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Abstract. In this paper we concentrate on nonlinear iterative operator
splitting methods for nonlinear differential equations. The motivation
arose from decoupling nonlinear operator equations in simpler operator
equations. The decomposition in simpler equations allow to apply adap-
tive time-discretization methods in each underlying time-scale. Therefore
one can solve the equations more effectively and accurate. The underly-
ing coupling of the splitting method is fulfilled with a relaxation, coming
from the results of the previous time-steps, the adapted problems. We
consider the consistency and stability analysis of the nonlinear iterative
operator splitting method. The consistency analysis is based on lineariza-
tion. An a priori error estimates is derived for the linearized case. Finally
we discuss the iterative operator-splitting methods for the applications
to multi-physics problems.
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1 Introduction

Our motivation came from designing effective algorithms for large equation sys-
tems. The problem arose in the field of scientific computing of very large systems
of partial differential equations fixed on time-scale and on one discretization
method. Effective computational methods can derived by considering the local
character of each equation part. So in the last years the ideas of splitting into
simpler equations are established, see [18], [24] and [17]. We concentrate on ro-
bust methods based on the relaxation theory to decouple in a system of simpler
equations and solve each part with the locally adapted discretization and solver
methods, see cite. A nonlinear operator-splitting method is presented and ex-
plained in the context of the consistency of a linearized method. For a stable
method we modify our method to a weighted iterative splitting method and can



derive a strong stability result. The a priori error-estimates and the decomposi-
tion characteristic is discussed. Applications in multi physics problems based on
linear and nonlinear differential equations are considered.

The paper is organized as follows. A mathematical model based on the
convection-reaction equations is introduced in section 2. The consistency of the
linear and nonlinear iterative operator-splitting methods are described in section
3. In section 4 we introduce the stability analysis of the methods and derive the
strong stability. The a posteriori error estimates is discussed in section 5 and the
discretization methods are described in section 6. We introduce the numerical
results in section 7. Finally we discuss our future works in the area of splitting
and decomposition methods.

2 Mathematical Model

Our model equations are coming from a computational simulation of bio-remediation
[3] or radioactive contaminants [10], [9].

The mathematical equations are system of parabolic partial differential equa-
tions given by

8, C+VVC -V-DVC =F(C),in2x[0,T], (1)
C(z,0) = Cy(z) , in 2, (2)
C(z,t) =(0,...,0)" , on 002 x [0,T] . (3)

The unknown C = C(z,t) = (ci(x,t),...,co(z,t))? are considered in 2 x
(0,T) ¢ R? x IR, the space-dimension is given by d and n is the number of
equations. The convective part is given as VVC = (v1Vey,...,v,Vey)!, where
v1,...,vn € IRT are the constant vectorial velocities. Further the diffusion part
is given as V- DVC = (D1Vey,...,D,Ve,)t, where Dy,..., D, € IRT are
the constant scalar diffusion-parameters. Our reaction part is given as F(C) =
filer, .. cn)y-oo, fulcr, ..., cp), with the nonlinear functions fi,..., f, : R" —
R.

The aim of this paper is to present nonlinear and stable iterative operator-
splitting methods for nonlinear differential equations.

3 Consistency Theory for the linear and nonlinear
iterative splitting method

3.1 Linear iterative splitting method

The following algorithm is based on the iteration with fixed splitting discretiza-
tion step-size 7. On the time interval [t" #"T1] we solve the following sub-
problems consecutively for ¢ = 1,3, ..., 2m + 1. (cf. [18] and [8].)

3 3

8(;;?) = ACi(t) + BCifl(t), with Ci(tn) — (4)
aCi+1(t) — ACz(t) + BCi+1(t), with Ci+1(tn) — : (5)

ot



where ¢y = 0 and ¢” is the known split approximation at the time level ¢ =
t”. The split approximation at the time-level ¢ = t"*! is defined as ¢"t! =
Cam+1(t"Th). (Clearly, the function c¢;11(t) depends on the interval [t", "],
too, but, for the sake of simplicity, in our notation we omit the dependence on
In the following we will analyze the convergence and the rate of the con-
vergence of the method (4) (5) for m tends to infinity for the linear operators
A, B : X — X where we assume that these operators and their sum are genera-
tors of the Cy semigroup. We emphasize that these operators aren’t necessarily
bounded, so, the convergence is examined in general Banach space setting.

Theorem 1. Let us consider the abstract Cauchy problem in a Banach space X

Oc(t) = Ac Be(t), 0 <T,
(t) (t) + _(t) <t ©)
c(0) = ¢ ,

where A,B,A+ B : X — X are given linear operators being generators of the
Cqo-semigroup and cq € X is a given element. Then the iteration process (4) (5)
is convergent and the rate of the convergence is of higher order.

The proof could be found in [8].

The a priori error-estimates is given in the following theorem.

Theorem 2. The estimate (30) shows that after iteration step (i = 2m + 1) we
have the estimation

llezmrll = Komlleoll™ + O(r™ ). (7)
where co(t) is the initial guess, see [18].

Remark 1. When A and B are matrices (i.e. (4) (5) is a system of ordinary
differential equations), for the growth estimation we can use the concept of the
logarithmic norm. (See e.g.[17].) Hence, for many important classes of matrices
we can prove the validity.

Remark 2. We note that a huge class of important differential operators generate
contractive semigroup. This means that for such problems -assuming the exact
solvability of the split sub-problems- the iterative splitting method is convergent
in higher order to the exact solution.

3.2 Consistency nonlinear iterative splitting method

Theorem 3. Let us consider the nonlinear operator-equation in a Banach space

x Bc(t) = A(c(t)) + B(e(t)), 0<t<T,

8
¢(0) = ¢ , (8)



We linearized the nonlinear operators and obtain the linearized equation

dc(t) = Ac(t) + Be(t) + R(6), 0<t<T,

where A,B,A+ B : X — X are given linear operators being generators of the
Cqo-semigroup and cq € X is a given element. Then the iteration process (4) (5)
is convergent and the rate of the convergence is of second order.

We obtain the iterative result :

Proof. Let us consider the iteration (4) (5) on the sub-interval [t",""!]. For
the error function e;(t) = ¢(t) — ¢;(t) we have the relations

Brei(t) = Alei(t)) + Blei—1(t), te (1", "],

ei(t") =0 (10)

and
Breir1(t) = Aei(t)) + Bleia (1), t € (", ¢" ],

eir1(t") =0,

for m =0,2,4,..., with eg(0) =0 and e_; (¢) = ¢(t).

In the following we derive the linearized equations. We use the notations X?2
for the product space X x X enabled with the norm ||(u,v)|| = max{||u||,||v||}
(u,v € X). The elements &;(t), Fi(t) € X? and the linear operator A : X2 — X2
are defined as follows

(11)

€z(t) AA(ci—1) 0
Ei(t) = A= |0 , , 12
( ) €i+1(t) [BA(gél) BB(BC;,l) ( )
Alei1 (1)) + Blei_1 () — e;_y 2ALci)
Fi(t) = o be . . (13
( ) [A(Ell(t)) + B(eifl(t)) — 62'71% — 61',1% ( )

Then, using the notations (13), the relations (10) (11) can be written in the
form

0:Ei(t) = AE;(t) + Fi(t), te (", t"]
&(t") = 0.

3

(14)

Due to our assumptions, A is a generator of the one-parameter Cy semigroup
(A(t))t>0- We also assume the estimation of our term F;(t) with the growth
conditions.



Remark 3. We can estimate the nonlinear operators A(e;_1) and B(e;,—1) by

assuming the constant derivation % and %—f by the following equation :

' 0A
|[Aei—0)ll = | /O e (ct) +0ei1) iy df]] < Clleis]], (15)

where e;_1(t) = ¢(t) — ¢;—1(t) and || - || is the maximum norm over ¢.
The same we could use for the operator B(e;_1).

We could estimate the right hand side F;(t) in the following lemma :

Lemma 1. Let us consider the the bounded Jacobian of A(u) and B(u)
We could then estimate the F;(t) as

17 (@[] < Cllei-al] - (16)

Proof. We have the following norm ||F;(t)|| = max{F;, (), Fi, (t)}.
We have to estimate each term :

1P @] < llA(eir (1) + Bleioa (1) - %"

< Cillei )] o
1P @] < [ Alei1(8) + Bleia (1) - % B %

< Colles 1)) 1

So we obtain the estimation :
|Fi)]| < Cllei—1()]]
where C' is the maximum value of C; and Cs.

Hence using the variations of constants formula, the solution of the abstract
Cauchy problem (14) with homogeneous initial condition can be written as

Ei(t) = /t exp(A(t — 8))Fi(s)ds, te [t t" 1. (19)

n

(See, e.g. [6].) Hence, using the denotation
1€illoo = supsepin gnsa) [IE: (D] (20)

we have
1E:ll(#) < (| Filloo / llexp(A(t — 5))||ds =
t (21)

t
=C ||6z—1||/ lexp(A(t — s))llds, t € [t", "],
.

We have estimate ||F;|| < C||e;—1||, where C is a constant that bounds the
nonlinear terms of F;(t).



Since (A(t)):>0 is a semigroup therefore the so called growth estimation
[[exp(At)[| < K exp(wt); ¢2>0, (22)
holds with some numbers K > 0 and w € IR, see [6].

— Assume that (A(%)):>0 is a bounded or exponentially stable semigroup, i.e.
(22) holds with some w < 0. Then obviously the estimate

lexp(AD)] < K: >0, (23)
holds, and, hence on base of (10), we have the relation
I€ill(¢) < Krylleiill,  t € (0, 7). (24)

— Assume that (A(t))¢>0 has an exponential growth with some w > 0. Using
(10) we have

it
llexp(A(t — s))||ds < K, (t), te€t" "], (25)
tﬂ.
where K
Kult) = = (explolt = M) = 1), 1€ [1",1741] (26)
and hence X
K,(t) < — (exp(wry) — 1) = K71, + O(72) , (27)
w
so the estimations (24) and (27) result in
[€illoc = Kralleial + O(73). (28)
Taking into the account the definition of &; and the norm || - ||, we obtain
leill = Krnlleis]l + O(77), (29)
and hence
lleirill = FKimpllei1ll + O(), (30)

which proves our statement.

4 Stability Theory

We concentrate on the stability theory for the linear ordinary differential equa-
tions with commutative operators. First we apply the recursion for the general
case and obtain the commutative case.

In the following we propose the weighted methods.



4.1 Weighted Iterative Splitting Method

The proposed un-symmetric weighted iterative splitting method is a combination
between the sequential splitting method, see [7], and the iterative operator split-
ting method, see [8]. The weighting factor w is used as an adaptive switch between
lower and higher order splitting methods. The following algorithm is based on
the iteration with fixed splitting discretization step-size 7. On the time interval
[t",t" 1] we solve the following sub-problems consecutively for i = 0,2, ...2m.

aca;it) = Aci(t) + w Be;—q(t), with ¢;(t") =" (31)
and ¢o(t") = ¢" , c_1 = 0.0,

with ¢ 1(t") =w " + (1 - w) ¢; ("),

where ¢" is the known split approximation at the time level ¢ = t". The split
approximation at the time-level t = t"*! is defined as ¢"*! = ¢, 1 (#7F1). Our
parameter w € [0,1]. For w = 0 we have the sequential-splitting and for w =1
we have the iterative splitting method, cf. [8].

Because of the weighting between the sequential splitting and iterative split-
ting method, also the initial-conditions are weighted. So, we have the final results
of the first equation (31) appearing in the initial condition for the second (32).

4.2 Damped Iterative Splitting Method

A next stable version is the damped iterative splitting method. In this version
we concentrate on the examples with very stiff operators, e.g. B-operator. For
initial solutions far away form the local solution, we have strong oscillations, see
[16], [14]. Therefore we damp the B-operator in the case, that we relax in the
initial steps with factors w ~ 0.

The following algorithm is based on the iteration with fixed splitting dis-
cretization step-size 7. On the time interval [t",#"T1] we solve the following
sub-problems consecutively for i = 0,2, ...2m.

a%i” = Aci(t) + 2(1 —w) Be;j_1(t), with ¢;(t") = " (33)
and ¢(t") =", c_1 = 0.0,
ac’gitl(t) =w Aci(t) + 2wBeii(t), (34)

with ¢ 1 (") =™,

where ¢ is the known split approximation at the time level ¢ = ¢”. Our param-
eter w € [0,1/2]. For w = 0 we have the full damped method, and solving only
operator A and for w = 1/2 we have the iterative splitting method, cf. [8].
Because of the weighting between the sequential splitting and iterative split-
ting method, also the initial-conditions are weighted. So, we have the final results
of the first equation (33) appearing in the initial condition for the second (34).



4.3 Recursion for the stability results

First we concentrate on the weighted iterative splitting method, (31) and (32).
We treat the special case for the initial-values with ¢;(t") = ¢, and ¢; 1 (") = ¢,
for an overview. The general case c;j11(t") = we, + (1 — w)e;(t" 1) could be
treated in the same manner.

We consider the suitable vector norm || - || on R, together with its induced
operator norm. The matrix exponential of Z € RM*M is denoted by exp(Z).
We assume that

[lexp(T A)|| <1 and ||exp(r B)|| <1 forall 7> 0.

It can be shown that the system (31) (32) implies || exp(T (A + B))|| <1 and is
itself stable.
For the linear problem (31) (32) it follows by integration that

t

ci(t) = exp((t —t™)A)c" + ./t" exp((t — s)A) w Bei—1(s) ds , (35)

cit1(t) = exp((t — t")B)c" + / exp((t — s)B) w Ac;i(s) ds . (36)

Jitn

With elimination of ¢; we get

cip1(t) = exp((t — t")B)c"™ + w fttn exp((t — s)B) A exp((s —t")A) ™ ds
+w? ft f:j:tn exp((t —s)B) A exp((s —s')A) B c¢;_1(s') ds' ds . (37)

s=tn
For the following commuting case we could evaluate the double integral
fst:t,l [o_,. as fst,:tn fst:s, and could derive the weighted stability-theory.

s

4.4 Commuting operators

For more transparency of the formula (37) we consider a well-conditioned system
of eigenvectors and the eigenvalues A; of A and A, of B instead of the operators
A, B themselves. Replacing the operators A and B by A; and A, respectively,
we obtain after some calculations
1
civ1(t) = cn/\ 3 (wArexp((t —t™)A1) + (1 —w)A1 — X)) exp((t — t")A2))
1~ A2

2 /\1\11\32 /s:t" (exp((t — s)\1) — exp((t — s)A2)) ds . (38)

+c"w
Note that this relation is symmetric in A\; and As.

Strong Stability We define zp = 7\, k = 1,2. We start with ¢o(t) = ¢ and
we obtain

t" ) = S, (21, 20) €, (39)

C2m(



where Sy, is the stability function of the scheme with m-iterations. We use (38)
and obtain after some calculations

w21 +w? 29

Si(z1,2) = w? " + ————= exp(z1) " (40)
zZ1 — 22
1—w-—w?) 2z — 2z
+ ( wow) = 2 exp(zy) "
Z1 — 29

wz1+w4z2

So(z1,22) = wh e + P exp(z1) " (41)
0 w; ufijl —2 exp(z2)
% (wz1 + w?z) exp(z1)
+(=(1 —w — w2z + 22) exp(22))
LI (- ) eplen) — ex(a)

+((1—w-— w2)Z1 — z3)(exp(z1) — exp(z2))) "

Let us consider the stability given by the following eigenvalues in a wedge
W={CeT: arg(() < a}
For the stability we have [S,,(21,22)| < 1 whenever z;, zo € Wy /5.
The stability of the two iterations is given in the following theorem with respect
to the stability.

Theorem 4. We have the following stability :

For S1 we have a strong stability with
Max., <o,z,ew. |S1(21,22)| <1, Vae[0,7/2] with0<w<1.

For Sy we have a strong stability with

1/8
MaxX., <0,z,ew. |92(21,22)| <1, Vae€[0,7/2] with0 <w < (ﬁ) .

8 tanZ

Proof. We consider a fixed z; = z, Re(z) < 0 and zo2 = —oo . Then we obtain

Si(z,00) = w?(1 —€*), (42)
and
So(z,00) =w'(1 = (1 —2)e?) . (43)

If z=x+ iy, © <0 then :
1.)F0r5'1

1S1(2,00)|? = w*|(1 — 2exp(z)cosy + exp(2z))] , (44)
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and hence

1

_ <1 <
Si(2,00)| <1 S w -—|1 — 2exp(x) cos(y) + exp(2x)

- (45)

Because of < 0 and y € IR we could estimate —2 < 2exp(z) cos(y) and
exp(2z) > 0.
From (45) we obtain w < —~.

3

2) For 52
|Sa (2, 00)|? = w®{1 — 2exp(z)[(1 — x) cosy + ysiny] (46)
+ exp(22)[(1 — )% + ¥°]} ,
after some calculations we could obtain

1 exp(—x) 1 — 2|+ |y|
,0)| <1e )< (— —1 + 2 .
‘5’2(2, )‘ = exp(r) = ( 8 )(1 37)2 y2 (1 _ 33)2 + y2 ’

(47)

we could estimate for z < 0 andy € R (‘11:57‘;1‘2‘2 < 3/2and uarllQ(a) < (1ef2.();i;2

where tan(a) = y/x.

1/8
Finally, we get the bound w < (m) .
Remark 4. The stability is derived for ordinary differential equations with linear
operators. For applications in linear partial differential equations we assume a
discretization of the spatial operators, so that we obtain a system of linear ordi-
nary differential equations. These equations can be treated as described below.

The stability for the damped iterative operator splitting method is given in
the following theorem

Theorem 5. We have the following stability :

For S1 we have a strong stability with
max., <o,zew, |S1(21,22)| <1, Vael0,7/2] withw <1/2

Proof. We consider a fixed z; = z, Re(z) < 0 and z3 = —oo . Then we obtain

S1(z,00) = 1*7‘”(1 —€%) . (48)

If z=2+1iy, z <0 then :
1.)F0r5'1

151 (2, 00)” = (1‘—“’) (1 - 2exp(z) cos(y) + exp(22)),  (49)

w
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hence

1-w)\? 1
_ <1 < '
|Sl (Z OO)‘ sle < w > = |] — 2exp(z) cosy + eXp(2$)| (50)

From (50) we obtain 0 < w < 3.

In the next section we derive an a posteriori error estimates for the iterative
splitting methods, starting with different initial-solutions.

5 A posteriori error-estimates

We consider the a posteriori error-estimates for the beginning time iterations.
We can derive the following theorem for the a posteriori error-estimates :

Theorem 6. Let us consider the iterative method, that starts with the following
wnitial condition
case A :c; 1(t) =0

¢ — ¢ = ||B||r + O(?) , (51)
case B : ¢;_1(t) = ¢p
¢y — 1 = ||BA+ B|[7?/2 + O(%) , (52)

case C : c;_1(t) = exp(B(t — tn))exp(A(t — t,)) (pre-step with A-B splitting
method)
2 — e = ||[4, B][|7*/2+ O(r%)

Proof. We apply the equation (35) and (36) and deal with ¢; 1(s) = 0.
So the first iteration ¢; is given as :

(53)

c1(t) = exp(A(t —tn)) Cn (54)

The second iteration is given as :

es(t) = exp(B(t — t2)) ( / exp(—B(s — tu)) Aexp(Als — 1)) dw+cn) ,

(55)
The Taylor-expansion for the 2 functions leads to
2 .
a(t)=I+Ar+ EAZ)CTL +0(r%), (56)
and
72 72 72
ca(t) = (I+BT-|-§B2+AT+A2§+BA§)Cn+O(T3), (57)

Subtracting the approximations we obtain :

lle2 — erl| < |IBllren + O(7?)

3
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6 Discretization methods

For the discretization methods we apply higher order methods in time and space.
This is important to support the higher order splitting methods.

6.1 Time-discretization methods

We deal with higher order time-discretization methods. Therefore we propose
the Runge-Kutta and BDF-methods as adapted time-discretization methods to
reach higher order results.

For the time-discretization we use the following higher order discretization
methods.

Runge-Kutta method
We use the implicit trapezoidal rule:

(59)
Further more we use the following Gaufl Runge-Kutta method :
L_ V3| 1 1_ 3
2 \5_ 1 s 1776
1 3|1 31
3t elate 1 (60)
1 T
2 2

To use this Runge-Kutta methods with our operator-splitting method we
have to take into account that we solve in each iteration step equations of the
form O;u; = Au; + b. Where b = Bu;_1 is a discrete function as we only have a
discrete solution for w; 1.

For the implicit trapezoidal rule this is no problem, because we do not need
the values at any sub-points. Where on the other hand for the Gaufl method
we need to now the values of b at the sub-points tg + ¢1h and tg + coh with
c=(3— %, 3+ %)T. Therefor we must interpolate b. To do so we choose the
cubic spline functions.

Numerical experiments show that this works properly with non-stiff problems,
but worth with stiff-problems.

BDF method

Because the higher order Gaufi Runge-Kutta method combined with cubic
spline interpolation does not work properly with stiff problems we use the fol-
lowing BDF method of order 3 which does not need any sub-points and therefor
no interpolation is needed.
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BDF3
1/k(11/6u™"? — 3u™! 4+ 3/2u" — 1/3u"" ! = A(u™?) (61)

For the pre-stepping, i.e. to obtain u;, us, we use the above implicit trapezoidal
rule.

6.2 Space-discretization methods

For the spatial discretization methods we apply finite difference methods for
Cartesian grids and finite element methods for tridiagonal grids.

The higher order method in space are also important for preserving the con-
vergence order in time.

So for the computations we can fulfill the same convergence order for time
and space, see O(7™) =~ O(h™), with 7 is the time-step and h is the spatial-step,
m is the discretization-order in time and n is the discretization order in space,
see [19], [13], [14].

7 Numerical Results

We start with the nonlinear ordinary differential equations and compare the
different splitting methods.

7.1 First test-example of a nonlinear ODE (Bernoulli-Equation)

We deal with a nonlinear ODE (Bernoulli-equation) and split into the linear and
nonlinear operator.
We deal with the non linear Bernoulli-Equation:

Au(t) n
6t = /\1u(t) + /\gu (t)
u(0) =1

with the analytical solution

1

u(t) = |(1+ i—j) exp(Mt(1 —n)) — i—j) o (62)

u(0) = ug , (initial conditions) (63)

We choose n =2, A\ = —1, Ay = —100 and h = 1072

We rewrite the equation-system (62) (63) in operator notation, and end up
with the following equations :

Oru = A(u) + B(u) , (64)
u(0) = uo, (65)
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where u(t) = (uy(t),uz(t))T for t € [0,T].
Our spitted operators are

A(u) = Mu,B(u) = A u™ | (66)

with m = 2. The nonlinear example fulfills the non-commutative behavior A'B —
B'A#£0.

Iterative Number of error
Steps |[splitting-partitions
2 1 7.3724e-001
2 2 2.7910e-002
5 1 4.1328e+001
5 2 9.6601e-004
10 1 1.0578e-001
10 2 3.9777e-004
15 1 1.1933e-004
15 2 3.9782e-004
20 1 1.2081e-004
20 2 3.9782e-004

Table 1. Numerical results for the Bernoulli-Equation with the Iterative Operator
Splitting method and BDF3.

7.2 Second Example (time-dependent equation)

In the second example we deal with a partial differential equation that is time-
dependent, see [1].
We deal with the time dependent 2-D equation:

Owu(z,y,t) = Ugs + uyy —4(1 + y2)e’tez+y2 (67)
u(z,y,0) = e in 0 =[-1,1] x [-1,1] (68)
u(z,y,t) = e~tertv” on 912 (69)
(70)
with exact solution
u(z,y,t) = e tem Ty’ (71)
(72)

We choose the time interval [0,1] and again use Finite Differences for the space
with Az = 2/19.
We define our operators by splitting the plane into two parts.



We choose one splitting interval.

The maximum errors are

Max-error = max; j Uegact (i, Y, 1) — Uappros 1Az, jAz, T)||

given as

Iterative
Steps

Number of

splitting-partitions

Max-error

1
2
3
4
5
10
15
20
25
30
35

1

= e e e e e e

—_

2.7183e+-000
8.2836e+-000
3.8714e+-000
2.5147e+4-000
1.8295e+-000
6.8750e-001
2.5764e-001
8.7259¢-002
2.5816e-002
5.3147e-003
2.8774e-003

15

Table 2. Numerical results for the third example with the Iterative Operator Splitting
method and BDF3 with A = 10~".

The relaxation error smooths as given in the following figures:

Ulxy.T)

Fig. 1. The numerical results of the second example after 10 iterations (left) and 20

iterations (right).

7.3 Third example : Convection-reaction equation with sparsity

pattern

We consider the one-dimensional convection-diffusion-reaction equation, where
the reaction terms strong couple the equations.
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It is given by
ROyu + v0;u — DOypu = —Au , on £2 X [to, tend)

w(x,t0) = Uexact(2,%0) ,

w(0,t) = Uexact (0, 8) , w(L,t) = texact(L, 1)

We choose € [0,30], and ¢ € [10,2 - 10%].
Furthermore we have A = 107°, v = 0.001, D = 0.0001 and R = 1.0. The
analytical solution is given by

(x — vt)?

W)GXP(—/V) ;

1
Uexact(L,1) = ——=e€xp(—
et (0, ) = 577 exp(
To be out of the singular point of the exact solution, we start from the time-point

to = 10%.
Our spitted operators are

L

For the spatial discretization we use the finite differences with Az = 5.

Tterative Number of error error error
Steps [splitting-partitions| z =18 x =20 x =22
1 10 9.8993e-002(1.6331e-001(9.9054e-002
2 10 9.5011e-003|1.6800e-002|8.0857e-003
3 10 9.6209e-004|1.9782e-002|2.2922e-004
4 10 8.7208e-004|1.7100e-002|1.5168e-003

Table 3. Numerical results for the second example with the Iterative Operator Splitting
method and BDF3 with h = 107>,

8 Conclusions and Discussions

We present the convergence theory of the linear and nonlinear operator splitting
method. The nonlinear theory deal with linearized operators and embedded into
the linear theory. The stabilization is discussed by balancing the initial values of
the iterative method by previous results or lower order operator-splitting meth-
ods. The benefit of such damped iterative methods are more stable methods
without an influence coming from the initial values of the iteration. In exper-
iments we verify our new methods in linear and nonlinear examples. The ap-
plication to multi-physics problems show the benefit of the iterative operator
splitting method as an efficient and accurate method for strong coupled equa-
tions. In the future we focus on the development of multi-level operator-splitting
methods which is taken into account coarse and finer time-scales and apply the
algorithms for nonlinear parabolic equations.
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Fig. 2. Iterations 1 to 4 of the second example with the iterative splitting method and
BDF3

025 025
02 02
0.15 0.15
0.1 0.1
0.05 0.05
00 5 10 15 20 2‘5 30 00 5 10 1‘5 2‘0 2‘5 30
u(x,t0) u(x,T)

Fig. 3. Numerical result for the second example with the iterative splitting method
and BDF3, left figure ¢ = 0, right figure t = T.
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