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1 Introduction

The purpose of this paper is to express an optimal control problem in terms of a system
of Differential-Algebraic Equations (DAEs) and to investigate their properties. This system
is obtained using calculus of variations to get the Kuhn-Tucker conditions. The inequalities
associated with the complementarity conditions are converted to equalities by the addition of
a new variable, combining the slack variable and the corresponding Lagrange multiplier. The
sign of this variable indicates whether the constraint is active or not.

The well-conditioning of the problem can be expressed in terms of the index of the resulting
system of DAEs, which is a measure of the difficulty involved in obtaining a numerical solution.
The concept of the tractability index is introduced as a general purpose way of determining
the index. But a projector related to the tractability index makes it possible, in the case of
higher index, to determine exactly which equations must be differentiated in order to reduce
the index.

Other ways of solving the optimal control problem involve the discretization of the original
problem to convert it to a finite dimensional constrained optimization problem. In each of the
following references ([1, 3, 4, 16, 20, 21, 22, 23, 26]) all the variables are discretized in one way
or another. The discretization may be carried out only on the control variables ([2, 8, 9]), and
any inequality constraints on the state variables might be approximated by a penalty function
([19, 24, 25]), whereas in the method given in this paper they are treated exactly.

The examples used here are the minimization of the time to travel a fixed distance, subject
to bounds on the acceleration and on the velocity, and the maximization of the yield of a
component on a packed bed reactor. These problems have index varying from 1 to 3. The
first two examples have simple analytic solutions; the third example appeared to be more
complicated, but an analytic solution is presented.
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2 General transformation process

2.1 Formulation of an optimal control problem

Consider an optimal control problem, expressed as a dynamical system of ordinary differential
equations subject to a number of initial and terminal conditions, and to a number of inequalities
on the state variables and the control variables, and with some unknown constant parameters.
The objective function has the form of an integral of some function of the same state and
control variables and parameters.

minimize J(u) =

∫ b

0

h(y, u, c) dx (1)

subject to : y′ = f(y, u, c), y
i
(0) = y

i0
(i ∈ I), y

j
(b) = y

j1
(j ∈ F), (2)

0 ≤ g(y, u, c). (3)

Here, I and F are subsets of the state variables y for which initial and terminal values,
respectively, are specified.

2.2 Calculus of variations

As we wish to transform this problem to a system of DAEs, we use the variational formulation.
Introducing the perturbations δy(x), δu(x), δc constant, and the Lagrange multipliers v(x) for
the differential equations, and w(x) for the inequalities,∫ b

0

(hT

y δy + hT

uδu + hT

c δc) dx =

∫ b

0

vT (δy′ − fyδy − fuδu− fcδc) dx

+

∫ b

0

wT (gyδy + guδu + gcδc) dx, (4)

δy
i
(0) = 0 (i ∈ I), δy

j
(b) = 0 (j ∈ F), (5)

wigi(y(x), u(x), c) = 0 (∀x, ∀i), 0 ≤ w(x). (6)

To eliminate the term δy′ using integration by parts, under the assumption that both δy(x)
and v(x) are continuous and piecewise differentiable,∫ b

0

vTδy′ dx = −
∫ b

0

v′T δy dx,

where
v

i
(0) = 0 (i 6∈ I), v

j
(b) = 0 (j 6∈ F). (7)
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The perturbations δy(x), δu(x), δc are independent, and therefore:∫ b

0

hT

y δy dx =

∫ b

0

vT (δy′ − fyδy) dx +

∫ b

0

wTgyδy dx =

∫ b

0

(−v′T − vTfy + wTgy)δy dx,∫ b

0

hT

uδu dx =

∫ b

0

(−vTfu + wTgu)δu dx,∫ b

0

hT

c δc dx =

∫ b

0

(−vTfc + wTgc)δc dx.

Apart from the continuity condition on δy(x), the perturbations δy(x), δu(x), δc are also arbi-
trary, and so:

v′T = −vTfy + wTgy − hT

y , (8)

0T = −vTfu + wTgu − hT

u, (9)

0T =

∫ b

0

(−vTfc + wTgc − hT

c )dx. (10)

The original differential equations (and boundary conditions) (2), together with the adjoint
equations (8–10), boundary conditions (7), inequalities (3), and complementarity conditions
(6), form the Kuhn-Tucker necessary conditions for (y, u, c) to be a minimizer of the functional
J(u) in equation (1).

In order to express the integral equation (10) as a differential equation, new variables r(x)
may be introduced, corresponding to the constants c, and satisfying

r′T = −vTfc + wTgc − hT

c , r(0) = 0, r(b) = 0. (11)

Introducing a Hamilton function as

H(y, v, c, u, w) := −fT (y, u, c)v + gT (y, u, c)w − h(y, u, c)

we can express the right hand side of (8-11) in terms of H.

2.3 Elimination of inequalities

In order to eliminate the inequalities on g and w in the complementarity conditions (3) and
(6), new variables p may be introduced, such that

p = g − w, g = max(0, p) := p+, w = max(−p, 0) := p−,

and so the Kuhn-Tucker conditions (2),(3),(6–9) and (11) may be expressed in the form of the
following system of DAEs subject to initial and terminal conditions:

y′ = f(y, u, c), y
i
(0) = y

i0
(i ∈ I), y

j
(b) = y

j1
(j ∈ F),

v′ = Hy(y, v, c, u, p−), v
i
(0) = 0 (i 6∈ I), v

j
(b) = 0 (j 6∈ F),

r′ = Hc(y, v, c, u, p−), r(0) = 0, r(b) = 0,
0 = Hu(y, v, c, u, p−),
0 = p+ − g(y, u, c).

(12)
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3 Examples

To demonstrate this transformation we apply (12) to three known examples.

3.1 Problem 1 (see [4, 16])

A simple example of such a problem is that of
Minimum time to cover a fixed distance.

3.1.1 Problem statement

Let the time taken to cover the distance (300 units) be tf > 0. Then the problem is to

minimize tf

subject to :
dx1

dt
= x2 , x1(0) = 0, x1(tf ) = 300,

dx2

dt
= u, x2(0) = 0, x2(tf ) = 0,

−2 ≤ u ≤ 1,

where u is the acceleration.

3.1.2 Conversion to the General Formulation

In order to express this problem in the form given in (1–3), we define variables and constants
as follows:

x1 = y1 , x2 = y2 , t = tfs, u = z, tf = c > 0,

and so obtain

minimize tf =

∫ 1

0

c ds

subject to :
dy1

ds
= y2c, y1(0) = 0, y1(1) = 300,

dy2

ds
= zc, y2(0) = 0, y2(1) = 0,

0 ≤ 2 + z,

0 ≤ 1− z.

The exact solution of this problem is:
c = 30, and
for 0 ≤ s ≤ 2

3

y1 = 1
2
c2s2,

y2 = cs, (13)

z = 1;
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for 2
3
≤ s ≤ 1

y1 = 300− c2(1− s)2,

y2 = 2c(1− s), (14)

z = −2.

The Hamiltonian function is

H = −y2cv1 − zcv2 + (2 + z)p−1 + (1− z)p−2 − c.

3.1.3 System of DAEs

Using the procedure outlined above, this gives rise to the following system of DAEs (12) without
inequalities:

dy1

ds
= y2c, y1(0) = 0, y1(1) = 300,

dy2

ds
= zc, y2(0) = 0, y2(1) = 0,

dv1

ds
= 0,

dv2

ds
= −cv1 ,

dr

ds
= −y2v1 − zv2 − 1, r(0) = 0, r(1) = 0,

0 = −cv2 + p−
1
− p−

2
,

0 = p+
1
− 2− z,

0 = p+
2
− 1 + z.

This system has 8 variables and 1 unknown constant which must satisfy 5 equations with
derivatives and 3 algebraic equations, and has 6 boundary conditions for the 5 differentiated
variables and the constant.

3.2 Problem 2 (see [16])

A slightly more complicated problem is given by imposing a Speed limit.
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3.2.1 Problem statement

Let the speed limit be k, where the other variables have the same meaning as before. The
problem is to

minimize tf

subject to :
dx1

dt
= x2 , x1(0) = 0, x1(tf ) = 300,

dx2

dt
= u, x2(0) = 0, x2(tf ) = 0,

−2 ≤ u ≤ 1, x2 ≤ k.

3.2.2 Conversion to the General Formulation

We define variables and constants as before

x1 = y1 , x2 = y2 , t = tfs, u = z, tf = c > 0,

and so obtain

minimize tf =

∫ 1

0

c ds

subject to :
dy1

ds
= y2c, y1(0) = 0, y1(1) = 300,

dy2

ds
= zc, y2(0) = 0, y2(1) = 0,

0 ≤ 2 + z,

0 ≤ 1− z,

0 ≤ k − y2 .

If k ≥ 20 the solution of this problem is identically to that of Problem 1.
If k ≤ 20 the exact solution is:
c = 30 + 3

4k
(20− k)2, and

for 0 ≤ s ≤ k
c

y1 = 1
2
c2s2,

y2 = cs, (15)

z = 1;

for k
c
≤ s ≤ 1− k

2c

y1 = kcs− 1
2
k2,

y2 = k, (16)

z = 0;
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for 1− k
2c
≤ s ≤ 1

y1 = 300− c2(1− s)2,

y2 = 2c(1− s), (17)

z = −2.

The Hamiltonian function is

H = −y2cv1 − zcv2 + (2 + z)p−1 + (1− z)p−2 + (k − y2)p
−
3 − c.

3.2.3 System of DAEs

This gives rise to the system of DAEs (12) without inequalities:

dy1

ds
= y2c, y1(0) = 0, y1(1) = 300,

dy2

ds
= zc, y2(0) = 0, y2(1) = 0,

dv1

ds
= 0,

dv2

ds
= −cv1 − p−

3
,

dr

ds
= −y2v1 − zv2 − 1, r(0) = 0, r(1) = 0,

0 = −cv2 + p−
1
− p−

2
,

0 = p+
1
− 2− z,

0 = p+
2
− 1 + z,

0 = p+
3
− k + y2 .

This system has 9 variables and 1 unknown constant which must satisfy 5 equations with
derivatives and 4 algebraic equations, and has 6 boundary conditions for the 5 differentiated
variables and the constant.

3.3 Problem 3 (see [16], [13])

An example of a higher index problem: Catalyst mixing for packed bed reactor.

3.3.1 Problem statement

In [16], this problem is given as one of maximizing the concentration (1− za(tf )− zb(tf )). The
statement of the problem is as follows:
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max
F

(1− za(tf )− zb(tf ))

subject to :
dza

dt
= F (10zb − za), za(0) = 1,

dzb

dt
= F (za − 10zb)− (1− F )zb, zb(0) = 0,

0 ≤ F ≤ 1.

3.3.2 Conversion to the General Formulation

In order to express the problem in the form given in (1–3), the revised objective function must
be rewritten as

min
F

(za(tf ) + zb(tf )− 1) = min
F

∫ tf

0

(F − 1)zb dt

and the inequality constraints as 0 ≤ F, 0 ≤ 1− F .
Note that, in this problem, t is a distance and tf is a given, constant, reactor length.
Extending [13],[5], it is possible to give the exact solution.
If tf ≤ 1

11
ln(1 +

√
12.1) + ln(1 +

√
0.1) =: dc ≈ 0.4111 and tc satisfies

etc(e11tc + 10) = 11etf ,

the solution is:
for 0 ≤ t ≤ tc

za = 1
11

(10 + e−11t),

zb = 1
11

(1− e−11t), (18)

F = 1;

for tc ≤ t ≤ tf

za = 1
11

(10 + e−11t),

zb = 1
11

(1− e−11t)e−(t−tc), (19)

F = 0.

If tf ≥ dc the solution consists of three parts.
Let ta := 1

11
ln(1 +

√
12.1) ≈ 0.1363 and tb := tf − ln(1 +

√
0.1) ≈ tf − 0.2748. Then

for 0 ≤ t ≤ ta

za = 1
11

(10 + e−11t),

zb = 1
11

(1− e−11t), (20)

F = 1;
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for ta ≤ t ≤ tb

za = 1
111

(100 +
√

10)e
1
52

(−6+
√

10)(t−ta),

zb = 1
111

(11−
√

10)e
1
52

(−6+
√

10)(t−ta), (21)

F =
5
√

10− 4

52
≈ 0.2271;

for tb ≤ t ≤ tf

za = 1
111

(100 +
√

10)e
1
52

(−6+
√

10)(tb−ta),

zb = 1
111

(11−
√

10)e−(t−tb)+
1
52

(−6+
√

10)(tb−ta), (22)

F = 0.

The Hamiltonian is

H = −F (10zb − za)(va − vb) + (1− F )zb(vb + 1) + Fp−1 + (1− F )p−2 .

3.3.3 System of DAEs

The problem gives rise to the system of DAEs (12) without inequalities:

dza

dt
= (10zb − za)F, za(0) = 1,

dzb

dt
= (za − 10zb)F − (1− F )zb, zb(0) = 0,

dva

dt
= (va − vb)F, va(tf ) = 0,

dvb

dt
= 10(vb − va)F + (vb + 1)(1− F ), vb(tf ) = 0,

0 = (za − 10zb)(va − vb)− zb(vb + 1) + p−
1
− p−

2
,

0 = p+
1
− F,

0 = p+
2
− 1 + F.

We now have a system with 7 variables which must satisfy 4 equations with derivatives and 3 al-
gebraic equations but no inequalities, and which has 4 boundary conditions for the 4 variables
which are differentiated.

4 The tractability Index Concept

4.1 Short Introduction

In the case of linear DAEs, the index indicates how often we have to differentiate parts of
the right hand side of the DAE to obtain an expression for the solution. Therefore the index
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describes the difficulty involved in solving a system numerically.
A way of determining the index of a system of DAEs is given by the tractability index concept
(see also [17]). The motivation of tractability index comes from an equivalent transformation
of a DAE without differentiation. This is important e.g. if the data of the DAE have low
smoothness properties.
The definition of the tractability index is based on a matrix chain Gi, i ≥ 0 in the following
way. Consider a DAE in quasilinear form

F ((D(t)x(t))′, x(t), t) := A(x, t)(D(t)x)′ + b(x, t) = 0, (23)

where F (y, x, t) : Rm × Rn × R → Rn, A(x, t) ∈ Rn×m, D(t) ∈ Rm×n and b(x, t) ∈ Rn. We
prefer systems of DAEs with properly stated leading term, because of their clearer description
and their better numerical properties (see [11],[12]). Properly stated leading term means that
ker A(x, t)⊕imD(t) = Rm and the projector realizing this splitting is continuously differentiable
(see [18]). With

B(y, x, t) := Fx(y, x, t)

(we will drop the arguments) a matrix chain is defined by

G0 := AD, B0 := B,

Gi+1 := Gi + BiQi, (24)

Bi+1 := (Bi −Gi+1D
−(DP0...Pi+1D

−)′DP0...Pi−1)Pi,

where Qi denotes a projector onto Ni := ker Gi, Pi := I − Qi and D− describes a reflexive
generalized inverse of D, i.e. D = DD−D, D− = D−DD− and additionally D−D = P0.

Definition 4.1 (See [18]) An equation (23) with properly stated leading term is said to be a
DAE with tractability index µ on the interval I, if there is a continuous matrix function sequence
(24) such that
(a) Gi has constant rank ri on I,
(b) N0 ⊕N1 ⊕ · · · ⊕Ni−1 ⊆ ker Qi,
(c) Qi ∈ C(I, Rn×n), DP0 · · ·PiD

− ∈ C1(I, Rm×m)

 0 ≤ i ≤ µ,

(d) 0 ≤ r0 ≤ · · · ≤ rµ−1 < rµ = n.

To check the index of a DAE we have to check the ranks of the matrices Gi, 0 ≤ i ≤ µ.

Remark: The ranks and therefore the index are independent of linear transformations.

By means of the tractability index concept, it is also possible to get a cheap way to reduce the
index of a higher index system of DAEs.

If we consider a system of DAEs of semiexplicit structure (23)

A(x, t)(D(t)x)′ + b(x, t) = 0

of index k (i.e. Gk remains nonsingular) the system of DAEs

A(x, t)(D(t)x)′ + (I −Wk−1)b(x, t) + Wk−1
d

dt
(Wk−1b(x, t)) = 0 (25)
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has, for a wide class of DAEs, index k − 1, where Wk−1 denotes a projector along im Gk−1.
This is proved for linear equations and for index-2 equations of structure (23) (see [7]).
For index-3 equations we prove the following theorem.

Theorem 4.2 Let A(Dx)′ + b(x, t) = 0 be an index-3 system of DAEs with constant matrices
A and D. Let W2 be a constant projector along im G2, (W2b)(x, t) = (W2b)(P0x, t) and
I + Q2G

−1
3 (B(y, x, .)D−y)xP0Q1Q2 nonsingular for arbitrary y. Then the system of DAEs

A(Dx)′ + (I −W2)b(x, t) + W2
d

dt
(W2b(x, t)) = 0 (26)

has index 2.

Proof :
Equation (26) can be written in greater detail as

A(Dx)′ + (I −W2)b(x, t) + W2(W2BD−(Dx)′ + (W2b)t) = 0 (27)

The matrix chain of (26) with matrices linearized in (y, x) is given by the following

G̃0 = G0 + W2BP0, with Q̃0 = Q0

B̃0 = (I −W2)B + W2(W2BD−y + (W2b)t)xP0,

where B = bx(x, t). The next chain elements are given by

G̃1 = G̃0 + B̃0Q̃0 = G0 + W2BP0 + (I −W2)BQ0

= G1 + W2BP0.

From 0 = Wi+1Gi+1 = Wi(Gi + BiQi) we derive Wi+1Wi = Wi+1 and
Wi+1BiQi = Wi+1B0Qi = 0. Therefore W2BP0 = W2BP0P1 and G̃1 and G1 have the same
nullspace, i.e. we can choose Q̃1 = Q1. Then

B̃1 = B̃0P0 − G̃1D
−(DP1D

−)′D

= ((I −W2)B + W2(W2BD−y + (W2b)t)xP0 − G̃1D
−(DP1D

−)′D.

The next step gives

G̃2 = G̃1 + B̃1Q̃1

= G1 + W2BP0 + (I −W2)BP0Q1

+W2(W2BD−y)xP0Q1 + W2(W2b)t)xP0Q1︸ ︷︷ ︸
=W2BD−(DP1D−)′DQ1

−G̃1D
−(DP1D

−)′DQ1

= (G1 + BP0Q1)(I − P1D
−(DP1D

−)′DQ1) + W2BP0P1 + W2(W2BD−y)xP0Q1

= G2 + W2BP0P1 + W2(W2BD−y)xP0Q1.

Consider G̃2z = 0. Multiplying

(G2 + W2BP0P1 + W2(W2BD−y)xP0Q1)z = 0

11



by (I −W2) we get G2z = 0, which leads to z = Q2z, and by W2 we get

(W2BP0P1Q2︸ ︷︷ ︸
=W2B2Q2

+W2(W2BD−y)xP0Q1Q2)z = 0.

Using the special projector W2 := G3Q2G
−1
3 we obtain

(W2B2Q2 + W2(BD−y)xP0Q1Q2)z = (G3Q2 G−1
3 B2Q2︸ ︷︷ ︸

=Q2

+G3Q2G
−1
3 (BD−y)xP0Q1Q2)z = 0.

(28)
Multiplying (28) by G3 leads to

Q2z + Q2G
−1
3 (BD−y)xP0Q1Q2)z = (I + Q2G

−1
3 (BD−y)xP0Q1Q2)Q2z

and hence Q2z = 0.
This means that G̃2 is nonsingular and (26) has index 2. 2

Remark: A check of the nonsingularity condition of I +Q2G
−1
3 (BD−y)xP0Q1Q2 is not trivial,

because it needs e.g. G−1
3 . But it can be seen immediately that the condition is fulfilled for

linear DAEs. The complicated theoretical computation also makes a direct numerical algorithm
necessary.

4.2 The Tractability Index of the DAEs

We will investigate the index of the DAE (12) in general form, applying the tractability index
concept. To get a DAE, which has as many equations as unknowns, we introduce an extra
ODE for c. The DAE is given by

y′ = f(y, u, c),
c′ = 0
v′ = Hy(y, v, c, u, p−),
r′ = Hc(y, v, c, u, p−),
0 = Hu(y, v, c, u, p−),
0 = p+ − g(y, u, c).

(29)

The matrices A, D and B are

A =


I

I
I

I
0
0

 , D =


I

I
I

I 0 0


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and with the unknown vector x =
(
yT , cT , vT , rT , uT , pT

)T
we obtain

B = b′x =



−fy −fc 0 0 −fu 0
0 0 0 0 0 0

−Hyy −Hyc −Hyv 0 −Hyu −Hyp

−Hcy −Hcc −Hcv 0 −Hcu −Hcp

Huy Huc Huv 0 Huu Hup

−gy −gc 0 0 −gu p+
p

 =:

(
B11 B12

B21 B22

)
.

where p+
p

:=
∂p+

∂p
=
(

∂p+
i

∂pj

)
. The first matrix chain element is

G0 = AD =


I

I
I

I
0

0

 and Q0 =


0

0
0

0
I

I


is a nullspace projector of G0. The next chain element G1 will be calculated as G1 = G0 +BQ0.
We find

G1 =

(
I B12

B22

)
.

It is easy to see that G1 is nonsingular iff B22 remains nonsingular, i.e. we have an index 1
DAE. If B22 is singular and we know a nullspace projector of B22, we can construct a nullspace
projector Q1 of G1. For DAEs with tractability index we know that Nk ∩ Nk+1 = {0} (see
[18]),in particular for k = 0, {0} = N0 ∩N1 = ker G0 ∩ (ker G0 ∩ ker BQ0) = ker G0 ∩ ker BQ0.

Therefore

(
B12

B22

)
must have full rank.

Let Q̄1 be a nullspace projector of B22; then if R = Q̄1S
−1
B2

BT
12 and SB2 :=

(
BT

12 BT
22

)(B12

B22

)
,

Q1 =

(
B12R 0
−R 0

)
(30)

represents a nullspace projector of G1 with Q1Q0 = 0. If we know Q1 we can calculate the next
matrix chain element

G2 = G1 + B1Q1 = (G1 + B0P0Q1︸ ︷︷ ︸
=:G2

)(I − P1D
−(DP1D

−)′DQ1). (31)

To investigate the singularity of G2 it is sufficient to investigate the singularity of G2, because
the second factor in the representation (31) of G2 remains nonsingular.

In order to construct a nullspace projector Q̄1 of B22 the structure of the given problem is
sometimes useful. Very often the objective function and the right hand sides f of the ODE and
g of the inequality depend only linearly on the control u. In that case Huu ≡ 0. If additionally
gu has full rank the following Lemma is valid.
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Lemma 4.3 1. The matrix M =

(
0 gT

u p−
p

−gu p+
p

)
with full rank gu is nonsingular iff

Z = (p+
p
− gu(g

T
u gu)

−1gT
u ) is nonsingular and

2. if M is singular a nullspace projector onto ker M is given by Q̄ =

(
0 (gT

u gu)
−1gT

u Q̃

0 Q̃

)
,

where Q̃ describes a nullspace projector onto ker Z.

Proof: 1. From p = p+ − p− we obtain I = p+
p
− p−

p
. Using p−

p
= p+

p
− I we obtain from

gT
u Z = gT

u p+
p
− gT

u = gT
u p−

p
. Multiplying M with a nonsingular matrix

M

(
I (gT

u gu)
−1gT

u

0 I

)
=

(
0 gT

u

−gu I

)(
I

Z

)
.

We obtain a factorization into two matrices. The first factor remains nonsingular for full rank
gu and it is shown that M is nonsingular iff Z is nonsingular.

2. Let Q̃ be a nullspace projector onto ker Z. From gT
u ZQ̃ = 0 we obtain, using I = p+

p
−p−

p
,

that gT
u p−

p
Q̃ = 0. Then it is easy to see that MQ̄ = 0. 2

4.3 Application to the Examples

Let us now consider the examples given in section 3. We will study the examples using matrix
chains.

4.3.1 Problem 1

The vector of dependent variables is given by x = (y1, y2, c, v1, v2, r, z, p1, p2).

G0 =

(
I6

03

)
, Q0 =

(
06

I3

)
.

The matrix B is given by

B =



0 −c −y2 0 0 0 0 0 0
0 0 z 0 0 0 −c 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 v1 c 0 0 0 0 0
0 v1 0 y2 z 0 v2 0 0
0 0 −v2 0 −c 0 0 p−1p1

−p−2p2

0 0 0 0 0 0 −1 p+
1p1

0

0 0 0 0 0 0 1 0 p+
2p2


,
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and the next chain matrix is calculated as

G1 =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 −c 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 v2 0 0
0 0 0 0 0 0 0 p−1p1

−p−2p2

0 0 0 0 0 0 −1 p+
1p1

0

0 0 0 0 0 0 1 0 p+
2p2


.

The nonsingularity of G1 depends on the nonsingularity of

 0 p−1p1
−p−2p2

−1 p+
1p1

0

1 0 p+
2p2

. This matrix

has exactly the structure of matrix M of Lemma 4.3. The relevant matrix Z is given by

Z =

(
p+

1p1
− 1

2
1
2

1
2

p+
2p2
− 1

2

)
.

Here two cases are possible: either p1 and p2 have the same sign or they do not.
For different signs of p1 and p2, det Z = −1

2
, which means that G1 is nonsingular and the

DAE has index 1. If both p1 and p2 are negative the last two equations create a contradiction,
because each of them gives a fixed value of z, but they are different (-2 and 1); in terms of
the original problem statement both constraints are active simultaneously. The DAE has no

tractability index in that case, because

(
B12

B22

)
does not have full rank. Therefore the pencil

(λG0 + B) is singular.
If both p1 and p2 are positive the last two equations do not determine the control z. The
algebraic equation 0 = −cv2 implies that v2 = 0 and from the fourth equation v1 = 0. The ac-
celeration z appears in the second equation but, together with the first equation, that provides
insufficient information to determine z. The DAE has no tractability index in that case (see
Section 5). The pencil (λG0 + B) is singular.

4.3.2 Problem 2

The vector of dependent variables is given by x = (y1, y2, c, v1, v2, r, z, p1, p2, p3).

G0 =

(
I6

04

)
, Q0 =

(
06

I4

)
.
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The matrix B is given by

B =



0 −c −y2 0 0 0 0 0 0 0
0 0 −z 0 0 0 −c 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 v1 c 0 0 0 0 0 p−3p3

0 v1 0 y2 z 0 v2 0 0 0
0 0 −v2 0 −c 0 0 p−1p1

−p−2p2
0

0 0 0 0 0 0 −1 p+
1p1

0 0

0 0 0 0 0 0 1 0 p+
2p2

0

0 1 0 0 0 0 0 0 0 p+
3p3


,

and the next chain matrix is calculated as

G1 =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 −c 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 p−3p3

0 0 0 0 0 1 v2 0 0 0
0 0 0 0 0 0 0 p−1p1

−p−2p2
0

0 0 0 0 0 0 −1 p+
1p1

0 0

0 0 0 0 0 0 1 0 p+
2p2

0

0 0 0 0 0 0 0 0 0 p+
3p3


.

The matrix in the lower right corner, which determines the singularity of G1, has the structure
of M in Lemma 4.3 and the associated matrix Z has the structure

Z =

−p+
1p1
− 1

2
1
2

0
1
2

p+
2p2
− 1

2
0

0 0 p+
3p3

 .

If p3 > 0 we discover the same cases as in Problem 1: if p1 and p2 have different signs then Z
and therefore M is nonsingular and the DAE has index 1; if p1 and p2 have the same sign no
index is defined.
If p3 < 0, from the last equation, y2 = k, and from the second equation z = 0. The equations
for p+

1 and p+
2 gives p+

1 = 2 and p+
2 = 1 and both p1 and p2 are positive.

If p3 < 0 and both p1 and p2 are negative,

(
B12

B22

)
does not have full rank (all three constraints

are active). If p3 < 0 and p1 and p2 have different signs the matrix pencil λG0 + B is singular.

If p3 < 0, p1 > 0 and p2 > 0, Z looks like Z =
1

2

1 1 0
1 1 0
0 0 0

 and a nullspace projector is

Q̃ =

0 −1 0
0 1 0
0 0 1

. Using the nullspace projector of M constructed in Lemma 4.3 we obtain a

nullspace projector of G1 by (30) as
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Q1 =



0 0 0 0 0 0 0 0 0 0
0 c2µ 0 0 0 −cv2µ 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 −cv2µ 0 0 0 v2

2µ 0 0 0 0
0 cµ 0 0 0 −v2µ 0 0 0 0
0 cµ 0 0 0 −v2µ 0 0 0 0
0 −cµ 0 0 0 v2µ 0 0 0 0
0 0 0 0 1 0 0 0 0 0


,

with µ = 1
c2+v2

2
and we obtain G2 by (31) as

G2 =



1 −c3µ 0 0 0 c2v2µ 0 0 0 0
0 1 0 0 0 0 −c 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 −1
0 c2v1µ 0 0 z 1− cv1v2µ v2 0 0 0
0 c 0 0 −c 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 1 0 1 0
0 c2µ 0 0 0 −cv2µ 0 0 0 0


.

The matrix G2 remains nonsingular (det(G2) = c2) and we have an index-2 DAE. The projector

W1 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1


shows that we have to differentiate the sixth and the ninth equations to reduce the index. This
index-2 DAE corresponds to the middle interval of the solution (16).

4.3.3 Problem 3

The vector of dependent variables is given by x = (za, zb, va, vb, F, p1, p2).

G0 =

(
I4

03

)
, Q0 =

(
04

I3

)
.
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For the matrix B we have

B =



F −10F 0 0 za − 10zb 0 0
−F 1 + 9F 0 0 −za + 9zb 0 0
0 0 −F F −va + vb 0 0
0 0 10F −1− 9F 1 + 10va − 9vb 0 0

va − vb −(1 + 10va − 9vb) za − 10zb −za + 9zb 0 p−1p1
p−2p2

0 0 0 0 −1 p+
1p1

0

0 0 0 0 1 0 p+
2p2


,

and the first chain element is given by

G1 =



1 0 0 0 za − 10zb 0 0
0 1 0 0 −za + 9zb 0 0
0 0 1 0 −va + vb 0 0
0 0 0 1 1 + 10va − 9vb 0 0
0 0 0 0 0 p−1p1

p−2p2

0 0 0 0 −1 p+
1p1

0

0 0 0 0 1 0 p+
2p2


=:

(
G1

11 G1
12

G1
21 G1

22

)
.

The submatrix G1
22 of G1, which determines the singularity is exactly the same as in Problem

1. We have a nonsingular matrix G1 if the signs of p1 and p2 are different. If p1 and p2 are
negative we have a nonregular DAE (see Problem 1). Lastly we have to investigate the case
where both p1 and p2 are positive.

If p1 > 0 and p2 > 0 then Z =
1

2

(
1 1
1 1

)
and a nullspace projector Q̃ =

(
0 −1
0 1

)
.

The gradient of the constraint vector g is gu =

(
1
−1

)
and from Lemma 4.3 the projector

Q̄1 =

0 0 −1
0 0 −1
0 0 1

. From (31)

G2 = G1 + BP0Q1 =

(
I B12

0 B22

)
+

(
B11 B12

B21 B22

)(
I

0

)(
B12R 0
−R 0

)
=

(
I + B11B12R B12

B21B12R B22

)
.

By examination of B, it may be seen that B21B12 ≡ 0 and B22 =

 0 0 0
−1 1 0
1 0 1

 therefore G2 has

a zero row and is singular. The singularity of G2 leads to a singular matrix G2, which means
that the DAE has index at least 3 (if it exists). To investigate that, theoretically we have to
construct a projector Q2 (if at all possible) with Q2Q0 = 0 and Q2Q1 = 0. It is a very complex
problem and we will investigate that case numerically (see Section 5). We will see that the
DAE has index 3.
We can apply Theorem 4.2. The assumptions are fulfilled, but to check it we used a formula
manipulation system.
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The image of G2 is given by {y : y = G2z, z ∈ Rn}. Setting z =

 (I −B12R)u

Ru + (I − Q̄1)

(
0
v

) with

arbitrary vectors u ∈ R4 and v ∈ R2 we get G2z =

u
0
v

. This shows that the projector along

im G2 = im G2 is given by

W2 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

We have to differentiate the fifth equation. The resulting equation (26) which may be written

(A + W2BD−)(Dx)′ + (I −W2)b(x) = 0 (32)

has index 2 with

A + W2BD− =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

va − vb −(1 + 10va − 9vb) za − 10zb −za + 9zb 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

Multiplying the system of DAEs on the left by a scaling matrix

T (x) =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

−(va − vb) 1 + 10va − 9vb −(za − 10zb) za − 9zb 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


with T (x) = T (Px), will not change the index of (32) and it achieves the substitution of the
derivatives. The new matrix chain elements corresponding to the equation

T (x)(A + W2BD−)(Dx)′ + T (x)(I −W2)b(x) = 0 (33)

are given by

Ĝ0 = T (AD + W2BD−D) = G0, B̂ = (T (x)(I −W2)b(x))x,

19



and

Ĝ1 = G0 + (T (x)(I −W2)b(x))xQ0 =



1 0 0 0 za − 10zb 0 0
0 1 0 0 −za + 9zb 0 0
0 0 1 0 −va + vb 0 0
0 0 0 1 1 + 10va − 9vb 0 0
0 0 0 0 0 0 0
0 0 0 0 −1 1 0
0 0 0 0 1 0 1


= G1

because Q̂0 = Q0.
Since equation (32) has index 2, the matrix Ĝ2 remains nonsingular and the projector Ŵ1(= W2)
along im Ĝ1 shows that for an additional index reduction we have to differentiate the fifth
equation once more, as was found in the ad-hoc study of the index of this example in [5], [6].
The index-3 DAE for the case where p1 > 0 and p2 > 0 corresponds to the middle interval of
the solution (21).

5 The numerical tests

The matrix chain (24) is realized numerically (see [15]) as a Matlab code. We will use it to test
the problems numerically. Numerically means that we check the properties of the investigated
DAEs pointwise for particular values of the variables. The tractability index works with lin-
earizations of the DAE along a function, with appropriate smoothness properties. Here in our
experiments we linearize the DAE along a linear function through x(t̄) with derivative of every
component equal to 1.
Under ”remarks” we put the answer of the algorithm and the last calculated matrix chain ele-
ment, or we indicate to which part of the solution it corresponds.

Problem 4.3.1:
We use x(t̄) = (y1, y2, c, v1, v2, r, u, p1, p2)

T = (0, 0, 1, 1, 1, 0, 1,±1,±1)T .

p1 p2 index remarks
> 0 > 0 - singular pencil - G4

> 0 < 0 1 refers to (13)
< 0 > 0 1 refers to (14)
< 0 < 0 - singular pencil - G1

Problem 4.3.2:
We use x(t̄) = (y1, y2, c, v1, v2, r, u, p1, p2, p3)

T = (0, 0, 1, 1, 1, 0, 1,±1,±1,±1)T .
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p1 p2 p3 index remarks
> 0 > 0 > 0 - singular pencil - G4

> 0 < 0 > 0 1 refers to (15)
< 0 > 0 > 0 1 refers to (17)
< 0 < 0 > 0 - singular pencil - G1

> 0 > 0 < 0 2 refers to (16)
> 0 < 0 < 0 - singular pencil - G3

< 0 > 0 < 0 - singular pencil - G3

< 0 < 0 < 0 - singular pencil - G1

Problem 4.3.3:
We use x(t̄) = (za, zb, va, vb, F, p1, p2)

T = (0, 0, 1, 1, 1,±1,±1)T .

p1 p2 index remarks
> 0 > 0 3 refers to (21)
> 0 < 0 1 refers to (20)
< 0 > 0 1 refers to (22)
< 0 < 0 - singular pencil - G0

6 Conclusions

We have outlined here a procedure for transforming a general optimal control problem to a
system of DAEs. The Kuhn-Tucker conditions consist of differential equations, complemen-
tarity conditions and corresponding inequalities. These latter are converted to equalities by
the addition of a new variable combining the slack variable and the corresponding Lagrange
multipliers. The sign of this variable indicates whether the constraint is active or not.

We have introduced the tractability index concept as a general purpose tool for determining
the index of a general system of DAEs by checking for the nonsingularity of the elements of
the matrix chain. This is helpful in determining the well-conditioning of the problem, and an
appropriate method for solving it numerically.

In the examples used here, the solution of all the differential equations could be performed
analytically. The given examples are tested by the numerical determination of the tractability
index chain, and the results confirm the previously known properties of the examples.
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[6] R. England, S. Gómez, R. Lamour, ”Expressing optimal control problems as differential
algebraic equations”, Comput. Chem. Eng., Vol. 29, no. 8, pp 1720-1730, 2005.
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