A CONVERGENT ADAPTIVE FINITE ELEMENT METHOD
FOR AN OPTIMAL DESIGN PROBLEM*

SOREN BARTELS AND CARSTEN CARSTENSEN

ABSTRACT. The optimal design problem for maximal torsion stiffness of an infinite bar
of given geometry and unknown distribution of two materials of prescribed amounts is
one model example in topology optimisation. It eventually leads to a degenerated convex
minimisation problem. The numerical analysis is therefore delicate for possibly multiple
primal variables u but unique derivatives o := DW(Du). Even sharp a posteriori error
estimates still suffer from the reliability-efficiency gap. However, it motivates a simple edge-
based adaptive mesh-refining algorithm (AFEM) that is not a priori guaranteed to refine
everywhere. Its convergence proof is therefore based on energy estimates and some refined
convexity control. Numerical experiments illustrate even nearly optimal convergence rates
of the proposed adaptive finite element method (AFEM).

1. INTRODUCTION

The optimal design of two materials with given amounts to fill a given domain for a
maximal torsion stiffness has attracted much attention since the pioneering analysis of Kohn
and Strang, cf. [1, 14] for the setting of topology optimization and [23, 24, 20, 16, 17, 10, 12]
for mathematical and numerical studies. The mathematical modelling (outlined in Section 2)
leads to generalised solutions characterised by some convexified minimisation problem

(1.1) min)/ﬂ@b(|Dv|)dx—/dex.

veH}(

For parameters 0 < t; <ty and 0 < py < o with t1us = touq, the energy density function
¥ @ [0,00) — R is defined by ¢(0) = AO(p1 — p2) for given numbers A, © € R and

,UQt fOI‘OStStl,
(12) Qﬂ/(t) = tl,ug = tg,ul for tl S t S tQ,
it for t5 <'t.

The purpose of this paper is to devise an adaptive algorithm and to analyse it in the spirit
of [3, 4, 15, 21, 22, 25]. This adaptive finite element method (AFEM) for (1.1) consists of
loops of the form

SOLVE — ESTIMATE — MARK — REFINE.
Because the right-hand side is constant, all data oscillation terms vanish and we are led to
refined estimates for the stress error with edge contributions only.
Throughout this paper, the energy density W : R” — R reads W(A) := ¥(]A]) and its newly
established convexity control property (see Proposition 4.2) reads

(1.3)  |DW/(A) — DW(B)|* < W(B) — W(A) — DW(A)- (B — A) for all A, B € R".

Key words and phrases. convergence, adaptive algorithm, optimal design problem.
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1



It is known that exact and discrete minimizers u and u, are (possibly) non-unique, while
0 :=DW(Du) and o;,:= DW (Duy)

are unique [12]. Theorem 4.3 below refines [12] and shows

1/2
(1.4) lo = oellzeey $ (3 2)

Ee&,
for the edge jumps
Ng ‘= hE[O'g] Vg
of the normal components o, - vg of the piecewise constant discrete stress o, and the size
hg := |E| of the interior edge E € & in the triangulation 7, of level ¢ of the adaptive
algorithm.

The main result in Theorem 3.1 in the spirit of [15, 21, 22, 25] (but without data oscillation)
guarantees convergence of the adaptive algorithm (AFEM) specified in Section 3. Proofs of
that and (1.3)-(1.4) follow in Section 4. Numerical experiments in Section 5 with domains
Q and meshes 7 from Figure 1.1 conclude the paper. The initial mesh 7y = red*(7;) is
obtained from the depicted 7. through two uniform red-refinements. In general, an energy
reduction cannot be expected after one refinement of a triangulation.
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(0,0) (1,0) #1 Z2 z2 23
A = 0.0084 A =0.0145 =0. 0284 A =0.0163
Square L-Shape Stop Sign Slit

FiGURE 1.1. Domains €1y, ..., and corresponding coarse meshes 7. with
T := red?(7,) for the numerical experiments with (AFEM).

Ezample 1.1 (Counter-Example for Error and Energy Reduction). Suppose Q = 7o = U7,
is a regular polygon, decomposed in the regular triangulations 75 and 7; = bisec3(7;) as
depicted in Figure 1.2. Then o = o for the minimizers uy = u; of (1.1) in Py (7Zy) N H ()
and Py (77) N H(Q), respectively.

Proof. To sketch the proof notice that ooz, is parallel to Dy|r, for the globally continuous

and Ty—elementwise affine ¢ € Py(7g) N HL(Q) defined by ¢(A) = 1 plus ¢ = 0 along 9.
Since o9 = DW (Duy) there holds

UO|Tj = SDg0|Tj
for some s € R independent of 7 = 1,2, ..., k. Equilibrium for uy = sy yields

/00~Dg0dx—/godx:0
T Ty

J

and s = h?/3 for h = |A — Cy| = |A — (4| as in Figure 1.3. It remains to prove that

/D¢E~aod:c:/goEd:c
Q Q
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Bsg By

FIGURE 1.2. Triangulation 7o = {71, ..., T} } (left) and 7; = bisec3(7y) (right)
into congruent triangles with vertex A in the center, which is the only free
node and the newest vertex in 7.
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FIGURE 1.3. Support wp = K1 U...U K, with E = 9T} N 9Ty = conv{A, By}
and pp € P1(77) N H} (wg) defined by ¢r(Dy) =1 and pr = 0 on dwg.

for any interior edge F in 7y and corresponding nodal basis function ¢z € P (77) N HE(Q).
Adopt notation from Figure 1.3 for E = conv{A4, By}. Then ¢g is the nodal basis function
of Dy in 77 and Dyp|k, is parallel to the straight line through A and C4, while Dyg|k, is
parallel to that through B; and Bs. Since oy|k,uk, is parallel to the straight line through A
and C1, it is orthogonal to the edge conv{ By, Bs}. Consequently, with ‘D@E\Kl‘ =2h71,

/Uo-DapEdz = /ngp-Dapde
T1 Tl
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The same formula holds when 77 and K are replaced by T5 and K3, respectively. The two

formulae prove
/0'0 -Dypdr = / ppdr.
Q Q

Since FE is arbitrary, it follows that oy = o1 and ug = u;. O

The example shows that energy reduction may fail without an inner node property of the
refinement in step MARK of (AFEM) in Section 3.

2. AN OUTLINE OF THE MATHEMATICAL MODELLING

This section recalls the essential steps for the mathematical modelling of an optimal design
problem and its connection to the variational problem

(P) inf G(\,v)

veV

for V := H}(Q) and its supremum over the real parameter A and derives the formula for

G\ v).

2.1. Class of Shear Modulus Variables. Given a simply-connected bounded 2D Lipschitz
domain Q C R? consider the infinite cylinder  x R under torsion. The 3D problem is
invariant under translation along the third component and so reduces to a 2D problem in
Q) as discussed below. The optimal design problem is to maximise the torsion stiffness for
an optimal composition of the prescribed section €2 with two materials of reciprocal shear
stiffness 0 < pq < pe < oo located at €2 and €,

nglugg and leQQZQ)

The amounts of the materials are prescribed with some parameter 0 < © < 1 and exactly
fills the domain (so that a partition is possible), i.e., where | - | denotes the area (the 2D
Lebesgue measure)

] =010 and |] = (1-©)[Q].

It turns out that the torsion stiffness depends only on the shear modulus u(x) which depends
on the material point x € €. In fact, one seeks some shear modulus distribution in the set

M= {pe L>®(Q) : u(x) € {u1, po} for almost every x € Q}

and this defines Q; := {x € Q : p(z) = p;} up to sets of measure zero. The optimal design
problem is therefore recast to seek some shear modulus distribution in the set

Mg = {,ue./\/l:/,u(x)dx:,u@|§2|} with  pe =0 pu; + (1 — O)us
Q

to model the volume constraint.



2.2. Torsion Stiffness. Given any pu € Mg, one requires the torsion stiffness 7" of the
3D beam with a section 2 and the non-homogeneous shear modulus p(x)~'. The reciprocal
torsion 7! is also given by a minimisation problem for the 2D stress vector o = (o3P, 02P)
in the section (2,

T-'= inf E/m?

o2Pex
where F is the elastic energy and m is the resulting 2D moment. For any given o2,
1
E = 5 / w(z)|o®P(z)*dr and m = / (z207P (2) — 2103 (2)) da
Q Q

(recall that U?D and x; denotes the jth component of ¢ and x, respectively). The stress
field o?P is admissible, written o?” € ¥, if it belongs to L?*(Q;R?) and the distributional
divergence divo?? satisfies equilibrium (which reads in its strong form)

dive?” =0in Q and P . v =0 along 09

(where v denotes the exterior unit normal along the boundary 99). In other words, o is

divergence free in the simply-connected domain 2. Hence there exists some u € V' such that
0*P = (=0u /0wy, Ou/0s:)

and this defines a one-to-one relation between ¢?” € ¥ and u € V. Moreover, a direct
substitution followed by an integration by parts (with u = 0 along 0f2) leads to

m = —/(:)sgﬁu/ﬁxg + x10u/0xy) dx = 2/ udx.
Q Q
In conclusion, the reciprocal torsion stiffness reads

Dul?d
871 = inf JotIDF do
veV (fQ’UdZL’)z

From calculus of variations, any minimiser u € V satisfies the first-order variation in the

sense that
/,LLDu-Dvdx = <8T_1/udx> /vdx for allv e V.
) Q )

Apparently, any multiple of u is also a minimiser and hence the scaling of u may be fixed.
In the sequel we choose the multiple constant such that

8T_1/uda::1.
Q

Therefore, any minimiser u € V satisfying this constraint is a weak solution of
—div(pgDu) =1in Q
and this unique v attains the minimum in

Tl ,
—1—6—2%1‘51<§/QM|DU| d:l:—/ﬂvdzz>.
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2.3. Optimal Design. According to the previous subsections, let F'(u,v) be defined for

iwe Mandv eV by
1
F(p,v) ::—/M\Dv|2dx—/vdx.
2 Ja Q

Then, the optimal design problem for the maximal torsion stiffness reads: Find the optimal
design p in
(M) inf inf F(u,v).

pneEMeo veV
An analytic solution is known for the open ball where €25 is the centered smaller ball and
)y is the complementary ring with radius determined by the volume constraint. Otherwise,
there may be no classical solutions with a discrete p (where discrete means that p assumes
only the two values y1, i) and, in fact, sequences of designs in Mg exist with finer and finer
oscillations and smaller and smaller values of inf,cy F'(p, v) such that the weak limit of such
sequences in L*°(€)) is no longer in M.

The rest of this subsection outlines the relaxation procedure by Kohn and Strang in the
essential steps and solely on the formal level. The deeper functional analytic justification
can be found in [19].

In the first step of the reformulations, one replaces the volume constraint in Mg by some
Lagrange parameter ansatz where (M) is equivalent to

sup inf inf <F(u,v) — )\/Q(u — ,u@)dx>.

AER HEMvEV

One then replaces the order of the last two infima in step two.
Given any A € R and v € V| step three computes

inf (F(1.0) ~ A / (11— o)) = / Ga(|Dol) d — / vdz + Qe

neM

in a pointwise minimisation with
1

n(0) = min{ (52 = N, (52 = V.

That is, given |Dv(x)| and v(x), u(x) is chosen as the value of p; or s which leads to the
smaller value

(GID0(@) ~ N

Thus, if 2|Dv(z)[* — A < 0 then p(x) = po and if 1| Dv(z)[> = X > 0 then p(z) = ju; in case
$|Dv(z)|?> — XA = 0 any choice is possible with a vanishing contribution. This leads to the
aforementioned formula with g,.

Step four considers the problem for fixed A € R and

Gve) = [ (Do) do =~ [ vdo+ ol

Q Q
namely the nonconvex minimisation problem (for each given parameter \)
5161‘f/ G(\ ).

It is well-established in the modern calculus of variations that, owing to the non-convex g,

the infimum may in fact not be attained. Nevertheless, the infimal value can equivalently
6



be computed as the minimal value of the convexified problem where g, is replaced by its
convex hull g, := gy*. With ¢, := /2 \u1 /1o and ty 1= (,ug/ul)tl there holds

pa(t?/2 — ) for t <ty,
ax(t) == ¢ Vhtappat — A + po) for t; <t <ty,
pi(t?/2 — \) for t, < t.
1 T

o8l —_ LAZ (t*12- 1) |
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F1GURE 2.1. Plot of two parabola and one straight line in the definition of
ga(t) for g = 1, e = 2, and A = 1/2. For these values it holds that ¢; =

V2 1 /pe = 1/V2 and by = (pa/ )t = /2.

Figure 2.1 illustrates the functions gy and g,. Altogether, the problem (M) is equivalent
to the saddle point problem

(S) supinf G(A\,v) for G(\,v) = / gr(|Dv|) dx — / vdxr + Ao lQ.
AeR vEV Q 0
The main result of Kohn and Strang [19] proves that (M) and (S) are equivalent. The proof
therein follows the outline given here and fills the remaining mathematical gaps rigorously.
This paper is devoted to the numerical analysis of (P) which results from (S) by freezing
the parameter \.

3. AFEM AND ITsS CONVERGENCE

This section states the algorithm (AFEM) to generate self-adapted meshes and discusses
its convergence properties.

AFEM) Input: A coarse regular triangulation 7y = red?(7;) with 7, from Figure 1.1. For

( )
¢ =0,1,2,... (until termination) do SOLVE, ESTIMATE, MARK, REFINE to output a sequence
7



of discrete spaces Vo C Vi C Vo C ... C U Ve €V = Hj(Q) and discrete minimizers
g, U1, Us, ... With associated stress approximations og, o1, 0o, ...
SOLVE: Given the regular triangulation 7, of €2 into triangles set

Pie(Ty) := {vy, € L=(Q) : VT € Ty, vp|7 is a polynomial of total degree < k},

let \; be the union of all vertices of triangles in 7; also called nodes, and &, denote the set
of all interior edges in 7,. Compute a discrete minimizer w, of I in V, := P1(7;) NV with
Newton-Raphson scheme where W(-) = (| - |) with ¢ from (1.2) and

/WDU /vdz for all v € V.

Set oy := DW (Duy) € L*($; R2
ESTIMATE: Compute ng := hE | o] - ve||r2(p) for all E € & and set

’ 1/2

Eeg,
© ._ _A
na = |loe — Awoel| 12,
g) = ||DUg - AgDu5||L2(Q)

Here, given py € Py(7;)?, the function A,p, € S'(Ty)* = Pi(Ty)* N HY(Q; R?) is defined by

(i) () i= el [ pedy
for 2 € Ny N Q and ©,, with area |w,|, is the union of all T' € 7, with vertex z.

MARK: Sort & in (Eh, ..., En) with ng, <ng, < ... <ng, and choose the minimal & with

L 2 \'/2
i< (20n,)
Set Mg = {Ek:7Ek‘+la ...,EN}.

REFINE: Generate refined triangulation 7,,; with subordinated finite element space V,,; :=
P1(Tp41) NV D Vp such that every triangle T in 7, with some edge E in M, is refined by
bisech in 7,1 and the shape regularity and conformity of 7,,, is maintained.

More details on REFINE can be found in [7] for 2D triangulations into triangles with
refinements from the list depicted in Figure 3.1.

Theorem 3.1. There exists some constant 0 < k < 1 (which depends on Ty and W only)
such that 0 = DW (Du), oo = DW (Duy) from the Algorithm (AFEM), and

0 <9 :=min E(V;) —min E(V) = E(uy) — E(u)

satisfy
k(24) 2|0 — ag||Ai2(Q) + 0001 < (1 — K0g)0p for £=0,1,2,....
8
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FIGURE 3.1. Possible refinements of a triangle 7" in (AFEM).

The proof of Theorem 3.1 follows in Section 4. The interpretation of Theorem 3.1 is that
(0¢)r=0,1,2,... behaves like a linearly convergent sequence (with limit zero) as long as ¢, > ¢ > 0
stays away from zero (with an energy error reduction factor p := 1 — ke < 1). This is called
g-linear convergence in the preasymptotic range. It follows that

60 < ploy forall £=0,1,2,...,L
and L such that d;, < e. Since é; < dy41 there holds
op<e forall {=L L+1,L+2, ..
This and the fact that € > 0 may be chosen arbitrarily small implies convergence
(3.1) lerilo 0y =10
of the energy errors and as a consequence of the stress errors
glilglo lo = o¢l| 2 = 0.

Moreover, the proof of Theorem 3.1 implies that

(2p2)~ ZHU ellz2(@) +Z5 < K10,

In other words, with the sequence spaces

0.0]
= {(25)j=01,2,.. € R™ Z ;] < oo},

there holds
(lo = ojllz2@)j=012... € £* and  (3;)j=0.12... € £*.

4. PROOFS

Theorem 3.1 and the reliability (1.4) is based on the new estimate (1.3) which will be a
consequence of the following lemma.

Lemma 4.1. For 1 asin (1.2) and all a,b > 0 there holds

2(v(a) = (b)) + by’ (b) — av’(a) < '(a)*(a/v'(a) — b/ (D).

9



Proof. Suppose first that @ > b and let I := |(a,b) N (t1,t2)| be the length of the interval
(a,b) N (t1,t9). Since 9" is monotone, there holds

(4.1) (=D (p2tr)* < (=1)¢'(a)*.

Note that (4.1) is trivial if I = 0 and otherwise follows from a < t5 and ¢'(a) < ¢/(t3) =
pita = psoty. On defining ¢(t) = ¢'(t)/t there holds

2 o 0 fOI'tg(tl,tQ), I 0 fOI'tg(tl,tg),
t ¢ (t) o { —,ugtl fOI‘ t € (tl,tg), (1/¢(t)) B { 1/(M2t1) fOI' t - (tl,tg).

Therefore, we deduce with (4.1) that

[ o0t = sty <125 o [ 10t0)

= —¢'(a)*(1/¢(b) — 1/¢(a)) = ¢'(a)*(a/v'(a) — b/¥'(b)).

Integration by parts implies

b b ’
/ 26 (1) dt = —2 / to(t) dt + (Pp(b) — a*p(a)) = —2 / V(1) di + (b (b) — ay’(a))
= —2((b) — (a)) + (0 (b) — ar'(a)).

The combination of the two estimates implies the lemma in case a < b. If a > b then the
choice I = —|(b,a) N (t1,t2)| and the above argumentation show the lemma. O

Proposition 4.2. For A € R" let W(A) :=¢(|A|). For any A, B € R" there holds
(2p12) " [DW(A) = DW/(B)* < W(B) — W(A) — DW(A) - (B — A).

Proof. We abbreviate a := |A| and b := |B|. Noting that A - DW(A) = ay)’(a) and B -
DW(B) = by/'(b) we deduce from Lemma 4.1 that

LHS :=B-DW(B) — A-DW(A) —¢'(a)*(a/y'(a) — b/¢/ (b)) < 2(W(B) — W(A)).
Using once more that ay)’(a) = A- DW(A) we rewrite the left-hand side as

b
Y'(b)

LHS =2DW(A) - (B— A)+ B- (DW(B) — 2DW(A)) + ¢'(a)?

Since B = (b/4'(b)) DW (B) and ¢'(a)* = |[DW (A)|* we infer that
b b

P'(b)  ¢'(b)
A combination of the estimates with b/’(b) > 1/u9 implies the assertion. O

B (DW(B) —2DW(A)) +¢'(a)? |DW (A) — DW (B)|?.

Remark 4.1. Proposition 4.2 is sharper than the estimate in [10, 12, 13|, but those are in
fact equivalent [17, 18].

Theorem 4.3. There hold (1.4) and

(2u2) "l = el + 00 5 (D %)
Ee&,

1/2
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Proof. For almost all z € Q and o, := DW(A), A= Duy(z) and 0 :== DW(B), B = Du(z),
Proposition 4.2 reads

(2p2) "o (x) — ou(2)* < W(Du(x)) = W(Due(z)) — oe(w) - D(u — ug)().
The integration over x € () leads to
(4.2) (2u2) Mo — Ug||%2(9) + 0y < Rese(u — uyp)

for the residual
Resi(v) := / vdr — / oy - Dvdzx.
Q Q

Given this residual, one argues as in the linear situation for the design of explicit residual-
based error estimators. With a particular weak Clement-type interpolation operator J from

[8] one argues as in [4, 5, 9] to deduce
1/2
ve S < Z 77123‘) :

Ec&y

| Resy|

Note that the right-hand side is constant and hence data oscillation terms vanish. Finally,
owing to the reliability-efficiency gap [9], there is no (immediate) control on ||[u — ||y and
hence solely growth conditions are available to guarantee ||ully + ||ug||yy < 1. Therefore, the
aforementioned estimates and

[u = uelly S 1
yield the assertion. U

Remark 4.2. Theorem 4.3 is sharper than the corresponding results in [9, 12, 13].

Proof of Theorem 3.1. The residual is the same as for linear elliptic problems, e.g., as for the
Poisson problem. Hence the subsequent arguments are well established in [4, 15, 21, 22, 25]
and therefore are briefly mentioned. The reliability of the residual-based estimates from
Theorem 4.3 and the bulk criterion give

B 1/2
(4.3) 2u2) "l = oellia + 0 S (D nE)
EeMy

where ng := h}5/2|| [0¢] - vB||L2(p) is computed with respect to the triangulation 7,. For each
E in M, the step REFINE allows the design a discrete test function pg in V,, with support
wg = int(Ty UT_) for the neighbouring elements 7'y, T in 7, with £ = 0T, N JT_ and the
properties [, ppds = hg and, by the inner node property, wa wpdr =0 plus ||pgp|v =~ 1.
Then,with a piecewise integration by parts

1
SN = / cpE[ag]-l/Eds:/ ag-Dapde+/ o divy oy dz.
E wE

WE
Since the discrete stress is piecewise constant, its piecewise divergence vanishes. Since o,
is in discrete equilibrium with ¢ € V41 and right hand side 1 there follows

/ Ué+1'D80Ed95=/ op dx.
%5} WE

1

e = / (00 — 0441) - Dpp da.
wE

Consequently,

11



Since ||eg|lyv <1 this implies
ne S lloe — ool 22w
The finite overlap of the edge patches (wg : E € M,) leads to

(4.4) > np S o — odllFagy.

EecM,
On the other hand, o,y = DW(A), A = Duyyy and 0y = DW(B), B = Duy lead in
Proposition 4.2 to

(202) Hoesr — o¢ [[720) < / W (Dug) = W(Dugy) de — / Oer1 - D(ug — ugsr) da.
Q Q

Since w1 — ug € Vyyq and oy satisfies the discrete equilibrium condition

/ Opp1 - D(up — upyq) de = /(Ug — Upyq) dx,
Q

Q
the aforementioned estimate reads

(4.5) (2p2) " Moer = 00 1 72) < 0 — G
The combination of (4.3)-(4.5) provides

1/2
2u2) o = ollizey + 0 5 (Y )

EeMy

S o — oellrz@y < (202)2(80 — 6ea1) 2.

In other words, for some constant C' > 1 (which depends on the form of the triangular
element domains through the minimal interior angle, on p; and on the growth condition gy ),
there holds

(202) " *llo = oull12(q) + 07 < C(J0 = be41).

This is the assertion with xk = C~! < 1. l

5. NUMERICAL EXPERIMENTS

This section reports on four numerical experiments defined through the respective domains
Q1,Q, Q3,9 and initial meshes 7y := red*(7y) plus the eventually computed values of \
of Figure 1.1. In all of the examples, pu; = 1, us = 2, and © = 1/2. The real numbers
t1 = /2 1 /po and ty = (uo/py)ty are defined through the parameter A (from Figure 1.1)
which was determined by a golden section search in the interval [0, 1] and a minimization
of the energy functional in V; with triangulations red*(7p) resulting from four uniform red-
refinements (cf. Figure 3.1) of the respective coarse triangulations 7;. The sequence of
intervals I; = [a;, b;] provided by the search routine with stopping criterion b; —a; < 107 is
for j = 5,6, ...,20 given (for j = 5,6, ...,12 in the first and for j = 13,14, ..., 20 in the second
row) by:

aj = 0 0 0 0 0 005025 | .005025 | .006944
b; = |.090170 | .055728 | .034442 | .021286 | .013156 | .013156 | .010050 | .010050
a; 006944 | .007678 | .008131 | .008131 | .008303 | .008411 | .008411 | .008411
b; = | .008864 | .008864 | .008864 | .008584 | .008584 | .008584 | .008518 | .008477
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For each new interval end with j = 9,10, ...,20 (i.e., A\; = 0.013156, 0.005025, 0.010050, ...)
we plotted the obtained solution of the minimization problem in Figures 5.1 and 5.2. After
20 iterations the numerical solution has approximately the right volume fraction 1/2 for each
of the two materials with a transition region separating them.

Each of the domains €2y, €25, Q3, 24 reflects particular characteristics of the adaptive nu-
merical approximation of (1.1): No significant local refinement is expected to occur in case
of the convex domain ; which has also been computed on uniform triangulations in [19].
This is different for the L-shaped domain €25. The reentrant corner at the origin presumably
limits the regularity of the exact solution and therefore requires a higher resolution in its
neighborhood in order to obtain optimal approximations. The regular hexagon defined by
Q)3 can be regarded as an approximation of a circular domain. In analogy to known explicit
solutions of (1.1) in disks, an almost circular interface separating the two phases is expected
for Q3. The existence and approximation theory discussed in the previous section does not
immediately apply to the case of the non-Lipschitz domain 4. Nevertheless, practical ex-
perience from elliptic problems suggests that adaptive finite element methods still provide
accurate approximations. These expectations are confirmed by our numerical experiments.

Figure 5.3, 5.7, 5.11, and 5.15 display the sequences of triangulations generated by (AFEM)
for the domains €, s, Q3, and 4. For the domains ; and 23 we do not observe a
significant local refinement, while for €25 and )4 there is a strong local refinement towards
the origin at which the domains have reentrant corners.

The Figures 5.4, 5.8, 5.12, and 5.16 display the quantities ng, n4, and ng versus the number
of degrees of freedoms for sequences of uniformly and adaptively generated triangulations.
We remark that ng and n4 provide upper bounds for the square of the stress error and
observe from the plots that these quantities decay to zero at different rates in the examples.
For the domains €2; and 23 they converge at the same rate to zero while for €2y and €24 the
adaptive mesh-refinement strategy leads to improved, nearly linear convergence rates for the
error bounds. The quantities 7¢ do not allow for a straight-line in the logarithmic scaling
of the plots. This is in agreement with the expectation that 7 cannot be a lower bound
for (any power of) the stress error. Figures 5.5, 5.9, 5.13, and 5.17 show the quantities d,
for £ = 0,1,2,... and uniform and adaptive mesh-refinement with a logarithmic scaling on
both axis for the domains 2, {25, 23, and 4. We deduce a similar behavior as for the error
estimators.

The volume fractions A(|Duy|) are defined through the numerical approximation u, € V,
for £ = 11 by the function

0 for 0 <t <ty
A(t) =< 55 forty <t <ty

1 for ty < 1,
and displayed in Figures 5.6, 5.10, 5.14, and 5.18 for the domains €2y, {25, €23, and 4. Strong
convergence of this quantity can only be expected if the approximations u, converge strongly.
Sufficient but very severe conditions for this based on stabilisation are stated in [2]. In all of
the examples we observe an arrangement of the two materials consisting of an interior region,
a boundary layer, and a small transition layer between the two regions. In order to make the
transition layer better observable we plotted for each of the four examples the microstructure
region consisting of those points {x € Q : 0 < A(|Duyi(x)]) < 1} =: {0 < A(Duyp) < 1} in
the domain € where the function A(|Duy;|) is neither 0 nor 1.
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The overall experience with (AFEM) for this degenerated minimisation problem from
topology optimisation at hand is that local mesh-refinement is enforced as in strictly convex
minimisation problems. A strong local refinement towards the interface separating the two
phases does not arise in all of our numerical experiments and does not appear a necessity
for linear convergence of the stress error. We conjecture that to be different for higher-order
finite element methods.
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