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Abstract.We present a modi�cation of the �ctitious play algorithm for matrix games by aggregatingtrivial original steps. The resulting new algorithm consists of comparable simple steps buthas a much better rate of convergence. Modi�cations for solving large scale LP-programs,numerical results and some conjuncture concerning the total e�ort of elementary steps forensuring an error < " will be discussed.
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1 Introduction
In 1951, Julia Robinson [6] proved that matrix games can be solved by the well-known�ctitious playing algorithm proposed in [1]. This method, here denoted by R-method,requires few and simple operations (basically n additions) in each step and keeps thematrix �xed (in contrast to all standard methods for solving LP). Parallelization is verysimple, too. Due to the close connection to linear programs, so already several authorsused it for solving large-scale linear programs [3] and even for proposing a heuristic forcertain discrete optimization problems [7].Nevertheless, the convergence of the R-method is slow and (usually) the error doesnot monotonically decrease. In addition, there is almost no chance to take advantageof having already some good approximate solution.The present paper shows how the R-method can be improved such that the newmethod preserves all advantages of the �rst one. The basic idea is very simple: weshow that (many) uniform steps of the R-method can be aggregated in a cheep manner.This leads us to our modi�cation modR1 which satis�es (with each rational matrix, cf.Theorem 2) an error estimate of the type

errmodR1(s)=errRob(s)! 0 if s!1 (the index of steps)
and (with each integer matrix) for increasing � and certain s = s(�) � �;

errmodR1(�) = errRob(s) where �=s � errRob(s)! 0:
Hence, at least for rational matrices, our order of convergence (measured by the neededsteps) is better from the qualitative point of view, not only by some constant factor.This makes the new algorithm more attractive for solving large scale problems (games,linear programs or linear inequality systems).
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The paper is organized as follows. In order to simplify the considerations we for-mulate all statements for skew-symmetric matrices only. Thus, as a justi�cation, we�rst mention that this class is su�cient general for solving arbitrary matrix games andlinear programs. This will be done in section 2.In section 3, the R-method, our algorithms modR1 and modR2 as well as theirbasic properties are presented.In section 4, we present estimates for convergence and motivate the conjunction
s � n a

� where a = maxi;j ai;j (1.1)
concerning the number of steps for ensuring an error � � by modR1 and modR2, if Ais a skew-symmetric (n; n) matrix. This formula was true for all tested matrices (morethan 107) and implies that one needs no more than

sE = K n2 a
�

elementary operations (with less than n2 divisions and K � 5) for getting the relatederror. Notice that already the "exact" solution of Ax = b requires O(n3) elementaryoperations. The estimates for solving the problem via transformation into a linearprogram are not better, cf. [5]. So, if the required relative error �a is not too small, inparticular if �a > 1n , the algorithms are very appropriate to solve (approximately) largescale problems.
Notations: Throughout, we denote the largest component of a vector z 2 IRn by max zand the maximal entry of A by a. Further, A:i and Ai: denote the ith column and rowof A, respectively, and Sn = fx 2 IRn j Pi xi = 1; xi � 0 8ig denotes the unit-simplexin IRn. For an (m;n) matrix A, a pair (x̂; ŷ) 2 Sm � Sn is a (Nash-) equilibrium, if

xTAŷ � x̂TAŷ � x̂TAy 8 (x; y) 2 Sm � Sn:
Solving the matrix game A means to �nd some equilibrium. If m = n and AT = �Athen A is called skew-symmetric.

2 Arbitrary matrix games and LP
If A is skew-symmetric, one easily sees due to xTAy = �yTAx and xTAx = 0 8x; ythat the equilibria are just the pairs (x̂; ŷ) 2 Sn � Sn such that x̂ and ŷ solve

Ax � 0; x 2 Sn : (2.1)
Solvability of (2.1) is ensured by the minimax Theorem (and by J. Robinsons The-orem). Considering skew-symmetric matrices only is su�cient for solving arbitrarymatrix games and linear programming.
Linear programs.The subsequent facts follow directly from duality of linear programming and have beenobserved (e.g.) also in [3] and [8]. Given a pair of dual problems

(P ) max cTx s.t. A x � b; x � 0; (A is a (m;n)-matrix )(D) min bTy s.t. AT y � c; y � 0
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consider a solution � = (�; �; �) 2 Sn+m+1 of the skew-symmetric matrix game

G = G(A; b; c) : =
0
@ 0 �AT cA 0 �b�cT bT 0

1
A : (2.2)

If � > 0, then x = �=� and y = �=� (2.3)
is a pair of primal-dual solutions for (P;D) (since x and y are feasible and bTy � cTx).If (x; y) is a pair of primal-dual solutions to (P;D), then � = (�; �; �) with components

� = (1 +Xxi +X yk)�1 > 0; � = �x and � = �y (2.4)
solves the game G (since cTx = bTy holds for the solutions). Thus G has no solutionwith � > 0 i� (P ) is unsolvable. The latter is true (by the Farkas Lemma) i� there isa solution � = (�; �; 0) of G such that �cT � + bT� < 0.The relation between (P;D) and G preserves particular structures of A and becomesmore complicated only if G has solutions with � = 0 and � > 0. This happens i� (P )or its dual has an unbounded solution set. Then, after solving G, one may obtain asolution with � = 0 and �cT �+bT� = 0. Having such a solution, we only know that thedirection (�; �) belongs to the recession cone of the primal-dual solution set, providedthat (P ) is solvable.So, in accordance to (2.3) and (2.4), the minimal component � � over all solutions(�; �; �) to G plays the role of a condition number to (P;D) where � � = 0 stands fordegeneration (unbounded or empty solution sets), and large � � ensure that the primal-dual solutions have small norms. For the subsequent algorithms, it makes no di�cultyto start in such a way that � > 0 holds in the beginning (choose � = 0 and selecti(0) = n+m+ 1).
Arbitrary matrix games.Let M be any (m;n) matrix. The game M can be solved by a well-known transforma-tion: First add a su�ciently large constant c > 0 to all entries of M in order to obtaina matrix A with positive entries ai;j > 0 8i; j (this keeps the equilibria �xed). Nextconsider the above problems (P;D) for

c = 1n = (1; :::; 1)T 2 IRn; and b = 1m = (1; :::; 1)T 2 IRm; i.e.,
(P ) max 1Tn x s.t. A x � 1m; x � 0 and (D) min 1Tm y s.t. AT y � 1n; y � 0:
Since (P ) has a nonempty and bounded feasible region, solutions x̂; ŷ exist and satisfy0 < 1Tn x̂ = 1Tmŷ. With v = 1Tn x̂; �̂ = x=v; �̂ = y=v, this yields �̂ 2 Sn and �̂ 2 Sm.Furthermore, the constraints ensure

�TA x̂ � 1 � ŷTA � 8 � 2 Sn; � 2 Sm:
Therefore, division by v tells us that (�̂; �̂) is an equilibrium pair for A and M . It canbe determined via the skew-symmetric matrix G (2.2) for b = 1m; c = 1n by using thegiven transformations.
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3 The basic algorithms
In what follows we will throughout assume that
(A1) A is a (n; n) matrix, AT = �A and each column of A has a positive entry.
If ak;i � 0 8k then the unit vector ei satis�es (2.1). Clearly, (A1) implies n � 3. Let

�(x) = maxi Ai: x (3.1)
be the error of x 2 Sn. Solutions x� minimize the non-negative, piecewise linearmaximum function �(:) on Sn. Hence they can be determined by various methods, inparticular by all algorithms of linear programming. Here, we are interested in fast andcheep methods for computing approximate solutions.
3.1 Julia Robinson's method

Since A is skew-symmetric the method can be described (see also [3]) as follows.
R-method.
Fix some Z0 = � 2 IRn such that max � = 0; and put s = 0 and Y 0 = 0 2 IRn.

Determine, in step s � 0, some maximal component of Zs (say its index is i = i(s))
and use the ith unit vector and the ith column of A, respectively, in order to put

Y s+1 = Y s + ei; Zs+1 = Zs + A:i; s := s+ 1; repeat 3: (3.2)
Comments:The so-called active index i = i(s) is not unique, in general. For the numerical testsdescribed below, we then selected the smallest one.To s > 0, elements xs := Y ss 2 Sn are assigned. They obviously satisfy

Axs = AY s
s = Zs � Z0

s and xs+1 = 1
s+ 1 [sxs + ei]: (3.3)

Hence the error (3.1) satis�es
�(xs) = 1

s maxZs + �s where �s 2 [0; max ��s ] (3.4)
and can be controlled via maxZs without computing Axs.In the game theory, x is called a mixed strategy and the iterations improve x by"�ctitious play". In accordance with J. Robinson [6], it holds
Theorem 1 For all " > 0, there exists some s(A; ") such that

maxZs
s < " for all s > s(A; ") and all feasible �: 3 (3.5)

The proof even shows that s(A; ") depends on " and a only. In particular, it follows�(xs)! 0 as s!1. The convergence of the error is slow and �(xs+1) > �(xs) mayhappen if xs is close to a solution and s is small (compared with the distance).The requirement max � = 0 is a device for proving convergence in [6]. In applications,the setting � = 0 is appropriate. Then i(s) denotes a maximal component of Axs.
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3.2 Aggregation of R-steps and modR1

Let i = i(s) be active at step s of the R-method (3.2). We ask for the maximal numberm of steps s+ 1; :::; s+m which do not change this situation. To �nd m, we supposethat the R-method uses the active index i as long as possible (if the index is not unique)and obtain the simple condition
Zs+pi � Zs+pk 8k; 8p = 1; 2; :::;m

which means just Zsi + p aii � Zsk + p ak;i 8k
or equivalently (since ai;i = 0),

p � Zsi � Zskak;i 8k satisfying ak;i > 0:
Thus it holds m = [q] where [q] denotes the integer part of

q = mink fZsi � Zskak;i j 1 � k � n; ak;i > 0g: (3.6)
The minimum exists due to (A1). Knowing m the next m + 1 steps can be made atonce by setting

s0 = s+m+ 1; Zs0 = Zs + (m+ 1)A:i and Y s0 = Y s + (m+ 1)ei: (3.7)
At iteration s0 of the R-method, some new i0 is active, and we may continue to calculate(the next) m. This leads us to an algorithm where � entails the role of m+ 1.
modR1.
Fix some z(0) = � 2 IRn such that max � = 0; and put � = 0 and y(0) = 0 2 IRn.
Step �: Choose i = i(�) such that max z(�) = z(�)i, determine

q(�) = mink f z(�)i � z(�)kak;i j 1 � k � n; ak;i > 0g; � = [q(�)] + 1 (3.8)
and put

y(� + 1) = y(�) + � ei; z(� + 1) = z(�) + � A:i; � := � + 1; repeat. 3 (3.9)
Obviously, with identical initial points, the steps � of modR1 and the steps s = s(�)which change the active index (for the �th time) in the R-method, correspond to eachother. We compute y(�) = Y s(�) and z(�) = Zs(�) only. Furthermore, it holds

s(�) = ky(�)k1 (sum-norm) and s(� + 1) = s(�) + �: (3.10)
To all � > 0, now the elements x(�) = y(�s(�) 2 Sn are assigned. They satisfy

Ax(�) = z(�)� �
s(�) ; x(� + 1) = 1

s(�) + � [s(�) x(�) + � ei(�)] (3.11)
and (3.4) attains the form

�(x(�)) = 1
s(�) max z(�) + �� where �� 2 [0; max ��

s(�) ] : (3.12)
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It is important (and the key of the modi�cation) that (3.8) remains a cheep operationwhich depends again on Zs (now z(�)) and column A: i only.If we delete (3:8) and simply put � = 1 instead, then modR1 decribes again theR-method. This allows a direct and simple comparison of both algorithms during therunning time. We recommend the interested reader to do it while looking at the error,the active index and the quotient s(�)=� as well.Clearly, if � = 1 follows at each step of modR1, we aggregate nothing. However,this cannot happen for rational A though � = 1 at certain steps is not excluded, cf.Theorem 2.
Monotonicity and other modi�cations. Let � = 0 and � > 0. The quotient q(�)in (3.8) has been determined in such a way that, for � � 0, the maximal componentof z(�) + �A:i(�) changes exactly at � = q from i = i(�) to another index, namely aminimizer k� in (3.8). Due to � = 0, the same is true for the maximal components ofthe function

f(�) := A �(�) where �(�) = 1
s(�) + � [s(�) x(�) + � ei(�)]:

Furthermore, it holds
fi(q) = fk�(q) = �( �(q) ) � �( x(�) ) where < holds for q > 0:

If already �(x(�)) � ak�;i (> 0), now the error �(�(�)) increases for � > q since
�( �(�) ) � Ak�: �(�) and d

d�Ak�:�(�) = s(�)
(s(�) + �)2 [Ak�: ei(�) � Ak�: x(�)] > 0:

The algorithm modR1 uses � = � = [q] + 1 for de�ning x(� + 1) = �(�), hence�(x(�+1)) > �(x(�)) is possible if q is small in comparison with �� q. To reduce thise�ect one may de�ne x(� + 1) = �(�) with smaller � = �(�) 2 (q; �] which means toreplace � by � in formula (3.8) only. A similar replacement will de�ne the subsequentalgorithm modR2.Notice, however, that the straightforward setting � = q is wrong since q = 0cannot be excluded (and may really happen) in (3.8) and that, for � 6= �, the resultingalgorithm is no longer directly comparable with the R-method.
3.3 The modi�ed algorithm modR2

Our iterations are now denoted by s instead of �. We generate n-vectors z(s); y(s) bythe following procedure.
modR2Fix some z(0) = � 2 IRn such that max � = 0; and put s = 0 and y(0) = 0 2 IRn.Step s: Determine some i = i(s) such that max z(s) = z(s)i and put

h(s) = mink f 1 + z(s)i � z(s)kak;i j 1 � k � n; ak;i > 0 g (3.13)
as well as
y(s+ 1) = y(s) + h(s)ei; z(s+ 1) = z(s) + h(s)A:i; s := s+ 1; repeat. 3 (3.14)
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If a maximizing index k of (3.13) coincides with a maximizing index k� of (3.8) for� = s, then we simply exchange � of modR1 by � = h > q (as just discussed above).The next Lemma summarizes simple properties of the generated sequences.
Lemma 1 It holds z(s) = � + Ay(s); (3.15)
and each index k�, related to the minimum h(s) in (3.13), ful�lls with i = i(s),

z(s+ 1)k� = max z(s+ 1) = 1 + max z(s) = 1 + s: 3 (3.16)
Proof. Equation (3.15) is obvious. By (3.13) and (3.14) we have k� 6= i and

z(s+ 1)k = z(s)k + h(s) ak;i = z(s)k + 1 + z(s)i � z(s)k�ak�;i ak;i:
Hence, for k = k�, it follows ak;iak�;i = 1 and z(s + 1)k� = 1 + z(s)i. Considering the
cases of ak;i � 0 and ak;i > 0 separately and recalling ai;i = 0, one also easily obtainsz(s+ 1)k � z(s+ 1)k� 8k. 2

Therefore, the value max z(s), important for the error-estimate, now coincides with s,one may put i(s+ 1) = k� and replace zi(s) = s in (3.13). Since h � 1a , the sequence
t(s) = X

s0 < sh(s
0) = ky(s)k1

diverges and the assigned sequence x(s) = y(s)t(s) 2 Sn ful�lls, as under (3.11),
Ax(s) = z(s)� �

t(s) ; x(s+ 1) = 1
t(s) + h(s) [t(s)x(s) + h(s)ei] (3.17)

and �(x(s)) = 1
t(s) max z(s) + �s where �s 2 [0; max ��

t(s) ] : (3.18)
after s > 0 steps. This induces the key question: How fastly will t(s) increase ? Theo-
rem 3 ensures t(s)s !1, so �(x(s))! 0 holds again.

The algorithm modR2 can be compared with the R-method and modR1, too: Asin modR1, we aggregate the R-steps s; s+ 1; :::; s+ [q] with �xed active index i. Afteriteration s + [q], the next R-step necessarily changes the active index. Only in thissituation, modR2 requires to do something else by replacing now m + 1 in (3.7) withh(s) from (3.13) in order to obtain max z(s) = s.

4 Estimates of convergence
4.1 Theoretical comparison of the R-method and modR1

Theorem 2 Let all ai;j be rational with common denominator Q,
let Z0 = z(0) = 0 and s = s(�) be the number of R-steps which corresponds to � > 0
steps of modR1. Moreover, let �(s) = maxZss be the error after these s (� �) R-steps.
Then, it holdss

a �(s) � � � Q s �(s) and �(s)! 0 as s!1: 3 (4.1)
7



Proof. Since ai;i = 0, the value maxZs remains constant during the iterationss+1; :::; s+m (m determined via (3.6)) and increases at iteration s0 = s+m+1. Sinceall components of Zs are sums of elements ai;j, the value maxZs increases at least byQ�1 and at most by a. Hence, it holds Q�1 � � maxZs � a �; and the error ful�llsQ�1 �s � �(s) � a �s . In consequence, we have
�(s)
a � �

s and �
s � Q �(s):

Now, the assertion follows immediately by multiplying with s and taking into accountthat �(s)! 0 as s!1 is ensured by J. Robinson [6]. 2

Remark 1 Thus we obtain an error �(x) � � already after � steps where � correspondsto s � � steps of the R-method and ful�lls
� � Q � s: (4.2)

Since the error � vanishes for increasing � (or s), our order of convergence is betterfrom a qualitative point of view (i.e., not only by some constant factor). 3

Furthermore, (4.2) tells us that we are as faster (compared with the R-method) assmaller the error is required and as faster the R-method converges.Each step of modR1 consists of n additions, n operations of the form (u � v)=ai;jand �nding maxZ. Hence the new steps are more expensive than before, but theyrequire (roughly speaking) only 5n elementary operations. The computing time perstep increases about by factor 3 to 7 (depending on the generated code). For thesubsequent example 3 and n = 1000, 105 iterations needed about 2.1 and 7.6 sec,respectively (all our tests used a x86 processor, 3 Ghz).
4.2 Estimates with and without assuming periodicity

The convergence of the R-method and modR1 (in the sense of �(xs)! 0) are clear by[6]. One has only to note that modR1 (for rational and real matrices as well) aggregatessteps of the R-method. Therefore, we consider here algorithm modR2.
Preliminaries.Since A = �AT the equation yTAy = 0 is evident and yields by (3.15) for each iteration,yT z = yT � � 0: Thus, some component of z(s), say the �th one, satis�es

z(s)� � 0 where � = �(s): (4.3)
To simplify, we do not exploit here, that components k, which are never active forsu�ciently large s, can be deleted in the current context.
Case 1: Let the �th component be maximal at some step s0 > s. Then one obtains

�z� := z(s0)� � z(s)� � s0: (4.4)
In consequence, also t = kyk1 has to increase in a corresponding way, namely

�t := t(s0)� t(s) � s0
a : (4.5)
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Case 2: Now assume that component � is not maximal during the iterations s; :::; s0and write s0 = s + L + 1. Then the algorithm behaves, during the L steps s; ::; s0 � 1(where � plays no role), as in the (n� 1)-subgame A(��) without strategy � and withthe initial point �i = z(s)i�s 8i 6= �. This fact is the key for induction proofs like in [6].
Periodic sequences.Assume that case 1 happens M times at the iterations s 2 fs0; s1; :::; sM�1g withs0m = sm+1. Setting Tm := t(sm), the inequality (4.5) yields for m = 0; :::;M � 1,

TM � T0 � a�1 M�1X
m=0 sm+1 �M a�1s0 + 12a�1M(M + 1): (4.6)

Hence t increases quadratically with respect to the number of iteration segments theminimal component of z becomes maximal in which.
De�nition: If positive integers p and s0 exist such that the current case occures for

sm = s0 +mp; m = 0; 1; 2; :::
we call the iteration sequence periodic, otherwise aperiodic.Roughly speaking, then the minimal components of z become maximal su�cientlyfast (within p steps). In this situation, (4.6) ensures, by complete induction, that tincreases quadratically

t(s0 +mp) � t(s0) + 12 p a�1 m(m+ 1) if " � 0;m > 0: (4.7)
Since max z(s0 +mp) = s0 +mp;
the convergence of the error value z=t is completely described now. In particular, (4.7)yields for � = 0,

�( x(s0 +mp) ) = max z(s0 +mp)
t(s0 +mp) � 2a (s0 +mp)

pm (m+ 1) = 2a s0pm (m+ 1) + 2a
m+ 1 :

This tells us that
�( x(s) ) � C

s 8s (4.8)
holds with some C > 0 and shows that (1.1) is at least true up to some constant.For n = 3, one easily sees that t(:) can at most quadratically increase (in each col-umn there is exactly one positive entry, so the active indices form a periodic sequence).
Aperiodicity.modR2 may generate aperiodic sequences. Even both types of sequences may appearfor the same matrix:

A =
0
BBBB@

0 �1 0 1 �21 0 �1 0 10 1 0 �1 0�1 0 1 0 02 �1 0 0 0

1
CCCCA
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Taking � = (0; 0;�6; 0; 0), the sequence of active indices becomes periodical :(1 5 2 3 4) (1 5 2 3 4) ... .For � = ( 0;�145:5;�325; �1;�307), the index sequence attains the form(1 2 3 4) ... (1 2 3 4) [1 5 2 3 4 1 5 2 3 4], (1 2 3 4) ... (1 2 3 4) [1 5 2 3 4 1 5 2 3 4], ...where the number of repetitions of cycle (1 2 3 4) is 8 in the beginning and increases ex-actly by 2 after passing the 2 cycles (1 5 2 3 4). Periodicity is violated since the minimalcomponent z5 does not increase fast enough. The computed solution is 16(1; 2; 1; 2; 0)in both situations.The exact analytical proof of this (a)periodical behavior required to determineall zi(s) explicitly for both sequences (via di�erence equations and composed a�nemappings) and is quite technical. We recommend the interested reader to verify thesestatements by a computer. For the subgame without row/column 5, the algorithmdetermines the solution 14(1; 1; 1; 1), not the vertex 12(1; 0; 1; 0) of the solution set.Another aperiodical example has the form

Â =
0
BBBB@

0 0 0 �1 10 0 �1 1 00 1 0 0 �11 �1 0 0 �2�1 0 1 2 0

1
CCCCA

and is of particular interest since Â = G (2.2) corresponds to the simple linear program
(P ) maxx1 s:t: x1 � x2 � 2; x2 � 1; x � 0:

The computed solution 17(3; 1; 1; 1; 1) yields the primal-dual solutions x = (3; 1); y =(1; 1). Now, there are two possible (shortest) cycles of active strategies: C1 = (4 5 1)and C2 = (4 2 3 5 1). After each of these cycles, i = 4 is again active, and, dependingon 12 [1 + z4(s)� z5(s)] � 1 + z4(s)� z2(s);
a repetition of C1 or C2 follows. One sees quite simple that both cycles must beused since modR2 solves the game. The application of modR2 shows that there arearbitrarily long periods of repetitions of C1 (z4; z5 and z1 are positive there) and onecan theoretically compute that p repetitions of C1 transform z into some z0 dependingquadratically on p (in particular, z2 increases quadratically). However, p repetitionsof C2, de�ne an exponential (in p) transformation of z and disturb periodic behavior.Computing the sequence z(s) explicitly is again rather hard.Nevertheless, the crucial formula (4.9), which implies (1.1) for � = 0, was true forboth examples and all mentioned initial values. We permit all index sequences now.
Estimates for the general case.Assume � = 0. Formula (1.1) for modR2 then just requires, since �(xs) = s=t(s),

t(s) � s2
n a: (4.9)

Remark 2 For each feasible �, (4.9) is valid if the maximal component zi(s0) and thevalue zk(s0) for the next active index k = i(s0 + 1) satisfy
zi(s0)� zk(s0) + 1 � 2s0 + 1

n ; s0 = 0; 1; :::; s� 1: 3 (4.10)
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The proof is straightforward since, due to h(s0) � zi(s0)�zk(s0)+1a ; (4.10) implies
a t(s) �Xs0<s (zi(s

0)� zk(s0) + 1) � 1
n
X
s0<s(2s

0 + 1) = (s� 1)s+ s
n = s2

n :
Obviously, (4.10) is one of many conditions which ensure (4.9) and (1.1) via

X
s0<s (zi(s

0)� zk(s0) + 1) � s2
n ; (4.11)

a condition which is equivalent to (4.9), provided that a = 1.Nevertheless (4.10) hold for n = 3 and each �. Indeed, for s0 = 0 (4.10) is trival. Fors > 0, the vectors z(s) satisfy z(s)i(s) = s; z(s)i(s�1) = s�1. The remaining componentzk(s) is not positive. Since ai(s);i(s�1), used for the index change i(s � 1) ! i(s), ispositive, we have ai(s�1);i(s) < 0 which yields k = i(s+ 1). Thus (4.10) follows from
zi(s)� zk(s) + 1 � s+ 1 > 2s+ 1

3 8s:
Next we verify convergence �(xs)! 0 at all and apply a reduction argument as in [6].
Theorem 3 (Convergence of modR2)
There is some c = c(A) > 0, such that, for all initial vectors � and all iterations s > 0,

t(s) � c sp where p � n� 1
n� 2 : (4.12)

Proof. We already know, that (4.12) is true for n = 3 and p = 2. Starting with n = 4we may assume that, with certain p > 1 and c > 0, (4.12) is true (again with all initialvectors � 0) for all subgames A0 of A which arise by deleting any row and the relatedcolumn of A. Evidently, also c � a�1 may be assumed. We put q = 1=p (< 1) andconsider large s such that
1 + sq < s and sq=(1 + sq) > 12 : (4.13)

Let L = L(s) be the unique integer in the half-open interval [sq; 1 + sq) and N be thesmallest integer satisfying N � s=(1 + sq). Then
N � s1�q sq=(1 + sq) > 12 s1�q andNL � [1 + s=(1 + sq)] (1 + sq) = 1 + sq + s < 2s:

Beginning with step s we study the algorithm during the N (overlapping) intervals
Jk = [ s+ kL; s+ kL+ 1; s+ kL+ 2; ::: ; s+ (k + 1)L ]; k = 0; 1; :::; N � 1

of exactly L+ 1 iteration steps.If some index i is not active in Jk, i.e., i(s0) 6= i 8s0 2 Jk, then the algorithm yields,for the L steps assigned to s0 with s+kL � s0 < s+(k+1)L; the same stepsizes h(s0)as in the subgame without row and column i and with the initial vector � 0 2 IRn�1,de�ned by � 0j = z(u)j �max z(u) for all j 6= i where u = s+ kL:
11



Hence, t increases, during the L steps in Jk n fs + (k + 1)Lg, according to (4.12) atleast by the amount �tk � cLp � cs:If each index is active in Jk, then (4.5) ensures that t increases during the same Lsteps in Jk n fs+ (k + 1)Lg, at least by �tk � a�1s � cs:In consequence, t increases at least by cs in each interval Jk n fs + (k + 1)Lg.Considering all intervals we thus observe
t(3s) � t(s) +Ncs � t(s) + 12 s1�qcs > 12c sp0 with p0 = 2� q > 1: (4.14)

This inequality holds true for all s satisfying (4.13), i.e., for all su�ciently large s > s0.Since t is strongly increasing, so (4.14) provides us with the existence of some (possiblysmall) c0 > 0 such that t(s) � c0sp0 for all s:
Estimate of the constants: Since (4.12) holds for n = 3 and p = 2, the constructionwith q = 1=p yields (worst) exponents p(n) as p(4) = 3=2; :::; p(n) = 2� 1p(n�1) = n�1n�2 .

2

Remark 3 With the same proof, Theorem 3 holds for modR1 and integer matrices(to have again the applied inequality (4.5) in case 2). One has only to replace s by� and t(s) by s(�) = ky(�)k. Because of max z(�) � a�, so (4.12) guarantees againconvergence �(x(�)) ! 0 of the error for modR1 and, in consequence, also for theR-method.

5 Numerical tests
The estimates of Theorems 3 are not sharp. One reason arises from the fact that (withhigher technical e�ort) the construction of the related intervals Jk could be improved.There is, however, a more important fact: After starting with the comfortable inductionhypothesis in the proof, we used (like J. Robinson) only the following: If the algorithm"plays" a certain time only with m < n active strategies, the values t(s) increase as inany "worst" game B0 with less than n strategies and entries bi;k � a.It has not been exploited that we are really playing in a particular subgame A0 ofA with a speci�c initial vector. This subgame-property completely determines thecombinatorial structure (the sequence of active strategies) of the algorithm.So it is not surprising that the real numerical behavior of the algorithm was muchbetter for all checked examples.
5.1 Practical comparison of the R-method and modR1

We compare the results for 3 types of matrices and start with � = 0; i(0) = 1.Example 1.
A =

0
@ 0 1 �2�1 0 32 �3 0

1
A

Example 2. A is the (n; n) matrix ai;k = 1 + i� [k=2] for k > i:Here, [r] denotes the integer part of r, and the remaining elements ai;k (k � i) aregiven via AT = �A (a � n=2).
Example 3: A is a (n; n) skew-symmetric Hilbert-type matrix such that, for i < k,
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ai;k = i=(i+ k) if i+ k is odd and ai;k = �i=(i+ k) if i+ k is even.Again, for i � k the value of ai;k is given by AT = �A (a � 1=2).
We summarize results for example 1 and for the examples 2, 3 with di�erent n. Ofcourse, the listed time is relative and depends on the used hardware. It is added onlyfor getting more convenient comparisons. If the time for the R-method is not indicated,it was too big. Then we list the number s(�), cf. (3.10), of aggregated R-steps by �steps of modR1.

Example and error steps=time R�METH steps=time modR1(1) n = 3 � = 1E � 3 s = 1998000 1 sec; � = 1000 0 sec
(2) n = 50 � = 1E � 2 s = 5:8 � 106 15 sec; � = 7423 0 sec� = 1E � 3 s = 5:7 � 108 1500 sec; � = 74000 0:6 sec� = 1E � 4 s(�) : 5:7 � 1010 � = 740000 6:4 sec� = 1E � 5 s(�) : 5:7 � 1012 � = 7398000 63:4 secwith n = 200 :� = 1E � 2 s = 52 � 106 459 sec; � = 122000 2 sec� = 1E � 3 s(�) : 3:7 � 1010 � = 1:2 � 106 21:2 sec� = 1E � 4 s(�) : 3:7 � 1012 � = 12 � 106 210 sec� = 1E � 5 s(�) : 3:7 � 1014 � = 12 � 107 2085 sec
(3) n = 200 � = 2E � 4 s = 10 � 106 89 sec; � = 27000 0:5 sec� = 1E � 4 s = 46 � 106 405 sec; � = 73000 1:2 sec� = 1E � 5 s(�) : 3:5 � 1010 � = 1:8 � 106 32 secwith n = 1000 :� = 2E � 4 s = 5:7 � 106 119 sec; � = 6000 0:4 sec� = 1E � 4 s = 30 � 106 620 sec; � = 12000 0:7 sec� = 1E � 5 s(�) : 4 � 1010 � = 1:9 � 106 150 secwith n = 5000 :� = 2E � 4 s = 13 � 106 2873 sec; � = 10000 5:8 sec� = 1E � 4 s(�) : 3:9 � 107 � = 12000 8:2 sec� = 1E � 5 s(�) : 5 � 109 � = 2 � 105 139 sec

The number of steps to obtain a relative error �(x)=a < � = 5E � 4:
Example steps=time R�METH steps=time modR1(1) n = 3 s = 889000 5:7 sec; � = 1000 < 0:01 sec(2) n = 50 s = 3:7 � 106 25 sec; � = 6000 0:05 secwith n = 200 : s = 15 � 106 55 sec; � = 30000 0:34 secwith n = 1000 : s(�) : 74 � 106 � = 120000 7:7 secwith n = 5000 : s(�) : 3:7 � 108 � = 6 � 105 383 sec(3) n = 200 s = 21 � 106 189 sec; � = 21000 0:36 secwith n = 1000 : s = 4:2 � 106 106 sec; � = 5000 0:38 secwith n = 5000 : s(�) : 15 � 106 � = 10000 6:8 sec

The reader may wonder why modR1 is surprisingly e�ective just for example 3 and highdimension. Due to the ill-posed matrix, the set of x with �(x) < � is quite big. Notethat, e.g., for xj = 1=n 8j, it holds maxAx < 1n . In contrast, the distance dist (x�; x�)of the approximate solution to the exact one may be much greater.
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The presented algorithms are very simple, so it makes no problems to test severalown examples and formula (1.1) as well. The results above are part of a big collectionof checked games with analog properties.
5.2 Practical behavior of modR1 and modR2

The algorithms modR1 and modR2 showed similar convergence behavior. modR1 isbetter for getting direct comparisons with the R-method, modR2 allows to controlmax z(s) = s.
Both algorithms have been compared with the Feijer method:Successive projection of xs onto the n halfspaces Hi = fx j Ai:x � 0g, Hn+i =fx j xi � 0g and the hyperplane H2n+1 = fx j Pxi = 1g.For points very close to a solution, the Feijer method (linear order of convergencebut more expensive steps) was better. However, to obtain such approximations, it wasclearly worser.
A similar e�ect can be observed when the methods are compared with nonsmoothNewton methods (cf. [2] or [4]), applied to �(x) = 0 via active index sets, i.e., solve
L(xs; ) : Aj: x = 0; Xxi = 1; xi = 0 if xsi <  for all j satisfying xsj � 

and put xs+1 = x; s = s + 1: Here,  > 0 should be small, in order to distinguishbetween "active and inactive" strategies at iteration s.It is not hard to show that, generically in the class of skew symmetric matrices A,(2.1) has a unique solution x� with an odd number of positive components and L(xs; )has the unique solution x = x� whenever � := + kxs� x�k � �0 is su�ciently small.But the radius �0 is usually small, and in fact, in tests with n � 100 and a � 100,the error � had to be (often) very small, already in order to obtain feasible x � 0 andsolvability of L(xs; ) at all.
Algorithm modR2 has been also compared with the simplex method. The linearproblems (P;D) have been taken(i) with uniformly distributed random integers ai;j 2 [1; 110]; cj 2 [20; 80]; bi 2 [100; 110].(ii) with particularly degenerated matrices (2 identical constraints) of the same type.For (i), with the required relative error �opt = 2E � 4,(measured by the maximal violation of the n+m+ 1 crucial LP- inequalities,and the maximal input a := maxfai;j; cj; big),modR2 began to be better for n � m � 1000 (even more for (ii)). The mean values of
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the time for the simplex method and for modR2 applied to G (2.2), were about:
SI-method : modR2, �opt = 2 � 10�4;for n = m = 1000; 05 : 06 (sec)for n = m = 1500; 17 : 12for n = m = 2000; 36 : 22for n = m = 2500; 70 : 34for n = m = 3000; 122 : 57for n = m = 3500; 200 : 85for n = m = 4000; 270 : 105for n = m = 4500; 440 : 150for n = m = 5000; 794 : 184:

In all tests with modR1 and modR2 and � = 0, the iteration number s for getting theabsolute error �(x) � �, ful�lled (1.1).The formula has been checked, with modR2, for more than 107 (pseudo-) randomlygenerated games of dimension 5 � n � 5000 and di�erent � (depending on n). Inaddition, various attempts of �nding a conterexample had no success.It has been also checked for a few number of games with higher dimension (untiln = 106) and a large number of LP-problems and arbitrary matrix games, again withthe maximal size of (5000; 5000) and dense integer and "real" matrices. It was true forall assigned games G (2.2).
Arbitrary initial points.If some approximate solution x̂ 2 Sn is already known, one can start at x̂ by �xingsome integer s > 0, setting z(s) = sAx̂; y(s) = sx̂ and passing to step s of the relatedalgorithm (for modR2, max z(s0+1) = max z(s0)+1 remains true, not so max z(s) = s).The next steps, however, may generate points x(s0) far from x(s) = x̂ (if s was small)or points which remain a long time very close to x̂ (if s was big). To �nd a reason-able empirical value for s, one can determine the error at x̂ and apply (1.1) to puts � n a2�(x̂) (which is often big, too).
Nevertheless, the general validity of (1.1) remains an open question, and - besides toimprove J. Robinsons algorithm- the hope that some interested reader has an idea forits proof or a counterexample, was a main reason for writing this paper.
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