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Zusammenfassung We present a convergence and error bound study
for domain-decomposition methods with very small domains. The idea is
to apply very fast solver methods for strips with h << ε and to exploit
optimized local smoothing properties on the interface for h ≈ ε. We apply
the results in some applications for 2 dimensional domains.
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1 Introduction

The first known method for solving partial differential equations on overlapping
domains is the Schwarz method due to [28] in 1869. The method has regained its
popularity due to the development of the computational numerical algorithms
especially with regard to modern parallel computer architectures. We concen-
trate on the Additive Schwarz domain decomposition and interprete the error
analysis with the Schwarz waveform relaxation method for an h overlap. Some
accurate results can be derived and numercial example complete our theoretical
results.

2 Model-Problem

The motivation for the study presented below is based on a computational simu-
lation of heat-transfer [13] and convection-diffusion-reaction-equations [11], [18],
[19] and [17].

We concentrate on a stationary heat-equation, given by

− ∇ · D∇ u = f , in Ω , (1)

u = 0 , on ∂Ω . (2)
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The unknown u = u(x, t) is considered in Ω ⊂ IR2 or IR3, where Ω = [0, L]2 or
Ω = [0, L]3. The diffusion coefficient D is a constant factor, but anisotropic in
the different spatial directions.

The aim of this paper is to present a accurate apriori errors for small over-
lapping domains with ε ≈ h.

Now we introduce the domain-decomposition method as basic idea for a
splitting method which decomposes complex domains and solves them effectively.

3 Schwarz wave form relaxation for the solution of spatial

dependent diffusion equation

In this section we present the necessary conditions for the convergence of the
overlapping Schwarz wave form relaxation method for the solution of the statio-
nary diffusion equation with bounded coefficients. The proofs and the ideas are
discussed in [6].

We consider the stationary one-dimensional convection-diffusion-reaction equa-
tion, given by

Duxx − νux − λu = 0 , (3)

defined on the domain Ω, where Ω = [0, L], with the following boundary condi-
tions

u(0, t) = f1, u(L, t) = f2.

The generalisation can also be done for multi-dimensions, see [5].
To solve the model problem using overlapping Schwarz wave form relaxation

method, we subdivide the domain Ω in two overlapping sub-domains Ω1 = [0, L2]
and Ω2 = [L1, L], where L1 < L2 and Ω1

⋂
Ω2 = [L1, L2] is the overlapping

region for Ω1 and Ω2.

To start the wave form relaxation algorithm we consider first the solution of
the model problem (3) over Ω1 and Ω2 as follows

Dvxx − νvx − λv = 0 over Ω1 ,

v(0) = f1 ,

v(L2) = w(L2) ,

(4)

Dwxx − νwx − λw = 0 over Ω2 ,

w(L1) = v(L1) ,

w(L) = f2 ,

(5)

where v(x) = u(x)|Ω1
and w(x) = u(x)|Ω2

.
Then the Schwarz wave form relaxation is given by

Dvk+1
xx − νvk+1

x − λvk+1 = 0 over Ω1 ,

vk+1(0) = f1 ,

vk+1(L2) = wk(L2) ,

(6)

Dwk+1
xx

− νwk+1
x

− λwk+1 = 0 over Ω2 ,

wk+1(L1) = vk(L1) ,

wk+1(L) = f2 .

(7)
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We are interested in estimating the decay of the error of the solution over
the overlapping subdomains, later for a small overlap of h.

Let us assume that ek+1(x) = u(x)− vk+1(x) and dk+1(x) = u(x)−wk+1(x)
are the errors of (6) and (7) over Ω1 and Ω2 respectively. The corresponding
differential equations satisfied by ek+1(x) and dk+1(x) are

Dek+1
xx

− νek+1
x

− λek+1 = 0 over Ω1 ,

ek+1(0) = 0 ,

ek+1(L2) = dk(L2) ,

(8)

Ddk+1
xx − νdk+1

x − λdk+1 = 0 over Ω2 ,

dk+1(L1) = ek(L1) ,

dk+1(L) = 0 .

(9)

We define for bounded functions h(x) : Ω → R the norm

||h(.)||∞ := sup
x∈Ω

|h(x)|.

The convergence and error-estimates of ek+1 and dk+1 given by (8) and (9)
respectively, are presented in the following theorem

Theorem 1. Let ek+1 and dk+1 be the error from the solution of the subproblems
(4) and (5) by Schwarz wave form relaxation over Ω1 and Ω2, respectively, then

||ek+2(L1)||∞ ≤ γ||ek(L1)||∞ ,

and
||dk+2(L2)||∞ ≤ γ||dk(L1)||∞ ,

where

γ =
sinh(βL1)

sinh(βL2)

sinh(β(L2 − L))

sinh(β(L1 − L))
< 1 ,

with β =
√

ν2+4Dλ

2D
.

Proof. In order to estimate the errors ek+1 and dk+1, we consider the following
differential equations containing êk+1 and d̂k+1:

Dêk+1
xx − νêk+1

x − λêk+1 = 0 over Ω1 ,

êk+1(0) = 0 ,

êk+1(L2) = ||dk(L2)||∞ ,

(10)

The same could be also done for d̂k+1.
The solution of êk+1(x) and d̂k+1(x) are given as

êk+1(x) = e(x−L2)α
sinh(βx)

sinh(βL2)
||dk(L2)||∞ ,

and

d̂k+1(x) = e(x−L1)α
sinh β(x − L)

sinh β(L1 − L)
||ek(L1)||∞ ,
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respectively.

Then

|ek+1(x)| ≤ e(x−L2)α sinh(βx)

sinh(βL2)
||dk(L2)||∞ , (11)

and

|dk+1(x)| ≤ e(x−L1)α
sinh β(x − L1)

sinh β(L1 − L)
||ek(L1)||∞ . (12)

Therefore we can estimate the parts be replacing the maximum value at
x = L2, i.e.

||ek+2(L1)|| ≤
sinh(βL1)

sinh(βL2)

sinh β(L2 − L)

sinh β(L1 − L)
||ek(L1)||∞ .

Similarly for dk+1(x) we conclude that

||dk+2(L2)| ≤
sinh(βL1)

sinh(βL2)

sinh β(L2 − L)

sinh β(L1 − L)
||dk(L1)||∞ .

Theorem 1 shows that the convergence of of the overlapping Schwarz method
depend on γ. The result can also be used for a small overlap with L2 − L1 = h,
where h is the grid-length of the underlying discretisation. Such an overlap is
given for the additive Schwarz method and one can use such results as an first
estimate for the accuracy of the Schwarz-method, see [3].

Remark 1. The results of Theorem 1 can be generalised for bounded para-
meters D and v, if we can estimate the parameters as D̃ = supx∈Ω D(x),
ṽ = supx∈Ω v(x).

A detailed discussion of the brief introduction is worked out in [6].

4 Numerical Results

In this section we will present the numerical results for the solution of several
model problems using the presented methods.

All examples are based on the two-dimensional diffusion equation given by

−∇Di∇u = 0 , in Ωi, (13)

−∇Dε∇u = f , in Ωε,

u = 0 , on ∂Ω,

for a slightly overlapping subdivision of a given domain Ω into ‘big’ subdomains
Ωi, i = 1, . . . , N , and a ‘small’ subdomain Ωε with diameter ε. The diffusion-
coefficients for the single subdomains are choosen differently.
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4.1 First example: Diffusion-equation

The unit square is decomposed into 3 single subdomains as illustrated in figure 1
with a small strip Ωε of diameter ε = 0.1 or 0.01 in the middle. The corresponding
diffusion-coefficients are set to Di = 1.0 in Ωi, i = 1, 2, and Dε = 0.1, 0.01, 0.001
in Ωε.

Ωε Ω
2

Ω
1

ε

Abbildung 1. ’Geometry 1’ with 3 subdomains

The right hand side is defined by f = 1. We restrict on pure Dirichlet boun-
dary conditions with zero boundary.

The problem is solved by the ScaRC-algorithm which is based on a data-
parallel global MG-method with smoothing by optimized local MG-methods,
see [20], [21] and [1]. The smoothing of the local MG-methods is achieved by
GSADI-methods. Two pre- and postprecessing steps are performed in each MG-
step.

For each constellation of the ε and Dε we consider the grid refinement levels
l = 3, 4, 5, 6, 7. The resulting convergence rates are indicated in table 1.

For the different values of ε we have the following grid resolutions:

– ε = 0.1: For Ωε = [0.45, 0.55]× [0, 1], the finest step size hmin ranges from
0.125 ∗ 10−1 for refinement level 3 up to 0.781 ∗ 10−3 for refinement level 7.
The maximum aspect ratio amounts to 10.

– ε = 0.01: For Ωε = [0.495, 0.505] × [0, 1], the finest step size hmin ranges
from 0.125 ∗ 10−2 for refinement level 3 up to 0.781 ∗ 10−4 for refinement
level 7. The maximum aspect ratio amounts to 100.

Figure 2 illustrates the refinement of the single subdomains as well as the
resulting solution for level l = 5 and ε = 0.1.

To demonstrate the effect of the different diffusion-coefficients Dε = 0.1 and
Dε = 0.001, a horizontal cut of the solution at y=0.5 is indicated in figure 3.
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Grid for ε = 0.1 Solution for ε = 0.1:

Abbildung 2. ’Geometry 1’: Grid and solution for level 5 and ε = 0.1.

D
ε
= 0.001:

Abbildung 3. ’Geometry 1’: Horizontal cut through the solution at y = 0.5 for level
5 with ε = 0.1.
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ε MG-Level Convergence-rate
Dε = 0.1 Dε = 0.01 Dε = 0.001

0.1 3 0.018 0.040 0.041
4 0.025 0.015 0.019
5 0.030 0.020 0.031
6 0.035 0.028 0.034
7 0.039 0.034 0.044

0.01 3 0.078 0.021 0.016
4 0.073 0.022 0.015
5 0.068 0.021 0.015
6 0.063 0.019 0.016
7 0.060 0.018 0.017

Tabelle 1. ’Geometry 1’: Convergence rates of ScaRC with ε = 0.1, 0.01.

4.2 Second example: Steady state Diffusion-equation with
ε-Domains

We consider the two-dimensional diffusion equation 13 for the subdivision of the
unit square shown in figure 4. The thickness of the small strip in the middle is
set to ε = 0.1 or 0.01.

Ωε Ω
3

Ω
1

ε

Ω
2

Ω
4

Abbildung 4. ’Geometry 2’ with 5 subdomains

The diffusion-coefficients in Ωi, i = 1, . . . , 4 , are set to Di = 1.0. For Ωε

we analyze the cases Dε = 0.1, 0.01, 0.001. Again, we consider the grid refine-
ment levels l = 3, 4, 5, 6, 7. The resulting convergence rates from ScaRC are
summarized in table 2.

For the different values of ε we have the following grid resolutions:
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– ε = 0.1: For Ωε = [0.45, 0.55] × [0.3, 0.7], the finest step size hmin ranges
from 0.125 ∗ 10−1 for refinement level 3 up to 0.781 ∗ 10−3 for refinement
level 7. The maximum aspect ratio amounts to 5.2 for level 7.

– ε = 0.01: For Ωε = [0.495, 0.505]× [0.3, 0.7], the finest step size hmin ranges
from 0.125 ∗ 10−2 for refinement level 3 up to 0.781 ∗ 10−4 for refinement
level 7. The maximum aspect ratio amounts to 41.5 for level 7.

ε MG-Level Convergence-rate
Dε = 0.1 Dε = 0.01 Dε = 0.001

0.1 3 0.029 0.031 0.031
4 0.038 0.042 0.074
5 0.052 0.064 0.064
6 0.062 0.070 0.072
7 0.071 0.078 0.084

0.01 3 0.016 0.013 0.013
4 0.021 0.019 0.020
5 0.036 0.035 0.038
6 0.062 0.061 0.069
7 0.107 0.105 0.112

Tabelle 2. ’Geometry 2’: Convergence rates of ScaRC with ε = 0.1 and ε = 0.01.

Figures 5 and 6 illustrate the grid refinement and the solution as well as its
horizontal cut along y=0.5 for l = 5 and ε = 0.1.

Grid for ε = 0.1 Solution for ε = 0.1

Abbildung 5. ’Geometry 2’: Grid and solution for level 5, ε = 0.1 and Dε = 0.001.
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D
ε
= 0.001:

Abbildung 6. ’Geometry 2’: Horizontal cut through the solution at y = 0.5 for level
5 and ε = 0.1 and Depsilon = 0.1, 0.001.

4.3 Third example: Simpler Crystal-growth apparatus.

We consider the two-dimensional diffusion equation 13 on the more complex
domain illustrated in figure 7 which modelizes a crystal-growth apparatus. This
domain is subdivided into 63 subdomains. The size of the heating-strip Ωε is
taken as ε = 0.3.

Ω1
Ω2

3Ω

Ω4

Ω5

Ω ε
ε

2.5

2.8

3
6.5

8.5

=0.3

6
10

12

18

20

25

Axisymmetrical to y

Crystal−growth apparatus

Ω6

Abbildung 7. ’Geometry 3’: The apparatus of the cystal-growth with small ε.
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The heating source on the ε-strip is given as f = 1, the boundary-conditions
are purely dirichlet-boundary-conditions with zero boundary.

The coefficients are D1 = D2 = 0.3 (insulation), D3 = Dε = 10.0 (graphit),
D4 = 0.001 (gas) , D5 = 50.0 (silicon-powder).

Table 3 compares the convergence rates of ScaRC with those of a data-
parallel multigrid method with a blockwise ILU-smoothing for different diffusions
coefficients Dε = 1.0, 0.1, 0.01, 0.001 in Ωε.

Dε MG-Level Convergence-rate
Block-ILU-MG ScaRC

0.001 3 0.138 0.098
4 0.128 0.098
5 0.122 0.075
6 0.125 0.075
7 0.130 0.075

0.01 3 0.133 0.099
4 0.128 0.097
5 0.125 0.075
6 0.132 0.075
7 0.144 0.075

0.1 3 0.136 0.100
4 0.134 0.088
5 0.155 0.076
6 0.174 0.076
7 0.189 0.075

1.0 3 0.141 0.110
4 0.152 0.085
5 0.174 0.074
6 0.191 0.074
7 0.200 0.076

1.0 3 0.161 0.112
4 0.172 0.101
5 0.184 0.098
6 0.191 0.116
7 0.207 0.112

Tabelle 3. ’Geometry 3’: Convergence rates of Block-ILU-MG and ScaRC on the
crystal-growth apparatus with ε = 0.3.

For the different grid refinement levels the resulting finest step sizes hmin as
well as the total number of nodes Ntotal are shown in table 4. The maximum of
aspect ratio amounts to 30.

In the next figure 8 we compare the computations for different diffusion-
parameters in the gas-chamber.
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D
ε
= 0.01: D

ε
= 0.1:

D
ε
= 1.0: D

ε
= 10.0:

Abbildung 8. ’Geometry 3’: Solution for different coefficients Dε = 0.01, 0.1, 1.0, 10.0.
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MG-Level hmin Ntotal

3 0.245-1 4.161
4 0.125-1 16.385
5 0.625-2 65.025
6 0.315-2 259.073
7 0.156-2 1.034.241

Tabelle 4. ’Geometry 3’: Grid resolutions for different multigrid levels.

In figures 8 presents different diffusion coefficients for the small heating-strip.
Because of the increasing diffusion coefficient in the gas-chamber the temperature
can smooths more over the area.

In the next experiment we deal with a larger heating-strip to increase the
temperature in the gas-chamber.

4.4 Fourth example: Simpler Crystal-growth apparatus (larger
heating-strip).

We consider the same test constellation as described in the third example, but
now with a larger heating source, ε = 2.0 instead of ε = 0.3, see figure 9.

Ω1
Ω2

3Ω

Ω4

Ω5

Ω ε

2.5

2.8

3

8.5

6
10

12

18

20

25

Axisymmetrical to y

Crystal−growth apparatus

Ω6

4.5

4.0

Abbildung 9. ’Geometry 4’: The apparatus of the cystal-growth with big ε.

The convergence rates of Block-ILU-MG and ScaRC are indicated in table
5.

In table 5 we obtain decreasing convergence-rates for finer grid-meshes. We
can also see the results for different diffusion coefficients. So at least we have
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MG-Level Convergence-rate
Dε = 0.001 Dε = 0.01 Dε = 0.1 Dε = 1.0 Dε = 10.0

3 0.098 0.099 0.100 0.110 0.110
4 0.098 0.097 0.088 0.085 0.086
5 0.075 0.075 0.076 0.074 0.074
6 0.076 0.079 0.076 0.110 0.130
7 0.075 0.076 0.075 0.076 0.076

Tabelle 5. ’Geometry 4’: Convergence rates of ScaRC on the crystal-growth apparatus
with ε = 2.0 for different diffusion coefficients.

a stable method based on a small overlap but stabilised with local multi-grid
methods.

Solution:
Cutline:

Abbildung 10. ’Geometry 4’: Solution and cutline for Dε = 10.0

In figure 10 we see a more regular diffusion of the heat over the gas-chamber.
The heating-temperature in the gas-chamber is nearly constant. So larger heating-
strip can bring more stability to the adjoint regions.

In a last example we assume the heat9ing-strip near to the gas-chamber.

4.5 Fifth example: Simpler Crystal-growth apparatus (heating strip
near to the gas-chamber).

We consider the geometry in figure 11 with a heating strip near the gas-chamber
with the same settings as described above. The diameter of the heating-strip is
ε = 0.3.

Table 6 lists the convergence rates of ScaRC for grid refinement level 6 and
different diffusion coefficients in the ε-strip. Figure ?? illustrates the solution
and a cutline through y = 15.0 for Dε = 10.0.
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Ω1
Ω2Ω4

3Ω

Ω ε

Ω5

2.5

2.8

3

8.5

6
10

12

18

20

25

Axisymmetrical to y

Crystal−growth apparatus

Ω6

Abbildung 11. ’Geometry 5’: The apparatus of the cystal-growth with heat-region ε

near to the gas-chamber.

MG-Level Convergence-rate
Dε = 0.001 Dε = 0.01 Dε = 0.1 Dε = 1.0 Dε = 10.0

6 0.098 0.075 0.076 0.074 0.078

Tabelle 6. ’Geometry 5’: Convergence rates of ScaRC on the modified crystal-growth
apparatus with ε = 0.3 for different diffusion coefficients.

The reuslts of table 6 shows nearlsy the same convergence-rates for different
diffusion operator. Based on the stable local method, also for different geometri-
cal formations the small overlapping methods in combination with the multi-grid
method is a strong solver.

5 Conclusions and Discussions

We presented theoretical results for overlapping domain decomposition method
which is based on a hierarchy of multigrid methods with highly optimized local
smoothing. The error-analysis is based on the Schwarz-waveform relaxation me-
thod with a small overlap and an accurate a priori error-estimates. Because of
the multigrid concept we could implement a very effective and accurate method.
Thanks to the multigrid method the overlap increase for coarser grids and relaxed
the errors optimal in each grid-level. Numerical experiments verified our theory
and a simple real-life application of a crystal-growth apparatus is presented. In
future the combination between multi-level methods and domain-decomposition
methods are immense and theoretical results for one-level methods could be used
for developping the analysis for the higher level methods.
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