � 10�7050 2 3:166645 � 1019 1:001479 � 101950 4 2:528693 � 1032 1:013854 � 103250 10 4:750741 � 1050 1:488686 � 105050 50 1:388794 � 10�11 3:453184 � 10�6650 100 1:388794 � 10�11 2:100221 � 10�144Table 1Numerial results for the seond example with the iterative splitting method.1:0 and we deal with Deps = 0:1; 0:01; 0:001The methods are based on date-parallel Multi-grid methods with loal ILU-smootheers with 2 pre- and post-smoothing steps. The grid re�nement is givenlevels l = 3; 4; 5; 6; 7We start with 
1 = [0; 0:45℄x[0; 1℄ and with 3 times re�nement we have hx =0:05625, hy = 0:125, and 
� = [0:45; 0:55℄x[0; 1℄ and with 3 times re�nementwe have hx = 0:0125 and hy = 0:125.First test-series : � = 0:01 26



Ω εΩ1 Ω2

εFig. 2. The results for the Shwarz-method with 3 domains.CoeÆient D� MG-Level Convergene-rate0.1 3 0.0784 0.0735 0.0686 0.0637 0.0600.01 3 0.0214 0.0225 0.0216 0.0197 0.0170.001 3 0.0114 0.0155 0.0146 0.0137 0.012Table 2The L1-error in time and spae for the onvetion-di�usion-reation-equation usingFOP-method.The graphial output for 5. 27



Fig. 3. The results with vertial ut and the solution in the domain for level 6 and� = 0:1.7.3 Seond example: Steady state Di�usion-equation with �-DomainsWe onsider the two-dimensional di�usion equation given by�rDru = f in
 = [0; 1℄2; (74)u = 0 on � 
 (75)28



We have the following domain :We deal with the following domain, where we have the in the domain 
1 thedi�usion-oeÆient D1, in the domain 
� the di�usion-oeÆient D�, in thedomain 
2 the di�usion-oeÆient D2, the thikness of the small strip is �.
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Fig. 4. The results for the Shwarz-method with 3 domains.The right hand side f = 1, the boundary-onditions are omplete dirihlet-boundary-onditions with zero boundary. The oeÆients are D1 = 1:0, D2 =1:0 and we deal with Deps = 0:1; 0:01; 0:001The methods are based on date-parallel Multi-grid methods with loal ILU-smootheers with 2 pre- and post-smoothing steps. The grid re�nement is givenlevels l = 3; 4; 5; 6; 7We start with 
1 = [0; 0:45℄x[0; 1℄ and with 3 times re�nement we have hx =0:05625, hy = 0:125, and 
� = [0:45; 0:55℄x[0; 1℄ and with 3 times re�nementwe have hx = 0:0125 and hy = 0:125.First test-series : � = 0:01The graphial output for7.4 Real-life problem : Crystal Growth ApparatusWe onentrate on the stationary heat ondution in potentially anisotropimaterials as desribed in (see, e.g., (author?) [For01℄).We deal with the following underlying equations:� div(Km(�)r �) = fm in 
m (m 2M); (76)where � � 0 represents absolute temperature, the symmetri and positive29



CoeÆient D� MG-Level Convergene-rate hmin maximal Anisotropy0.1 3 0.016 0.125-2 40.04 0.021 0.625-3 40.05 0.036 0.313-3 40.06 0.062 0.156-3 40.07 0.107 0.781-4 40.00.01 3 0.013 0.125-2 40.04 0.019 0.625-3 40.05 0.035 0.313-3 40.06 0.061 0.156-3 40.07 0.105 0.781-4 40.00.001 3 0.0113 0.125-2 40.04 0.020 0.625-3 40.05 0.038 0.313-3 40.06 0.069 0.156-3 40.07 0.112 0.781-4 40.0Table 3Example 2, retangular strip.de�nite matrix Km represents the thermal ondutivity tensor in material m,fm � 0 represents heat soures in materialm due to some heating mehanism,e.g. indution or resistane heating, 
m is the domain of materialm, and M isa �nite index set. We onsider the ase where the thermal ondutivity tensoris a diagonal matrix with temperature-independent anisotropy, i.e.Km(�) = ��mi;j(�)�; where �mi;j(�) = 8<:�mi �miso(�) for i = j;0 for i 6= j; (77)�miso(�) > 0 being the potentially temperature-dependent thermal ondutivityof the isotropi ase, and �mi > 0 being anisotropy oeÆients. For example,the growth apparatus used in silion arbide single rystal growth by PVT areusually insulated by graphite felt, where the �bers are aligned in one partiulardiretion, resulting in a thermal ondutivity tensor of the form (77). We applythe �nite volume sheme desribed in setion ?? and onsider the anisotropyin the thermal insulation of physial vapor transport (PVT) growth apparatusin Geiser et al. [14℄.The temperature � is assumed to be ontinuous throughout the entire domain
. Continuity of the normal omponent of the heat ux on the interfae be-30



Fig. 5. The results with vertial ut and the solution in the domain for level 6 and� = 0:1.tween di�erent materials m1 and m2, m1 6= m2, yields the following interfaeonditions, oupling the heat equations (76):�Km1(�)r ���
m1 �nm1 = �Km2(�)r ���
m2 �nm1 on 
m1 \ 
m2 ; (78)where � denotes restrition, and nm1 denotes the unit normal vetor pointingfrom material m1 to material m2.We onsider two types of outer boundary onditions, namely Dirihlet and31



Robin onditions. To that end, we deompose �
 aording to (A-1):(A-1) Let �Dir and �Rob be relatively open polyhedral subsets of �
 suh that�
 = �Dir [ �Rob, �Dir [ �Rob = ;.The boundary onditions then read�= �Dir on �Dir; (79a)��Km(�)r �� � nm = �m (� � �ext;m) a.e. on �Rob \ �
m, m 2M;(79b)where nm is the outer unit normal to 
m, �Dir � 0 is the given temperatureon �Dir, �ext;m � 0 is the given external temperature ambient to �Rob \ �
m,and �m > 0 is a transition oeÆient.Our apparaturs is given as follows:The radius is 12 m and the height is 45.3 m. This domain represents a growthapparatus used in silion arbide single rystal growth by the PVT method. 
onsists of six subdomains 
m, m 2 f1; : : : ; 6g, representing the materials in-sulation, graphite ruible, SiC rystal seed, gas enlosure, SiC powder soure,and quartz. Aiming to use realisti funtions for the isotropi parts �miso(�) ofthe thermal ondutivity tensors (f. (77)), for gas enlosure, graphite ruible,insulation, and SiC rystal seed, we use the funtions given by (A.1), (A.3b),(A.4b), and (A.7b) in Klein et al. [24℄; for �5iso(�) (SiC powder soure), we use[22, (A.1)℄, and for �6iso(�) (quartz), we use�6iso(�) =  1:82� 1:21 � 10�3 �K + 1:75 � 10�6 �2K2! WmK : (80)Hene, all funtions �miso(�) depend nonlinearly on �. As mentioned in theIntrodution, the thermal ondutivity in the insulation is typially anisotropiin PVT growth apparatus. In the numerial experiments reported on below,we therefore vary the anisotropy oeÆients (�1r; �1z) of the insulation whilekeeping (�mr ; �mz ) = (1; 1) for all other materials m 2 f2; : : : ; 5g.Heat soures fm 6= 0 are supposed to be present only in the part of 
2 (graphiteruible) labeled by \uniform heat soures" in the left-hand piture in Fig. 6satisfying 5:4 m � r � 6:6 m and 9:3 m � z � 42:0 m. In that region,f2 is set to the onstant value f2 = 1:23 MW=m3, whih orresponds to atotal heating power of 1.8 kW. This serves as an approximation to the situ-ation typially found in a radio frequeny indution-heated apparatus, wherea moderate skin e�et onentrates the heat soures within a few millimetersof the ondutor's outer surfae.Here, our main goal is to illustrate the e�etiveness of our �nite volume shemeto ompute the temperature �eld in a realisti omplex geometry involving ma-32



terials with anisotropi thermal ondutivity. If the anisotropy in the thermalondutivity of the insulation is suÆiently large, we expet the isotherms tobe almost parallel to the diretion with the larger anisotropy oeÆient. Sineusing the Dirihlet boundary ondition (79a) an suppress suh an alignmentof the isotherms, we opt to use the Robin ondition (79b) on all of �
 instead.For m 2 f1; 2; 6g, we set �ext;m = 500 K and �m = 80 W=(m2K) (reall fromFig. ?? that 
1, 
2, and 
6 represent the insulation, the graphite ruible,and quartz, respetively, and, thus, the outer materials of the apparatus).We now present results of numerial experiments, varying the anisotropy o-eÆients (�1r; �1z) in the insulation. In eah ase, we use a �ne grid onsist-ing of 61 222 triangles. We start with the isotropi ase (�1r; �1z) = (1; 1) de-pited on the right-hand side of Fig. 6. Figure 7 shows the omputed tem-perature �elds for the moderately anisotropi ases (�1r; �1z) = (10; 1) (left),(�1r; �1z) = (1; 10) (middle), (�1r; �1z) = (10; 1) in top and bottom insulationparts, (�1r; �1z) = (1; 10) in insulation side wall (right).The maximal temperatures established in the 7 experiments are olleted inTable 4.
Location of heat sources

uniform heat sources

field
Stationary temperature

1220 K

580 K

820 K

Fig. 6. Left: Loation of the heat soures. Right: Computed temperature �eld forthe isotropi ase �1r = �1z = 1, where the isotherms are spaed at 80 K.Comparing the temperature �elds in Figures 6 - 7 as well as the maximaltemperatures listed in Table 4, we �nd that any anisotropy redues the e�e-tiveness of the thermal insulation, where a stronger anisotropy results in lessinsulation. A stronger anisotropy results in a less e�etive insulation and thevalue above 1 improves the insulation's thermal ondutivity in that diretion.33



field
Stationary temperature

850 K

750 K

550 K

field
Stationary temperature

1220 K

580 K

800 K

field
Stationary temperature

1220 K

580 K

800 K

Fig. 7. Computed temperature �elds for the moderately anisotropi ases(�1r ; �1z) = (10; 1) (left, isotherms spaed at 50 K); (�1r ; �1z) = (1; 10) (middle,isotherms spaed at 80 K); (�1r ; �1z) = (10; 1) in top and bottom insulation parts,(�1r ; �1z) = (1; 10) in insulation side wall (right, isotherms spaed at 80 K).
�1r �1z maximal temperature[K℄1 1 1273:181 10 1232:151-10, mixed 1-10, mixed 1238:3810 1 918:35Table 4Maximal temperatures for numerial experiments, depending on the anisotropyoeÆients (�1r ; �1z) of the insulation (f. Figures 6 - 7).

Similarly, when reduing one of the anisotropy oeÆients to a value below 1,a stronger anisotropy would result in improved insulation.34
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