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t. In this paper we 
on
entrate on nonlinear iterative operatorsplitting methods for nonlinear di�erential equations. The motivationarose from de
oupling nonlinear operator equations in simpler operatorequations. The de
omposition in simpler equations allow to apply adap-tive time-dis
retization methods in ea
h underlying time-s
ale. Thereforeone 
an solve the equations more e�e
tively and a

urate. The underly-ing 
oupling of the splitting method is ful�lled with a relaxation, 
omingfrom the results of the previous time-steps, the adapted problems. We
onsider the 
onsisten
y and stability analysis of the nonlinear iterativeoperator splitting method. The 
onsisten
y analysis is based on lineariza-tion. An a priori error estimates is derived for the linearized 
ase. Finallywe dis
uss the iterative operator-splitting methods for the appli
ationsto multi-physi
s problems.Keywords. Operator Splitting method, Iterative Solver methods, relaxationmethods, 
onsisten
y analysis, stability analysis, multi-physi
s problems.AMS subje
t 
lassi�
ations. 80A20, 80M25, 74S10, 76R50, 35J60, 35J65,65M99, 65Z05, 65N121 Introdu
tionOur motivation 
ame from designing e�e
tive algorithms for large equation sys-tems. The problem arose in the �eld of s
ienti�
 
omputing of very large systemsof partial di�erential equations �xed on time-s
ale and on one dis
retizationmethod. E�e
tive 
omputational methods 
an derived by 
onsidering the lo
al
hara
ter of ea
h equation part. So in the last years the ideas of splitting intosimpler equations are established, see [18℄, [24℄ and [17℄. We 
on
entrate on ro-bust methods based on the relaxation theory to de
ouple in a system of simplerequations and solve ea
h part with the lo
ally adapted dis
retization and solvermethods, see 
ite. A nonlinear operator-splitting method is presented and ex-plained in the 
ontext of the 
onsisten
y of a linearized method. For a stablemethod we modify our method to a weighted iterative splitting method and 
an



2derive a strong stability result. The a priori error-estimates and the de
omposi-tion 
hara
teristi
 is dis
ussed. Appli
ations in multi physi
s problems based onlinear and nonlinear di�erential equations are 
onsidered.The paper is organized as follows. A mathemati
al model based on the
onve
tion-rea
tion equations is introdu
ed in se
tion 2. The 
onsisten
y of thelinear and nonlinear iterative operator-splitting methods are des
ribed in se
tion3. In se
tion 4 we introdu
e the stability analysis of the methods and derive thestrong stability. The a posteriori error estimates is dis
ussed in se
tion 5 and thedis
retization methods are des
ribed in se
tion 6. We introdu
e the numeri
alresults in se
tion 7. Finally we dis
uss our future works in the area of splittingand de
omposition methods.2 Mathemati
al ModelOur model equations are 
oming from a 
omputational simulation of bio-remediation[3℄ or radioa
tive 
ontaminants [10℄, [9℄.The mathemati
al equations are system of paraboli
 partial di�erential equa-tions given by �t C + VrC �r �DrC = F (C) ; in 
 � [0; T ℄ ; (1)C(x; 0) = C0(x) ; in 
 ; (2)C(x; t) = (0; : : : ; 0)t ; on �
 � [0; T ℄ : (3)The unknown C = C(x; t) = (
1(x; t); : : : ; 
n(x; t))T are 
onsidered in 
 �(0; T ) � IRd � IR, the spa
e-dimension is given by d and n is the number ofequations. The 
onve
tive part is given as VrC = (v1r
1; : : : ; vnr
n)t, wherev1; : : : ; vn 2 IR+ are the 
onstant ve
torial velo
ities. Further the di�usion partis given as r � DrC = (D1r
1; : : : ; Dnr
n)t, where D1; : : : ; Dn 2 IR+ arethe 
onstant s
alar di�usion-parameters. Our rea
tion part is given as F (C) =f1(
1; : : : 
n); : : : ; fn(
1; : : : ; 
n), with the nonlinear fun
tions f1; : : : ; fn : IRn !IR. The aim of this paper is to present nonlinear and stable iterative operator-splitting methods for nonlinear di�erential equations.3 Consisten
y Theory for the linear and nonlineariterative splitting method3.1 Linear iterative splitting methodThe following algorithm is based on the iteration with �xed splitting dis
retiza-tion step-size � . On the time interval [tn; tn+1℄ we solve the following sub-problems 
onse
utively for i = 1; 3; : : : ; 2m+ 1. (
f. [18℄ and [8℄.)�
i(t)�t = A
i(t) + B
i�1(t); with 
i(tn) = 
n ; (4)�
i+1(t)�t = A
i(t) + B
i+1(t); with 
i+1(tn) = 
n ; (5)



3where 
0 � 0 and 
n is the known split approximation at the time level t =tn. The split approximation at the time-level t = tn+1 is de�ned as 
n+1 =
2m+1(tn+1). (Clearly, the fun
tion 
i+1(t) depends on the interval [tn; tn+1℄,too, but, for the sake of simpli
ity, in our notation we omit the dependen
e onn.) In the following we will analyze the 
onvergen
e and the rate of the 
on-vergen
e of the method (4){(5) for m tends to in�nity for the linear operatorsA;B :X! X where we assume that these operators and their sum are genera-tors of the C0 semigroup. We emphasize that these operators aren't ne
essarilybounded, so, the 
onvergen
e is examined in general Bana
h spa
e setting.Theorem 1. Let us 
onsider the abstra
t Cau
hy problem in a Bana
h spa
e X�t
(t) = A
(t) +B
(t); 0 < t � T ;
(0) = 
0 ; (6)where A;B;A + B :X ! X are given linear operators being generators of theC0-semigroup and 
0 2 X is a given element. Then the iteration pro
ess (4){(5)is 
onvergent and the rate of the 
onvergen
e is of higher order.The proof 
ould be found in [8℄.The a priori error-estimates is given in the following theorem.Theorem 2. The estimate (30) shows that after iteration step (i = 2m+1) wehave the estimation ke2m+1k = Kmke0k�2mn +O(�2m+1n ): (7)where 
0(t) is the initial guess, see [18℄.Remark 1. When A and B are matri
es (i.e. (4){(5) is a system of ordinarydi�erential equations), for the growth estimation we 
an use the 
on
ept of thelogarithmi
 norm. (See e.g.[17℄.) Hen
e, for many important 
lasses of matri
eswe 
an prove the validity.Remark 2. We note that a huge 
lass of important di�erential operators generate
ontra
tive semigroup. This means that for su
h problems -assuming the exa
tsolvability of the split sub-problems- the iterative splitting method is 
onvergentin higher order to the exa
t solution.3.2 Consisten
y nonlinear iterative splitting methodTheorem 3. Let us 
onsider the nonlinear operator-equation in a Bana
h spa
eX �t
(t) = A(
(t)) +B(
(t)); 0 < t � T ;
(0) = 
0 ; (8)



4 We linearized the nonlinear operators and obtain the linearized equation�t
(t) = ~A
(t) + ~B
(t) +R(~
); 0 < t � T ;~A = �A�
 (~
) ;~B = �B�
 (~
) ;R(~
) = A(~
) +B(~
)� ~
(�A�
 (~
) + �B�
 (~
)) ;
(0) = 
0 ; (9)where ~A; ~B; ~A+B :X ! X are given linear operators being generators of theC0-semigroup and 
0 2 X is a given element. Then the iteration pro
ess (4){(5)is 
onvergent and the rate of the 
onvergen
e is of se
ond order.We obtain the iterative result :Proof. Let us 
onsider the iteration (4){(5) on the sub-interval [tn; tn+1℄. Forthe error fun
tion ei(t) = 
(t)� 
i(t) we have the relations�tei(t) = A(ei(t)) +B(ei�1(t)); t 2 (tn; tn+1℄;ei(tn) = 0 ; (10)and �tei+1(t) = A(ei(t)) +B(ei+1(t)); t 2 (tn; tn+1℄;ei+1(tn) = 0 ; (11)for m = 0; 2; 4; : : :, with e0(0) = 0 and e�1(t) = 
(t).In the following we derive the linearized equations. We use the notations X2for the produ
t spa
e X �X enabled with the norm k(u; v)k = maxfkuk; kvkg(u; v 2 X). The elements Ei(t), Fi(t) 2 X2 and the linear operator A : X2 ! X2are de�ned as followsEi(t) = � ei(t)ei+1(t)� ; A = " �A(
i�1)�
 0�A(
i�1)�
 �B(
i�1)�
 # ; (12)Fi(t) = " A(ei�1(t)) +B(ei�1(t))� ei�1 �A(ei�1)�
A(ei�1(t)) +B(ei�1(t))� ei�1 �A(ei�1)�
 � ei�1 �B(ei�1)�
 # : (13)Then, using the notations (13), the relations (10){(11) 
an be written in theform �tEi(t) = AEi(t) +Fi(t); t 2 (tn; tn+1℄;Ei(tn) = 0: (14)Due to our assumptions, A is a generator of the one-parameter C0 semigroup(A(t))t�0. We also assume the estimation of our term Fi(t) with the growth
onditions.



5Remark 3. We 
an estimate the nonlinear operators A(ei�1) and B(ei�1) byassuming the 
onstant derivation �A�
 and �B�
 by the following equation :jjA(ei�1)jj = jj Z 10 �A�
 (
(t) + �ei�1) ei�1 d�jj � Cjjei�1jj ; (15)where ei�1(t) = 
(t)� 
i�1(t) and jj � jj is the maximum norm over t.The same we 
ould use for the operator B(ei�1).We 
ould estimate the right hand side Fi(t) in the following lemma :Lemma 1. Let us 
onsider the the bounded Ja
obian of A(u) and B(u)We 
ould then estimate the Fi(t) asjjFi(t)jj � Cjjei�1jj : (16)Proof. We have the following norm jjFi(t)jj = maxfFi1(t);Fi1(t)g.We have to estimate ea
h term :jjFi1(t)jj � jjA(ei�1(t)) +B(ei�1(t))� ei�1 �A(ei�1)�
 jj� C1jjei�1(t)jj ; (17)jjFi2(t)jj � jjA(ei�1(t)) +B(ei�1(t))� ei�1 �A(ei�1)�
 � ei�1 �B(ei�1)�
� C2jjei�1(t)jj : (18)So we obtain the estimation :jjFi(t)jj � ~C jjei�1(t)jjwhere ~C is the maximum value of C1 and C2.Hen
e using the variations of 
onstants formula, the solution of the abstra
tCau
hy problem (14) with homogeneous initial 
ondition 
an be written asEi(t) = Z ttn exp(A(t � s))Fi(s)ds; t 2 [tn; tn+1℄: (19)(See, e.g. [6℄.) Hen
e, using the denotationkEik1 = supt2[tn;tn+1℄ kEi(t)k ; (20)we have kEik(t) � kFik1 Z ttn kexp(A(t� s))kds == C kei�1k Z ttn kexp(A(t� s))kds; t 2 [tn; tn+1℄: (21)We have estimate jjFijj � Cjjei�1jj, where C is a 
onstant that bounds thenonlinear terms of Fi(t).



6 Sin
e (A(t))t�0 is a semigroup therefore the so 
alled growth estimationk exp(At)k � K exp(!t); t � 0 ; (22)holds with some numbers K � 0 and ! 2 IR, see [6℄.{ Assume that (A(t))t�0 is a bounded or exponentially stable semigroup, i.e.(22) holds with some ! � 0. Then obviously the estimatek exp(At)k � K; t � 0 ; (23)holds, and, hen
e on base of (10), we have the relationkEik(t) � K�nkei�1k; t 2 (0; �n): (24){ Assume that (A(t))t�0 has an exponential growth with some ! > 0. Using(10) we haveZ tn+1tn kexp(A(t� s))kds � K!(t); t 2 [tn; tn+1℄; (25)where K!(t) = K! (exp(!(t� tn))� 1) ; t 2 [tn; tn+1℄ ; (26)and hen
e K!(t) � K! (exp(!�n)� 1) = K�n +O(�2n) ; (27)so the estimations (24) and (27) result inkEik1 = K�nkei�1k+O(�2n): (28)Taking into the a

ount the de�nition of Ei and the norm k � k1, we obtainkeik = K�nkei�1k+O(�2n); (29)and hen
e kei+1k = K1�2nkei�1k+O(�3n); (30)whi
h proves our statement.4 Stability TheoryWe 
on
entrate on the stability theory for the linear ordinary di�erential equa-tions with 
ommutative operators. First we apply the re
ursion for the general
ase and obtain the 
ommutative 
ase.In the following we propose the weighted methods.



74.1 Weighted Iterative Splitting MethodThe proposed un-symmetri
 weighted iterative splitting method is a 
ombinationbetween the sequential splitting method, see [7℄, and the iterative operator split-ting method, see [8℄. The weighting fa
tor ! is used as an adaptive swit
h betweenlower and higher order splitting methods. The following algorithm is based onthe iteration with �xed splitting dis
retization step-size � . On the time interval[tn; tn+1℄ we solve the following sub-problems 
onse
utively for i = 0; 2; : : :2m.�
i(t)�t = A
i(t) + ! B
i�1(t); with 
i(tn) = 
n (31)and 
0(tn) = 
n ; 
�1 = 0:0;�
i+1(t)�t = ! A
i(t) + B
i+1(t); (32)with 
i+1(tn) = ! 
n + (1� !) 
i(tn+1) ;where 
n is the known split approximation at the time level t = tn. The splitapproximation at the time-level t = tn+1 is de�ned as 
n+1 = 
2m+1(tn+1). Ourparameter ! 2 [0; 1℄. For ! = 0 we have the sequential-splitting and for ! = 1we have the iterative splitting method, 
f. [8℄.Be
ause of the weighting between the sequential splitting and iterative split-ting method, also the initial-
onditions are weighted. So, we have the �nal resultsof the �rst equation (31) appearing in the initial 
ondition for the se
ond (32).4.2 Damped Iterative Splitting MethodA next stable version is the damped iterative splitting method. In this versionwe 
on
entrate on the examples with very sti� operators, e.g. B-operator. Forinitial solutions far away form the lo
al solution, we have strong os
illations, see[16℄, [14℄. Therefore we damp the B-operator in the 
ase, that we relax in theinitial steps with fa
tors ! � 0.The following algorithm is based on the iteration with �xed splitting dis-
retization step-size � . On the time interval [tn; tn+1℄ we solve the followingsub-problems 
onse
utively for i = 0; 2; : : : 2m.�
i(t)�t = A
i(t) + 2(1� !) B
i�1(t); with 
i(tn) = 
n (33)and 
0(tn) = 
n ; 
�1 = 0:0;�
i+1(t)�t = ! A
i(t) + 2!B
i+1(t); (34)with 
i+1(tn) = 
n ;where 
n is the known split approximation at the time level t = tn. Our param-eter ! 2 [0; 1=2℄. For ! = 0 we have the full damped method, and solving onlyoperator A and for ! = 1=2 we have the iterative splitting method, 
f. [8℄.Be
ause of the weighting between the sequential splitting and iterative split-ting method, also the initial-
onditions are weighted. So, we have the �nal resultsof the �rst equation (33) appearing in the initial 
ondition for the se
ond (34).



84.3 Re
ursion for the stability resultsFirst we 
on
entrate on the weighted iterative splitting method, (31) and (32).We treat the spe
ial 
ase for the initial-values with 
i(tn) = 
n and 
i+1(tn) = 
nfor an overview. The general 
ase 
i+1(tn) = !
n + (1 � !)
i(tn+1) 
ould betreated in the same manner.We 
onsider the suitable ve
tor norm jj � jj on IRM , together with its indu
edoperator norm. The matrix exponential of Z 2 IRM�M is denoted by exp(Z).We assume thatjj exp(� A)jj � 1 and jj exp(� B)jj � 1 for all � > 0:It 
an be shown that the system (31){(32) implies jj exp(� (A+B))jj � 1 and isitself stable.For the linear problem (31){(32) it follows by integration that
i(t) = exp((t� tn)A)
n + Z ttn exp((t� s)A) ! B
i�1(s) ds ; (35)
i+1(t) = exp((t� tn)B)
n + Z ttn exp((t� s)B) ! A
i(s) ds : (36)With elimination of 
i we get
i+1(t) = exp((t� tn)B)
n + ! R ttn exp((t� s)B) A exp((s� tn)A) 
n ds+!2 R ts=tn R ss0=tn exp((t� s)B) A exp((s� s0)A) B 
i�1(s0) ds0 ds : (37)For the following 
ommuting 
ase we 
ould evaluate the double integralR ts=tn R ss0=tn as R ts0=tn R ts=s0 and 
ould derive the weighted stability-theory.4.4 Commuting operatorsFor more transparen
y of the formula (37) we 
onsider a well-
onditioned systemof eigenve
tors and the eigenvalues �1 of A and �2 of B instead of the operatorsA;B themselves. Repla
ing the operators A and B by �1 and �2 respe
tively,we obtain after some 
al
ulations
i+1(t) = 
n 1�1 � �2 (!�1 exp((t� tn)�1) + ((1� !)�1 � �2) exp((t� tn)�2))+ 
n !2 �1�2�1 � �2 Z ts=tn (exp((t� s)�1) � exp((t� s)�2)) ds : (38)Note that this relation is symmetri
 in �1 and �2.Strong Stability We de�ne zk = ��k , k = 1; 2. We start with 
0(t) = 
n andwe obtain 
2m(tn+1) = Sm(z1; z2) 
n ; (39)



9where Sm is the stability fun
tion of the s
heme with m-iterations. We use (38)and obtain after some 
al
ulationsS1(z1; z2) = !2 
n + ! z1 + !2 z2z1 � z2 exp(z1) 
n (40)+ (1� ! � !2) z1 � z2z1 � z2 exp(z2) 
n ;S2(z1; z2) = !4 
n + ! z1 + !4 z2z1 � z2 exp(z1) 
n (41)+ (1� ! � !4) z1 � z2z1 � z2 exp(z2) 
n+ !2 z1 z2(z1 � z2)2 ((!z1 + !2z2) exp(z1)+(�(1� ! � !2)z1 + z2) exp(z2)) 
n+ !2 z1 z2(z1 � z2)3 ((�!z1 � !2z2)(exp(z1)� exp(z2))+((1� ! � !2)z1 � z2)(exp(z1)� exp(z2))) 
n :Let us 
onsider the stability given by the following eigenvalues in a wedgeW = f� 2 IC : j arg(�) � �gFor the stability we have jSm(z1; z2)j � 1 whenever z1; z2 2 W�=2.The stability of the two iterations is given in the following theorem with respe
tto the stability.Theorem 4. We have the following stability :For S1 we have a strong stability withmaxz1�0;z22W� jS1(z1; z2)j � 1 ; 8 � 2 [0; �=2℄ with 0 � ! � 1 .For S2 we have a strong stability withmaxz1�0;z22W� jS2(z1; z2)j � 1 ; 8 � 2 [0; �=2℄ with 0 � ! � � 18 tan2(�)+1�1=8 .Proof. We 
onsider a �xed z1 = z; Re(z) < 0 and z2 ! �1 . Then we obtainS1(z;1) = !2(1� ez) ; (42)and S2(z;1) = !4(1� (1� z)ez) : (43)If z = x+ iy; x < 0 then :1.) For S1 jS1(z;1)j2 = !4j(1� 2 exp(x)
osy + exp(2x))j ; (44)



10and hen
e jS1(z;1)j � 1, !4 � j 11� 2 exp(x) 
os(y) + exp(2x) j : (45)Be
ause of x < 0 and y 2 IR we 
ould estimate �2 � 2 exp(x) 
os(y) andexp(2x) � 0.From (45) we obtain ! � 14p3 .2.) For S2 jS2(z;1)j2 = !8f1� 2 exp(x)[(1� x) 
os y + y sin y℄ (46)+ exp(2x)[(1� x)2 + y2℄g ;after some 
al
ulations we 
ould obtainjS2(z;1)j � 1, exp(x) � ( 1!8 � 1) exp(�x)(1� x)2 + y2 + 2 j1� xj+ jyj(1� x)2 + y2 ; (47)we 
ould estimate for x < 0 and y 2 IR j1�xj+jyj(1�x)2+y2 � 3=2 and 12 tan2(�) < exp(�x)(1�x)2+y2where tan(�) = y=x.Finally, we get the bound ! � � 18 tan2(�)+1�1=8.Remark 4. The stability is derived for ordinary di�erential equations with linearoperators. For appli
ations in linear partial di�erential equations we assume adis
retization of the spatial operators, so that we obtain a system of linear ordi-nary di�erential equations. These equations 
an be treated as des
ribed below.The stability for the damped iterative operator splitting method is given inthe following theoremTheorem 5. We have the following stability :For S1 we have a strong stability withmaxz1�0;z22W� jS1(z1; z2)j � 1 ; 8 � 2 [0; �=2℄ with ! � 1=2Proof. We 
onsider a �xed z1 = z; Re(z) < 0 and z2 ! �1 . Then we obtainS1(z;1) = 1� !! (1� ez) : (48)If z = x+ iy; x < 0 then :1.) For S1jS1(z;1)j2 = �1� !! �2 (1� 2 exp(x) 
os(y) + exp(2x)) ; (49)



11hen
e jS1(z;1)j � 1, �1� !! �2 � j 11� 2 exp(x) 
os y + exp(2x) j : (50)From (50) we obtain 0 � ! � 12 .In the next se
tion we derive an a posteriori error estimates for the iterativesplitting methods, starting with di�erent initial-solutions.5 A posteriori error-estimatesWe 
onsider the a posteriori error-estimates for the beginning time iterations.We 
an derive the following theorem for the a posteriori error-estimates :Theorem 6. Let us 
onsider the iterative method, that starts with the followinginitial 
ondition
ase A : 
i�1(t) = 0 
2 � 
1 = jjBjj� +O(�2) ; (51)
ase B : 
i�1(t) = 
n
2 � 
1 = jjBA+Bjj�2=2 +O(�3) ; (52)
ase C : 
i�1(t) = exp(B(t� tn))exp(A(t� tn)) (pre-step with A-B splittingmethod) 
2 � 
1 = jj[A;B℄jj�2=2 +O(�3) ; (53)Proof. We apply the equation (35) and (36) and deal with 
i�1(s) = 0.So the �rst iteration 
1 is given as :
1(t) = exp(A(t � tn)) 
n ; (54)The se
ond iteration is given as :
2(t) = exp(B(t � tn)) �Z ttn exp(�B(s� tn))A exp(A(s � tn)) dx+ 
n� ;(55)The Taylor-expansion for the 2 fun
tions leads to
1(t) = (I +A� + �22! A2)
n +O(�3) ; (56)and 
2(t) = (I +B� + �22! B2 +A� +A2 �22! + BA�22! )
n +O(�3) ; (57)Subtra
ting the approximations we obtain :jj
2 � 
1jj � jjBjj�
n +O(�2) ; (58)



126 Dis
retization methodsFor the dis
retization methods we apply higher order methods in time and spa
e.This is important to support the higher order splitting methods.6.1 Time-dis
retization methodsWe deal with higher order time-dis
retization methods. Therefore we proposethe Runge-Kutta and BDF-methods as adapted time-dis
retization methods torea
h higher order results.For the time-dis
retization we use the following higher order dis
retizationmethods.Runge-Kutta methodWe use the impli
it trapezoidal rule:01 12 1212 12 (59)Further more we use the following Gau� Runge-Kutta method :12 � p36 14 14 � p3612 + p36 14 + p36 1412 12 (60)To use this Runge-Kutta methods with our operator-splitting method wehave to take into a

ount that we solve in ea
h iteration step equations of theform �tui = Aui + b. Where b = Bui�1 is a dis
rete fun
tion as we only have adis
rete solution for ui�1.For the impli
it trapezoidal rule this is no problem, be
ause we do not needthe values at any sub-points. Where on the other hand for the Gau� methodwe need to now the values of b at the sub-points t0 + 
1h and t0 + 
2h with
 = ( 12 � p36 ; 12 + p36 )T . Therefor we must interpolate b. To do so we 
hoose the
ubi
 spline fun
tions.Numeri
al experiments show that this works properly with non-sti� problems,but worth with sti�-problems.BDF methodBe
ause the higher order Gau� Runge-Kutta method 
ombined with 
ubi
spline interpolation does not work properly with sti� problems we use the fol-lowing BDF method of order 3 whi
h does not need any sub-points and thereforno interpolation is needed.



13BDF3 1=k(11=6un+2� 3un+1 + 3=2un � 1=3un�1 = A(un+3) (61)For the pre-stepping, i.e. to obtain u1; u2, we use the above impli
it trapezoidalrule.6.2 Spa
e-dis
retization methodsFor the spatial dis
retization methods we apply �nite di�eren
e methods forCartesian grids and �nite element methods for tridiagonal grids.The higher order method in spa
e are also important for preserving the 
on-vergen
e order in time.So for the 
omputations we 
an ful�ll the same 
onvergen
e order for timeand spa
e, see O(�m) � O(hn), with � is the time-step and h is the spatial-step,m is the dis
retization-order in time and n is the dis
retization order in spa
e,see [19℄, [13℄, [14℄.7 Numeri
al ResultsWe start with the nonlinear ordinary di�erential equations and 
ompare thedi�erent splitting methods.7.1 First test-example of a nonlinear ODE (Bernoulli-Equation)We deal with a nonlinear ODE (Bernoulli-equation) and split into the linear andnonlinear operator.We deal with the non linear Bernoulli-Equation:�u(t)�t = �1u(t) + �2un(t)u(0) = 1with the analyti
al solutionu(t) = �(1 + �2�1 ) exp(�1t(1� n))� �2�1 )�� 11�n (62)u(0) = u0 ; (initial 
onditions) ;(63)We 
hoose n = 2 , �1 = �1, �2 = �100 and h = 10�2We rewrite the equation-system (62){(63) in operator notation, and end upwith the following equations :�tu = A(u) +B(u) ; (64)u(0) = u0; (65)



14where u(t) = (u1(t); u2(t))T for t 2 [0; T ℄.Our spitted operators areA(u) = �1u ;B(u) = �2 um ; (66)with m = 2. The nonlinear example ful�lls the non-
ommutative behavior A0B�B0A 6= 0. Iterative Number of errorSteps splitting-partitions2 1 7.3724e-0012 2 2.7910e-0025 1 4.1328e+0015 2 9.6601e-00410 1 1.0578e-00110 2 3.9777e-00415 1 1.1933e-00415 2 3.9782e-00420 1 1.2081e-00420 2 3.9782e-004Table 1. Numeri
al results for the Bernoulli-Equation with the Iterative OperatorSplitting method and BDF3.
7.2 Se
ond Example (time-dependent equation)In the se
ond example we deal with a partial di�erential equation that is time-dependent, see [1℄.We deal with the time dependent 2-D equation:�tu(x; y; t) = uxx + uyy � 4(1 + y2)e�tex+y2 (67)u(x; y; 0) = ex+y2 in 
 = [�1; 1℄� [�1; 1℄ (68)u(x; y; t) = e�tex+y2 on �
 (69)(70)with exa
t solution u(x; y; t) = e�tex+y2 (71)(72)We 
hoose the time interval [0,1℄ and again use Finite Di�eren
es for the spa
ewith �x = 2=19.We de�ne our operators by splitting the plane into two parts.



15We 
hoose one splitting interval.The maximum errors are given asMax-error = maxi;j uexa
t(xi; yj ; T )� uapprox(i�x; j�x; T )jjIterative Number of Max-errorSteps splitting-partitions1 1 2.7183e+0002 1 8.2836e+0003 1 3.8714e+0004 1 2.5147e+0005 1 1.8295e+00010 1 6.8750e-00115 1 2.5764e-00120 1 8.7259e-00225 1 2.5816e-00230 1 5.3147e-00335 1 2.8774e-003Table 2. Numeri
al results for the third example with the Iterative Operator Splittingmethod and BDF3 with h = 10�1.The relaxation error smooths as given in the following �gures:

Fig. 1. The numeri
al results of the se
ond example after 10 iterations (left) and 20iterations (right).7.3 Third example : Conve
tion-rea
tion equation with sparsitypatternWe 
onsider the one-dimensional 
onve
tion-di�usion-rea
tion equation, wherethe rea
tion terms strong 
ouple the equations.



16 It is given byR�tu+ v�xu�D�xxu = ��u ; on 
 � [t0; tend)u(x; t0) = uexa
t(x; t0) ;u(0; t) = uexa
t(0; t) ; u(L; t) = uexa
t(L; t);We 
hoose x 2 [0; 30℄, and t 2 [104; 2 � 104℄.Furthermore we have � = 10�5, v = 0:001, D = 0:0001 and R = 1:0. Theanalyti
al solution is given byuexa
t(x; t) = 12pD�t exp(� (x� vt)24Dt ) exp(��t) ;To be out of the singular point of the exa
t solution, we start from the time-pointt0 = 104.Our spitted operators areA = DR�xxu ; B = � 1R (�u+ v�xu) : (73)For the spatial dis
retization we use the �nite di�eren
es with �x = 110 .Iterative Number of error error errorSteps splitting-partitions x = 18 x = 20 x = 221 10 9.8993e-002 1.6331e-001 9.9054e-0022 10 9.5011e-003 1.6800e-002 8.0857e-0033 10 9.6209e-004 1.9782e-002 2.2922e-0044 10 8.7208e-004 1.7100e-002 1.5168e-003Table 3.Numeri
al results for the se
ond example with the Iterative Operator Splittingmethod and BDF3 with h = 10�2.8 Con
lusions and Dis
ussionsWe present the 
onvergen
e theory of the linear and nonlinear operator splittingmethod. The nonlinear theory deal with linearized operators and embedded intothe linear theory. The stabilization is dis
ussed by balan
ing the initial values ofthe iterative method by previous results or lower order operator-splitting meth-ods. The bene�t of su
h damped iterative methods are more stable methodswithout an in
uen
e 
oming from the initial values of the iteration. In exper-iments we verify our new methods in linear and nonlinear examples. The ap-pli
ation to multi-physi
s problems show the bene�t of the iterative operatorsplitting method as an eÆ
ient and a

urate method for strong 
oupled equa-tions. In the future we fo
us on the development of multi-level operator-splittingmethods whi
h is taken into a

ount 
oarse and �ner time-s
ales and apply thealgorithms for nonlinear paraboli
 equations.
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Fig. 2. Iterations 1 to 4 of the se
ond example with the iterative splitting method andBDF3
u(x,t0) u(x,T)Fig. 3. Numeri
al result for the se
ond example with the iterative splitting methodand BDF3, left �gure t = 0, right �gure t = T .Referen
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