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Abstract. We characterize calmness of multifunctions explicitly by calmness of level sets to globally
Lipschitz functions, by convergence of speci�c solution methods for the related inclusions as well as by
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1 Introduction

It is well-known that calmness of multifunctions is a basic property in order to derive opti-
matity conditions and penalty methods in optimization models and for establishing various
duality statements. In this paper, we exploite two recently known facts:
Calmness of a multifunction is nothing but calmness of a canonically assigned Lipschitzian
level set map and, on the other hand, calmness is equivalent to the applicability and linear
convergence of certain solution methods.
Our basic model is the generalized equation

(1.1) Find x ∈ X such that p ∈ F (x) , F : X ⇒ P,

where p ∈ P is a canonical parameter, P,X are Banach spaces and F is a closed multifunction,
i.e., F (x) ⊂ P and the graph of F , gphF = {(x, p) | p ∈ F (x)}, is a closed set.
System (1.1) describes solutions of equations as well as stationary or critical points of various
variational conditions. Several other applications of model (1.1) are known for optimization
problems, for describing equilibria and other solutions in games, in so-called MPECs and
stochastic and/or multilevel (multiphase) models. We refer e.g. to [6, 1, 39, 31, 2, 8, 22, 13, 23]
for the related settings.
We shall consider S(p) = F−1(p) near some particular solution x0 ∈ S(p0) of (1.1) at p0. In
the whole paper, S = F−1 : P ⇒ X is a closed multifunction, P,X are Banach spaces and
z0 = (p0, x0) is a given point in gphS. By convM we denote the convex hull of a set M and
o(t) denotes, as usual, a quantity of the type o(t)/t→ 0 if t ↓ 0.
We say that some property holds near x if it holds for all points in some neighborhood of x.
By B we denote the closed unit ball in the related space and

x0 + εB := {x ∈ X | d(x, x0) ≤ ε}.

We often write d(x, x0) for the (induced) distance in X, for better distinguishing terms in the
spaces P and X. In fact, many statements of this paper remain true for a complete metric
space X. In particular, one may suppose that X = M ⊂ X̂ where M is a closed subset of a
Banach space X̂. This situation corresponds to the system

(1.2) Find x ∈M ⊂ X such that p ∈ F (x) , F : X ⇒ P
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with the solution map SM (p) = F−1(p) ∩M = {x ∈ M | p ∈ F (x)}. Though (1.2) coincides
with (1.1) after setting F (x) = ∅ ∀x ∈ X \M , the explicit consideration of (1.2) may be useful
in some situations.
The following de�nitions generalize typical local properties of the multivalued inverse S = f−1

or of level sets S(p) = {x ∈ X | f(x) ≤ p} for functions f : X → IR.

De�nition 1. S is said to be calm at z0 = (p0, x0) ∈ gphS if

(1.3) ∃ ε, δ, L > 0 such that S(p) ∩ (x0 + εB) ⊂ S(p0) + L‖p− p0‖B ∀p ∈ p0 + δB.

S is said to be Lipschitz lower semicontinuous (Lipschitz l.s.c.) at z0 if

(1.4) ∃ δ, L > 0 such that S(p) ∩ (x0 + L‖p− p0‖B) 6= ∅ ∀p ∈ p0 + δB. 3

Notice that (1.3) involves a locally Lipschitzian error estimate, namely

(1.5) dist(x, S(0)) ≤ L‖p− p0‖ ∀x ∈ S(p) ∩ (x0 + εB).

Remark 1. Using these de�nitions, other known stability properties can be characterized (we
apply the notations of [22]).

(i) S is locally upper Lipschitz at z0 ⇔ S is calm at z0 and x0 is isolated in S(p0).

(ii) S is pseudo-Lipschitz (equivalently: S obeys the Aubin property or S−1 is metrically
regular) at z0 ⇔ S is Lipschitz l.s.c. at all points z ∈ gphS near z0 with �xed constants
δ and L.

(iii) S is pseudo-Lipschitz at z0 ⇔ S is both calm at all z ∈ gphS near z0 with �xed
constants ε, δ, L and Lipschitz l.s.c. at z0.

(iv) S is strongly Lipschitz at z0 ⇔ S is pseudo-Lipschitz at z0 and, for small ε > 0,
S(p) ∩ (x0 + εB) is single-valued for p near p0. 3

The goal of this paper is to characterize calmness, in section 4, by the behavior of methods for
solving (1.1) and (1.2), cf. the theorems 4.4, 4.5. We also show that calmness of multifunctions
can be transformed into calmness of Lipschitzian level set mappings only, cf. Remark 2.
Applying our approach to C1− inequality systems, we identify the crucial subsystems which
have to be metrically regular in order to ensure calmness of the whole system, cf. Theorem
4.6. Before, we discuss, in �nite dimension, the meaning of calmness for �rst-order optimality
conditions in section 2 and investigate (more or less known) calmness conditions for inequality
systems, section 3.
For basic results concerning the related stability properties we refer to [1, 7, 14, 15, 19, 29, 30]
(Aubin property), [5, 26, 35, 38] (strongly Lipschitz), [20, 34, 36] (locally upper Lipschitz) as
well as the monographs [2, 8, 22, 31, 39].

2 Comments in view of calmness, KKT points and Abadie CQ

Let us start by recalling the well-known interplay of calmness and the Abadie constraint
quali�cation in relation to Karush-Kuhn-Tucker (KKT) points for a usual optimization model

(2.1) min f0(x) s.t. x ∈ X = IRn, fi(x) ≤ 0, where f0, fi ∈ C1, i = 1, ...,m.

The KKT points (x, y) ∈ IRn+m are de�ned by the existence of Lagrange multipliers y with

(2.2)
Df0(x) +

∑m
i=1 yi Dfi(x) = 0, yi ≥ 0,

yi fi(x) = 0, fi(x) ≤ 0, ∀ i > 0.
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For given feasible x, system (2.2) is inconsistent i� there is some u ∈ IRn such that

(2.3) Df0(x)u < 0 and

(2.4) Dfi(x)u ≤ 0 ∀i : fi(x) = 0.

System (2.3), (2.4) is equivalent to the existence of some c > 0 such that, if

(2.5) w(t) ∈ IRn and lim
t↓0

‖w(t)‖
t

= 0,

it holds

lim
t↓0

f0(x+ tu+ w(t))− f0(x)
t

≤ −c and lim sup
t↓0

fi(x+ tu+ w(t))
t

≤ 0 ∀ i > 0.

Hence if some w (2.5) even satis�es

(2.6) fi(x+ tu+ w(t)) ≤ 0 for all i > 0 and certain t = tk ↓ 0,

then x is never a local minimizer for (2.1). In other words, if x is a local solution to (2.1)
satisfying the regularity condition

(2.7) (2.4) implies (2.6) for some w in (2.5)

then some (x, y) ful�lls the KKT system (2.2). This motivates the investigation of conditions
(constraint quali�cations) which ensure (2.7). It is well-known that calmness of

S(p) = {x ∈ X | fi(x) ≤ pi ∀i > 0}

at (0, x) and the Abadie CQ for S(0) at x are conditions of this type.

� The Abadie CQ for S(0) at x requires simply by de�nition that (2.7) holds true.
� Calmness of S at (0, x) implies that (2.7) holds true since, due to (2.4) and
fi(x+ tu) ≤ o(t) ∀i, there are w(t) with ‖w(t)‖ ≤ L o(t) and x+ tu+ w(t) ∈ S(0)
(for small t > 0).

Thus calmness is a tool for showing the Abadie CQ. Nevertheless, characterizing any of these
conditions in a sharp manner requires � even for X = IRn � considerable analytical e�ort
provided the involved functions are nonlinear. Concerning the similar role of calmness for
optimality conditions under Banach space settings and directional di�erentiability we refer to
[21], sections 4 and 5.
It is worth to mention that the Abadie CQ (hence also calmness) is not necessary for the
existence of Lagrange multipliers (2.2) at a solution x (this is again a known fact):

Example 1. The mapping

(2.8) S(p) = {x ∈ IR | x2 ≤ p1, −x ≤ p2}

is not calm at 0 ∈ IR3. The cone K = {u ∈ IR | Dfi(0)u ≤ 0 ∀i > 0} contains u = 1, but the
points tu+w(t) are not in S(0) for small t > 0. In consequence, the Abadie CQ does not hold
for S(0) at the origin. Nevertheless, the KKT-system for the problem minx, s.t. x ∈ S(0) is
solvable with x = 0 and y2 = 1 while it is unsolvable for the negative objective f0(x) = −x.

3

3



3 C1 constraints in IR
n

Previous to study calmness in the context of Banach spaces, the consideration of the �nite-
dimensional, continuously di�erentiable case is useful in order to collect possible approaches
and to discern possible di�culties. For every constraint system of a usual optimization model
in X = IRn, namely

(3.1) S(p1, p2) = {x ∈ IRn | g(x) ≤ p1, h(x) = p2}, (g, h) ∈ C1(IRn, IRm1+m2),

the Aubin property can be characterized by elementary and intrinsic means. In the whole
section, let z0 = (0, x0) ∈ gphS and I(x) = {i | gi(x) = 0}.

Lemma 3.1. For the multifunction S (3.1), the following statements are equivalent:

1. S is Lipschitz l.s.c. at z0.

2. S obeys the Aubin property at z0.

3. The Mangasarian-Fromowitz constraint quali�cation (MFCQ) holds at z0, i.e.,

(3.2) rankDh(x0) = m2 and ∃u ∈ kerDh(x0) such that Dgi(x0)u < 0 ∀i ∈ I(x0). 3

Proof. The proof follows mainly from Robinson's basic paper [32], by taking the equivalence
of Aubin property and metric regularity into account. For more details we refer to [25].

Analyzing calmness seems to be simpler since it su�ces to investigate calmness of the inequa-
lity system

S̃(q) = {x ∈ IRn | gi(x) ≤ q, −q ≤ hj(x) ≤ q, ∀ i = 1, ...,m1, j = 1, ...,m2}

at (0, x0) ∈ IR ×X only, and calmness requires less than the Aubin property. Nevertheless,
its equivalent characterization is more complicated, provided the functions involved are not
piecewise linear (then calmness holds true). In what follows we assume, for sake of simplicity,
that S(p1, p2) is written in form of inequalities only, i.e., we suppose

(3.3) S(p) = {x ∈ IRn | gi(x) ≤ pi, i = 1, ...,m}, gi ∈ C1(IRn, IR).

We already mentioned that calmness implies the Abadie CQ. A non-calm example, satisfying
the Abadie CQ, is Example 1 in [18]:

Example 2. S(p) = {x ∈ IR | g(x) = x3 sin 1
x ≤ p}, g(0) = 0. 3

For convex C1 inequalities, S is calm at (0, x0) i� the Abadie CQ holds at all x ∈ S(0) in
some neighborhood of x0, see [28, 4]. However, checking the latter is nontrivial, too (since -
up to now- there is no e�cient analytical condition for the Abadie CQ).

3.1 Normal directions

The following calmness condition applies the notion of a limiting normal cone of a closed set
M ⊂ IRn at x0:

(3.4) N̂M (x0) = {u | u = lim
k→∞

λk(xk − ξk), λk ≥ 0, xk → x0, ξk ∈ argmin
ξ∈ M

‖xk − ξ‖}.

With the Euclidean norm, ξk ∈ M is some stationary point of max{〈uk, ξ〉 | ξ ∈ M} where
uk = λk(xk − ξk), and N̂M (x0) is the so-called limiting Fréchet normal cone. Under MFCQ
at x0, the cone N̂M (x0) ( for M = S(0) in (3.1) ) has the representation

(3.5) N̂M (x0) = {u | u =
∑

j

rj Dhj(x0) +
∑

i: gi(x0)=0

λi Dgi(x0), λi ≥ 0}
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and is just the (usual convex) normal cone to the set of all u satisfying (3.2). For other norms,
the elements uk are not necessarily normals at ξk in the usual sense. Nevertheless one easily
shows the auxiliary result

(3.6) ξ∗ ∈ argmin
ξ∈ M

‖x− ξ‖ ⇒ ξ∗ ∈ argmin
ξ∈ M

‖λx+ (1− λ)ξ∗ − ξ‖ ∀λ ∈ (0, 1).

Indeed, otherwise certain ξ∗ ∈ argminξ∈ M ‖x− ξ‖ and ξ ∈M satisfy ‖λx+(1−λ)ξ∗ − ξ‖ <
‖λx+ (1− λ)ξ∗ − ξ∗‖ which yields a contradiction:

‖x− ξ‖
≤ ‖λx+ (1− λ)ξ∗ − ξ ‖ + ‖(1− λ)(x− ξ∗)‖
< ‖λx+ (1− λ)ξ∗ − ξ∗‖ + ‖(1− λ)(x− ξ∗)‖
= λ‖x− ξ∗‖+ (1− λ)‖(x− ξ∗)‖ = ‖x− ξ∗‖.

Formula (3.6) helps for proving the next lemma with each norm. Next we put

M = S(0)

and need elements u = limk→∞
xk−ξk

‖xk−ξk‖ ∈ N̂M (x0) such that xk and ξk in (3.4) satisfy an

additional condition in view of strict inequalities.

Lemma 3.2. The mapping S (3.3) is not calm at z0 = (0, x0) ⇔

(3.7)
∃u ∈ N̂M (x0) such that u = limk→∞

xk−ξk

‖xk−ξk‖
holds for certain xk 6= ξk satisfying (3.4) as well as
gi(xk) < 0 if both i ∈ I(x0) and Dgi(x0)u > 0. 3

Supplement: The inequality in requirement (3.7) can be sharpened,

(3.8) gi(ξk) < gi(xk) < −‖x
k − ξk‖

2
Dgi(x0)u if i ∈ I(x0) and Dgi(x0)u > 0.

Proof. Obviously, all components gi with gi(x0) < 0 can be deleted since gi(x) < 0 remains
true for all x near x0. Hence let g(x0) = 0 to simplify the proof.
(⇐) Given u as in (3.7), let tk = ‖xk − ξk‖. Since xk, ξk → x0 and ξk ∈M , the C1 functions
satisfy gi(xk) ≤ o(tk) if Dgi(x0)u ≤ 0. Setting now pk

i = gi(xk)+ := max{0, gi(xk)}, S cannot
be calm since xk ∈ S(pk) and min ξ∈ M ‖xk − ξ‖ = ‖xk − ξk‖ = tk >> ‖pk‖.
(⇒) Let S be not calm. Then there are (pk, xk) ∈ gphS such that (pk, xk) → (0, x0) and
certain ξk ∈ argminξ∈ M ‖xk − ξ‖ ful�ll

(3.9)
‖pk‖

‖xk − ξk‖
→ 0 and ξk → x0.

Again let tk = ‖xk − ξk‖. For uk = xk−ξk

tk
, some cluster point u ∈ N̂M (x0) exists. We may

assume that uk → u (otherwise pass to some subsequence). Next apply

pk
i ≥ gi(xk) = gi(ξk) + tkDgi(x0)uk + oi(tk) and gi(ξk) ≤ 0.

If Dgi(x0)u > 0, this yields gi(ξk) < −3
4 tkDgi(x0)u. So the the points yk = ξk + 1

2 tku
k (=

xk+ξk

2 ) satisfy

gi(ξk) < gi(yk) < −1
4
tkDgi(x0)u.

After replacing xk by yk, which gives new tk := 1
2 tk and again ξk ∈ argminξ∈ M ‖yk − ξ‖ due

to (3.6), this tells us that (3.7) is satis�ed even with the requirement (3.8).
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Example 3. Consider the complementarity map S(p) = {x ∈ IR2 | x1 ≤ p1, x2 ≤ p2, x1x2 ≤
p3} where S(0) consists of the negative half-lines and the origin x0 = 0. We apply the
Euclidean norm and put xk = (−1/k,−1/k), ξk = (−1/k, 0). Then u = (0,−1) satis�es
u ∈ N̂M (x0) and Dgi(x0)u ≤ 0 ∀i. So (3.7) holds true; calmness at the origin is violated.
Let x0 = (−1, 0), then I(x0) = {2, 3}. For the related sequences xk, ξk, we obtain u = (0, 1) ∈
N̂M (x0) if xk

2 > 0 ∀k. Since Dg2(x0)u > 0 and g2(xk) > 0 now (3.7) is violated.
If xk

2 < 0 ∀k one obtains u = (0,−1) ∈ N̂M (x0), g3(xk) > 0 and Dg3(x0)u = 1 > 0. Hence
(3.7) is again violated, S is calm at (−1, 0). 3

3.2 Reduction of inequalities

Lemma 3.2 is still far from a condition which can be checked for complicated constraint sys-
tems. However, it allows a reduction of inequalities until the set I+(u) := {i ∈ I(x0) |Dgi(x0)u >
0} is empty.
To see this, let again g(x0) = 0, assume that (3.7) holds with I+(u) 6= ∅ and de�ne a reduced
subsystem by deleting in (3.1) all constraints assigned to I+(u); let its solution set mapping
be denoted by Sred.
Again, Sred is not calm at (0, x0).
Indeed, otherwise calmness of Sred together with non-calmness of S imply that for some se-
quence {(pk, xk, ξk)} ⊂ gphS×S(0) satisfying (pk, xk) → (0, x0), ξk ∈ argminξ∈ S(0) ‖xk−ξ‖
and property (3.9), there are certain points ξk

red ∈ Sred(0) with d(xk, ξk
red) ≤ L‖pk‖ = o(tk),

where tk = d(xk, ξk) and o(.) and oi(.) are as in the proof of Lemma 3.2.
On the other hand, one has gi(ξk

r ) > 0 for at least one i ∈ I+(u) since S is not calm. Because
of gi(ξk

r ) = gi(xk) + oi(tk) then (3.8) leads to a contradiction:

0 < gi(ξk
r ) = gi(xk) + oi(tk) < −1

2 tkDgi(x0)u+ oi(tk) < 0.

Therefore, Sred is not calm.
Repeating this reduction with S = Sred as long as possible, one obtains a non-calm subsystem
of the original (3.1) one such that I+(u) = ∅ (with some new u and with I+ for this subsystem).
In consequence, calmness holds true, if (3.7) with I+(u) = ∅ can be excluded for all subsys-
tems. Obviously, I+(u) = ∅ means that u belongs to the cone

K = {u ∈ IRn | Dgi(x0)u ≤ 0 ∀i ∈ I(x0)},

similarly if I+ is considered for subsystems. So we have proved the following

Corollary 3.3. The mapping S (3.3) is calm at z0 = (0, x0) if for all sets J ⊂ I(x0),
(u ∈ N̂M(J)(x0) and Dgi(x0)u ≤ 0 ∀i ∈ J) implies u = 0, provided that M(J) = {x ∈
IRn | gi(x) ≤ 0∀i ∈ J}. 3

For instance, if MFCQ holds true for the initial system at z0, then also for each subsystem.
With I+(u) = ∅, now (3.5) shows that (3.7) cannot hold since this would imply

〈u, u〉 =
∑

i: gi(x0)=0

λi Dgi(x0)u ≤ 0.

Example 4. The condition of the corollary is not necessary; take the calm system

(3.10) S(p) = {x ∈ IR | x2 ≤ p1, x ≤ p2, −x ≤ p3}

with the non-calm subsystem x2 ≤ p1 and J = {1}, x0 = 0. 3

6



One may also criticize that, without supposing MFCQ or calmness, there is no (simple) rule
for determining the cone N̂M(J)(x0) by studying the given functions and their derivatives only.
This is a drawback of many stability conditions.

There are several other su�cient calmness conditions which �t to our problem class (3.1), see
e.g. [18, 17, 16]. The idea of imposing conditions for particular subsystems can be found also
in Theorem 3 of [18].

Theorem 3.4. [18] The mapping S (3.3) is calm at (0, x0) ∈ gphS if, at x0,
(i) the Abadie CQ holds true and
(ii) some u ∈ IRn satis�es Dgi(x0)u < 0 ∀i ∈ J whenever J ful�lls gi(ξk) = 0 ∀i ∈ J
for some sequence ξk → x0, ξk ∈ bdS(0) \ {x0} (MFCQ with respect to J). 3

Proof. The original proof needs two previous theorems as well as a chain rule for directional
derivatives of composed functions in [39]. So let us add a short proof, here.
Assume that S is not calm. Then one �nds xk and minimizer ξk in (3.4) such that the
Euclidean norm ful�lls ‖xk−ξk‖ >> φ(xk) := maxi gi(xk) > 0, ξk, xk → x0. Here, ξk ∈ bdM
is obvious. Passing to some subsequence, one may assume that I(ξk) = J is constant for all k

and either ξk = x0∀k or ξk 6= x0∀k holds true. Furthermore, convergence of uk = xk−ξk

‖xk−ξk‖ → u

may be supposed, and

(3.11) gi(xk) = Dgi(θk,i)(xk − ξk) holds for some θk,i ∈ conv{ξk, xk} (∀i ∈ J).

Since gi(x
k)

‖ξk−xk‖ ≤
φ(xk)

‖ξk−xk‖ → 0, also

(3.12) lim sup
k→∞

gi(xk)
‖ξk − xk‖

≤ 0 and Dgi(x0)u = limDgi(θk,i)uk ≤ 0 (∀i ∈ J)

follow. Now, we may apply the existence of Lagrange multipliers for the minimizers ξk.
Assume �rst ξk = x0∀k. Then, it holds J = I(x0) and - because of (i) - solvability of

P (uk) : uk =
∑
i∈J

λi Dgi(x0), λi ≥ 0, where λ = λ(k)

is ensured, which yields solvability of the linear system P (u). Thus 1 =
∑

i∈J λi Dgi(x0)u
holds with certain λi ≥ 0, in contradiction to Dgi(x0)u ≤ 0∀i ∈ J from (3.12).
Let ξk 6= x0∀k. By (ii), MFCQ holds w.r. to the subsystem (gi ≤ 0, i ∈ J) at x0, so it also
holds at ξk near x0. Hence there are λi ≥ 0 (depending on k) such that

(3.13) xk − ξk =
∑
i∈J

λi Dgi(ξk).

Moreover, there is some C, not depending on k, such that

(3.14) ‖λ‖ ≤ C‖xk − ξk‖

is valid for large k (multiply in (3.13) with a MFCQ- direction v for ξ = x0). Using (3.11) ...
(3.14) we obtain again a contradiction, namely

‖xk − ξk‖2

=
∑

i∈J λi ( Dgi(θk,i)(xk − ξk) + [ Dgi(ξk)−Dgi(θk,i) ](xk − ξk) )
=

∑
i∈J λi gi(xk) +

∑
i∈J λi [Dgi(ξk)−Dgi(θk,i)](xk − ξk)

≤ o(‖xk − ξk‖2) + o(‖xk − ξk‖2).

Hence S is calm.
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Example 5. Again, this su�cient condition is not necessary, take the linear and calm mapping

S(p) = {(x1, x2)| x2 ≤ p1, −x2 ≤ p2} : check (ii) for J = {1, 2}, ξk = (
1
k
, 0) → (0, 0). 3

The reason for the gap between necessity and su�ciency in Corollary 3.3 and Theorem 3.4
consists in an inappropriate de�nition of the sets J , cf. Theorem 4.6.

3.3 Crucial limits

To obtain explicit necessary or su�cient calmness conditions from Lemma 3.2, the local

structure of M = S(0) plays a decisive role, even if the vectors uk = xk−ξk

‖xk−ξk‖ can be written

by Lagrange multipliers

(3.15) uk =
∑

i: gi(ξk)=0

λk
i Dgi(ξk); λk

i ≥ 0.

The latter is guaranteed if S satis�es the Abadi CQ at all ξk ∈ M near x0. In this case,
violation of calmness means (equivalently) by Lemma 3.2, that a limit of the form

0 < 〈u, u〉 = lim
k→∞

〈uk, u〉 = lim
k→∞

∑
i: gi(ξk)=0, λk

i ≥0

λk
i Dgi(ξk)u

is positive though (uk, ξk) → (u, x0) and Dgi(x0)u ≤ 0 hold for the involved constraints.
Evidently, this may happen only if certain λk

i diverge and some gradient is not constant (hence
not under MFCQ at z0 or for linear systems). After selecting an appropriate subsequence,
the limits of uk (3.15) can be written (more abstractly) as

(3.16) lim sup
ξ→x0, λ∈Λ

∑
i

λi Dgi(ξ), Λ a polyhedral cone

where ξ satis�es the "face condition" g(ξ) = 0. Without this face condition, the upper
Hausdor� (or Kuratovski-Painlevé) limit (3.16) is also crucial for characterizing the strong
Lipschitz property � cf. Remark 1 � of stationary points (the x-components of KKT -tuples)
in parametric C2 and C1.1 optimization [23]. There, one also �nds a formula for the limits
(3.16) if they represent linear constraints with at most one quadratic condition (e.g. a com-
plementarity condition). On the other hand, given any ν, the limits in (3.16) do not depend
on the �rst ν derivatives at x0 only (convex polynomial examples are given).
Since the same limits (3.15) (or lim sup (3.16)) are important for quite di�erent stability
problems, it remains a callenge for the future to describe them in some more involved way.

3.4 Intersections

A simple way of dealing with system (3.1), even with arbitrary locally Lipschitz functions
g and h, consists in a splitting approach. Split all constraints into two families such that

(3.17) S(p) = U(y) ∩ V (z) and p = (y, z).

For instance, one could put y = p1, z = p2, whereafter U and V represent the inequalities
and equations in (3.1), respectively. Alternatively, one may assume (e.g.) that U collects all
linear constraints and V the remaining ones. Obviously, S is calm at (0, x0) only if the both
mappings

U0(y) = U(y) ∩ V (0) and V0(z) = U(0) ∩ V (z)

are calm at (0, x0). By Theorem 3.6 in [21], also some reverse statement holds true for a big
class of calm multifunctions U and V in metric spaces. In particular, it holds
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Lemma 3.5. The mapping S (3.1, 3.17) is calm at (0, x0) if so are U, V and V0. 3

Example 6. The KKT system for problem (2.1) can be witten as intersection of

U(y) = {(ξ, η) | − η ≤ y }
V (z) = {(ξ, η) | Df0(ξ) +

∑m
i=1 ηiDfi(ξ) = z1, fi(ξ) ≤ z2

i , ηifi(ξ) = z3
i } at (y, z) = 0.

The lemma says that U ∩ V is calm if V and V0 are calm (U is trivally calm here). 3

The calmness-hypothesis for V0 is essential.

Example 7. Let U(y) = {x ∈ IR2 | x2
1 + x2

2 − 1 ≤ y} , V (z) = {x ∈ IR2 | 1 − x2 ≤ z}.
Both, U and V are calm at (0, (0, 1)). The mapping S(y, z) = U(y) ∩ V (z) is not calm at
((0, 0) (0, 1)). Indeed, it holds S(0, 0) = {(0, 1)}, and already the both mappings U0(y) =
U(y) ∩ V (0) as well as V0(z) = V (z) ∩ U(0) are not calm at (0 (0, 1)) since (

√
y, 1) ∈ U0(y)

and (
√

2z − z2, 1− z) ∈ V0(z) violate the calmness conditions for small positive y, z. 3

Once more however, the condition of the lemma is not necessary since, for calm U ∩V , it may
happen that one of the mappings U, V is not calm. We refer to (3.10), where the quadratic
constraint alone (or together with only one linear constraint) forms a non-calm subsystem.

Summarizing, we may state that a sharp characterization of calmness for �nite- dimensional
nonlinear (Ck -) systems is not possible up to now (at least by our knowledge) in terms of
the original functions and their derivatives (until some �xed order). An important exception
occurs for piecewise linear systems (or polyhedral multifunctions) since such systems can be
reformulated as (a �nite union of) linear systems, cf. [33, 36]. Furthermore, though weaker
than the Aubin property or MFCQ, calmness may turn out to be a quite strong su�cient
condition for ensuring the existence of Lagrange multipliers to an optimization problem. This
reduces the meaning of calmness for this purpose.
Nevertheless, calmness does not only describe a useful error estimate for inclusions. We are
now going to show that calmness implies linear convergence for certain solution methods and
vice versa. Surprisingly, the latter holds under rather general hypotheses.

4 Calmness of general mappings and of Lipschitzian level sets

4.1 Basic transformations

Though we are speaking now about closed multifunctions S : P ⇒ X which act between
Banach spaces, calmness is a monotonicity property with respect to two canonically assigned
Lipschitz functions: the distance of x to S(p0) and the graph-distance

ψS(x, p) = dist((p, x), gphS),

de�ned via the norm ‖(p, x)‖ = max{‖p‖, ‖x‖} or some equivalent norm in P ×X.

Lemma 4.1. S is calm at (p0, x0) ∈ gphS if and only if

(4.1) ∃ε > 0, α > 0 such that α dist(x, S(p0)) ≤ ψS(x, p0) ∀x ∈ x0 + εB. 3

In other words, calmness at (p0, x0) is violated i�

(4.2) 0 < ψS(xk, p0) = o( dist(xk, S(p0)) ) holds for some sequence xk → x0.

Proof. A proof is possible as for Lemma 3.2 in [21]; we verify Lemma 4.1 for completeness.
Let (4.1) hold true. Then, given x ∈ S(p)∩ (x0 + εB), it holds ψS(x, p0) ≤ d((p, x), (p0, x)) =
‖p− p0‖ and, in consequence, α dist(x, S(p0)) ≤ ψS(x, p0) ≤ ‖p− p0‖ which yields calmness
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with rank L = 1
α .

Conversely, let (4.1) be violated, i.e., (4.2) be true. Given any positive δk < o( dist(xk, S(p0)) ),
we �nd (pk, ξk) ∈ gphS such that

d((pk, ξk), (p0, xk)) < ψS(xk, p0) + δk < bk := 2 o( dist(xk, S(p0)) ).

In addition, the triangle inequality dist(xk, S(p0)) ≤ d(xk, ξk) + dist(ξk, S(p0)) yields

dist(ξk, S(p0)) ≥ dist(xk, S(p0))− d(ξk, xk) > dist(xk, S(p0))− bk.

Using also the evident inequality ‖pk − p0‖ < bk, we thus obtain for ξk ∈ S(pk),

‖pk − p0‖
dist(ξk, S(0))

<
bk

dist(xk, S(p0))− bk
→ 0 as k →∞.

Hence, since ξk → x0, S cannot be calm at (p0, x0).

Estimates of ψS , for composed systems, can be found in [21]. Condition (4.1) requires that
ψS(., p0) increases in a Lipschitzian manner if x (near x0) leaves S(p0). Clearly, this property
depends on the local structure of the boundaries of gphS and S(p0). For convex multifunctions
(i.e. gphS is convex), ψS and d(., S(p0)) are even convex.
Combined with Remark 1(iii), condition (4.1) characterizes the Aubin property, too. Con-
cerning similar characterizations of other stability properties we refer to [24]. The distance ψS

can be applied also for both characterizing optimality and computing solutions in optimiza-
tion models via penalization [27, 21] and [22, Chapt. 2]; for the particular context of exact
penalization techniques, see also [9, 6, 3]. The approximate minimization of ψS , de�ned via
the norm ‖(p, x)‖ = ‖p‖+ λ‖x‖ (λ > 0 �xed), plays a key role in [25].

Evidently, setting G = ψS we obtain a (globally) Lipschitz function G : X×P → IR, assigned
to S, such that

(4.3) (p, x) ∈ gphS ⇔ G(x, p) ≤ 0.

For every such description of gphS, it follows

Lemma 4.2. S is calm at (p0, x0) if

(4.4) ∃ε > 0, α > 0 such that α dist(x, S(p0)) ≤ G(x, p0) ∀x ∈ x0 + εB. 3

Proof. Given any δ > 0 choose (p′, x′) ∈ gphS with d((p′, x′), (p0, x)) < ψS(x, p0) + δ.
Then G(x′, p′) ≤ 0 yields with some Lipschitz constant L, G(x, p0) ≤ L (ψS(x, p0) + δ) and
α
L dist(x, S(p0)) ≤ G(x,p0)

L ≤ ψS(x, p0)+ δ. Hence one obtains, via δ ↓ 0, that (4.1) holds with
some new α := α

L .

On the other hand, the conditions (4.3) and (4.4) are only su�cient for calmness (put, e.g.,
G = ψ2

S). Nevertheless, the lemmata obviously ensure

Corollary 4.3. A multifunction S is calm at (p0, x0) if and only if there is some Lipschitz
function G : X × P → IR satisfying (4.3) and (4.4). 3

Finally, with any locally Lipschitz function φ : X → IR such that

(4.5) c1φ(x) ≤ ψS(x, p0) ≤ c2φ(x) for x near x0 and certain constants 0 < c1 ≤ c2

and with the mapping

(4.6) Σ(q) = {x ∈ X | φ(x) ≤ q},
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condition (4.1) of Lemma 4.1 is equivalent to

(4.7) ∃ε > 0, α > 0 such that α dist(x, Σ(0)) ≤ q ∀x ∈ x0 + εB with φ(x) = q > 0.

This veri�es

Remark 2. Calmness for any closed multifunction S at (p0, x0) can be reduced to the particular
case of calmness of a Lipschitzian inequality only, namely to calmness of Σ (4.6) at (0, x0)
where φ = ψS(., p0) or φ is another Lipschitz function satisfying (4.5).

4.2 Level sets and the algorithmic approach

According to Remark 2, we study calmness of Σ (4.6) for any (locally) Lipschitz function
φ : X → IR on a Banach space X. In particular, we pay attention to the case of

(4.8) φ(x) = max
i∈I

gi(x) where gi ∈ C1(X, IR) and I = {1, 2, ...,m}

which is of interest for many applications (for a compact topological space I we refer to
Remark 4). The next statement follows from Theorem 3 in [25] and shows the big di�erence
between the (general) Lipschitzian and piecewise di�erentiable case (4.8). We add a self-
contained, constructive proof which presents the related constants directly. First of all, we
de�ne some relative slack of gi in comparison with φ (4.8) as in [25].

(4.9) si(x) =
φ(x)− gi(x)

φ(x)
if φ(x) > 0.

Theorem 4.4. Let φ : X → IR be (locally) Lipschitz and φ(x0) = 0.

(i) Then Σ (4.6) is calm at (0, x0) if and only if there are λ, ε ∈ (0, 1) such that, for all
x ∈ x0 + εB with φ(x) > 0, there exist u ∈ B and t > 0 satisfying

(4.10)
φ(x+ tu)− φ(x)

t
≤ −λ and λφ(x) ≤ t ≤ 1

λ
φ(x).

(ii) For the maximum function φ (4.8), one may delete t and replace condition (4.10) by

(4.11) Dgi(x)u ≤
si(x)
λ

−λ or alternatively by Dgi(x0)u ≤ si(x)
λ

−λ ∀i ∈ I. 3

Notice that nothing is required if φ ≤ 0 on x0 + εB.

Proof. Let Lφ ≥ 1 be a Lipschitz constant for φ (near x0).

(i) Necessity of (4.10): Calmness with rank L > 0 allows to put u = ξ−x
‖ξ−x‖ and t = ‖ξ − x‖

where ξ ∈ Σ(0) and t ≤ L · φ(x). Since φ(x+ tu) ≤ 0 this yields for φ(x) > 0:

φ(x+ tu)− φ(x)
t

≤ −φ(x)
t

≤ −L−1 and t ≤ L φ(x).

On the other hand, the Lipschitz estimate for points near x0 yields

φ(x)
t

≤ |φ(x+ tu)− φ(x)|
t

≤ Lφ‖u‖ = Lφ and
1
Lφ
φ(x) ≤ t.

Therefore, (4.10) holds true if 0 < λ ≤ 1
Lφ

and 1
λ ≥ L, i.e., if 0 < λ ≤ min{L−1

φ , L−1}.
Su�ciency of (4.10): Put θ = 1− λ2. Taking a su�cently small δ ∈ (0, 1

2ε) we have

(4.12)
λ−1

1− θ
φ(x) ≤ λ−1

1− θ
Lφ d(x, x0) < 1

2ε ∀x ∈ x0 + δB.
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Now let any x ∈ x0 + δB with φ(x) > 0 be arbitrarily given. Selecting, for x1 = x, related
u1 and t1 from (4.10), we obtain for x2 = x1 + t1u

1:

φ(x2) ≤ φ(x1)− λ t1 and λ2φ(x1) ≤ λ t1 ≤ φ(x1),

hence also

(4.13) φ(x2) ≤ (1− λ2)φ(x1) = θφ(x1) and ‖x2 − x1‖ ≤ t1 ≤ λ−1φ(x1).

Because of (4.12) we have x2 ∈ x0 + εB. This allows us to construct a sequence xk+1 =
xk + tku

k which, beginning with k = 1, satis�es

(4.14) φ(xk+1) ≤ θkφ(x1) and tk ≤ λ−1φ(xk) ≤ θk−1λ−1φ(x1)

whenever xk ∈ x0 + εB and φ(xk) > 0 (if φ(xk) ≤ 0 put xk+1 = xk, tk = 0). Indeed, due to

‖xk+1 − x‖ ≤ ‖xk+1 − xk‖+ . . .+ ‖x2 − x1‖ ≤
( ∞∑

j=0

θj
)
λ−1φ(x) =

λ−1

1− θ
φ(x) < 1

2ε

and ‖x− x0‖ < δ, the hypothesis (4.10) can be applied to all xk as long as φ(xk) > 0. Thus,
we generate a Cauchy sequence in x0 + εB. The existing limit ξ = limxk ful�lls, by (4.14),

φ(ξ) = 0 as well as the calmness condition d(ξ, x) ≤ L φ(x) with L = λ−1

1−θ = λ−3.

(ii) We show that the assertion follows from the �rst part (i) and the uniform convergence

(4.15) lim sup
i∈I, x→x0, t↓0, ‖u‖≤1

∣∣∣∣gi(x+ tu)− gi(x)
t

−Dgi(x0)u
∣∣∣∣ = 0.

The sequence xk+1 = xk + tku
k can be constructed by setting tk = λφ(xk) now.

We verify �rst that (4.10) implies (4.11). Indeed, the �rst condition of (4.10) becomes

(4.16)

φ(x+tu)−φ(x)
t ≤ −λ

⇔ gi(x+ tu)− φ(x) ≤ −λt ∀i
⇔ gi(x+tu)−gi(x)

t ≤ −λ+ φ(x)−gi(x)
t ∀i.

Applying λφ(x) ≤ t ≤ 1
λφ(x), which ensures t ↓ 0 as x→ x0, this also yields

(4.17)
gi(x+ tu)− gi(x)

t
≤ φ(x)− gi(x)

t
− λ ≤ φ(x)− gi(x)

λ φ(x)
− λ =

si(x)
λ

− λ ∀i.

With λ′ = 1
2λ and x near x0, we thus obtain from (4.15),

(4.18) Dgi(x0)u ≤ si(x)
λ′

− λ′ and Dgi(x)u ≤
si(x)
λ′

− λ′ (∀i).

Hence (4.10) implies (4.11) (with new λ) for the max-function.
Conversely, having (4.18) for all x near x0 with φ(x) > 0 and u = u(x) ∈ B, we may conclude
that, for λ = 1

2λ
′ and t = λφ(x),

gi(x+ tu)− gi(x)
t

≤ si(x)
λ

− λ = φ(x)
si(x)
t

− λ =
φ(x)− gi(x)

t
− λ (∀i).

By (4.16) the latter yields (4.10). Hence also (4.11) implies (4.10) (with new λ).

Remark 3. (Applying generalized derivatives) While the �rst condition of (4.10) is a usual
descent condition, the second one looks strange and does not appear in the context of known
generalized derivatives or co-derivatives for (multi-) functions. Both estimates of t are essen-
tial: the upper one for obtaining a convergent sequence {xk} as well as a Lipschitz estimate
of d(ξ, x), the lower one for φ(xk) → 0. So it is not surprising that all su�cient calmness
conditions, based on known concepts of generalized (co-) derivatives for arbitrary Lipschitz
functions or multifunctions, are not necessary � even for �nite-dimensional systems. 3
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4.3 Solution method and calmness for systems of C1 inequalities

Again, let X be a Banach space in this subsection.
It is important that the proof of Theorem 4.4 involves a procedure which �nds some element
ξ ∈ Σ(0) such that d(ξ, x) ≤ Lφ(x) (if φ(x) > 0). This procedure can be rewritten as a locally
convergent algorithm for solving ξ ∈ Σ(0) whenever u and t in (4.10) can be determined.
As a typical situation, we continue in considering the case of Σ (4.6) with the max-function
(4.8), i.e., we study

(4.19) S(p) = {x ∈ X | gi(x) ≤ pi ∀i ∈ I}, g ∈ C1(X, IRm), I = {1, 2, ...,m}

and know that calmness of S at (0, x0) ∈ gphS is equivalent, by (4.5), to calmness of

Σ(q) = {x ∈ X | φ(x) ≤ q ∀i ∈ I}, φ(x) = max
i
gi(x)

at (0, x0) ∈ IR×X.
Next, the calm situation will be completely characterized by an algorithm called ALG3 in [25]
which uses the relative slack si (4.9) and the quantities

(4.20) bi(x, λ) =
si(x)
λ

− λ for φ(x) > 0, λ > 0.

Obviously, bi(x, .) is decreasing in λ.

ALG3: Given xk ∈ X and λk > 0, put xk+1 = xk and λk+1 = λk in the trivial case of
φ(xk) ≤ 0. Otherwise solve the (convex) system

(4.21) Dgi(xk)u ≤ bi(xk, λk) ∀i ∈ I, ‖u‖ ≤ 1.

Having a solution u, put xk+1 = xk + λkφ(xk)u, λk+1 = λk,
otherwise put xk+1 = xk, λk+1 = 1

2λk.

For X = IRn, sum-norm ‖.‖1 and φ(xk) > 0, it su�ces to solve the linear program

(4.22) min
∑

u+
i + u−i s.t. Dgi(xk)(u+ − u−)T ≤ bi(xk, λk) ∀i ∈ I, u+ ≥ 0, u− ≥ 0

and to check whether u = u+ − u− satis�es ‖u‖1 ≤ 1 (in case of solvability).

Theorem 4.5. The mapping S (4.19) is calm at (0, x0) if and only if there is some α > 0
such that, for ‖x1 − x0‖ small enough and λ1 = 1, it follows λk ≥ α ∀k for ALG3. In this
case, the sequence {xk}k≥1 converges to some ξ ∈ S(0), and satis�es, for φ(xk) > 0,

(4.23) φ(xk+1) ≤ (1− β2)φ(xk) whenever 0 < β <
α2

1 + supi ‖Dgi(x0)‖
. 3

Proof. The �rst statement follows immediately from Theorem 4.4. For a proof of the estimate,
we refer to Theorem 4 in [25].

Notice that (4.23) yields

‖xk+1 − xk‖ ≤ λkφ(xk) ≤ φ(xk) ≤ (1− β2)k−1φ(x1).

In consequence, calmness holds with rank

L = β−2, since ‖ξ − x1‖ ≤ φ(x1)
∑
k≥1

(1− β2)k−1 =
1
β2

φ(x1).

13



Remark 4. (In�nitely many constraints.) As in semi-in�nite programs (but without supposing
dimX < ∞ here), one can consider S (4.19) with a compact topological space I, ‖p‖ =
supi |pi|, and a continuous map (i, x) 7→ gi(x) which is uniformly (in view of i ∈ I) locally
Lipschitz w.r. to x near x0. Further, write g ∈ C1 if all derivatives Dgi(x) w.r. to x exist and
are continuous on I ×X. Then, the Theorems 4.4 and 4.5 remain true, due to (4.15), with
the same proof. 3

Remark 5. (Intersection with closed sets.) Suppose the mapping S (4.19) or the level set map
Σ of the Lipschitz function φ in the Theorems 4.4 and 4.5 are restricted to some additional
�xed condition x ∈M where M ⊂ X is a closed set,

(4.24)
S(p) = SM (p) = {x ∈M | gi(x) ≤ pi ∀i ∈ I},
Σ(q) = ΣM (q) = {x ∈M | φ(x) ≤ q }.

Then, the statements are again true with the same proof, provided the points x, xk are taken in
M , the C1− property holds on an open set containingM , and the extra conditions x+tu ∈M ,
x+ λφ(x)u ∈M and xk + λkφ(xk)u ∈M are added in (4.10), (4.11) and (4.21), respectively.

3

4.4 Assigned linear inequality systems

We continue in considering the mapping S (4.19) in order to clarify that certain inequality
systems of the kind Dgj(x0)u < 0 ∀j ∈ J are crucial for calmness, and to indicate the sets J
which play the essential role.

Theorem 4.6. Let φ(x0) = maxi gi(x0) = 0. Then, the mapping S (4.19) is calm at (0, x0)
if and only if each system

(4.25) Dgi(x0)u < 0 ∀i ∈ J

is solvable, whenever J ful�lls J = {i | limk→∞ si(xk) = 0} for certain xk → x0, φ(xk) > 0.
3

Comments:

(i) The set J collects the active (gi = φ) and �almost active� functions gi for the given
sequence of xk /∈ S(0). It holds J ⊂ I(x0) = {i | gi(x0) = 0}, and J = ∅ is possible (e.g. if
g(x) ≡ 0). For J = ∅, system (4.25) is solvable by de�nition.
(ii) Well-known duality statements yield: (4.25) is unsolvable ⇔ 0 ∈ conv{Dgi(x0) | i ∈
J} ⇔ u = 0 minimizes maxi∈J Dgi(x0)u. For (a�ne-) linear gi, so calmness follows from the
simple fact that the same holds at xk, too. Because of gi(xk) > 0 ∀i ∈ J this would imply
maxi∈J gi(xk + u) > 0, a contradiction for u = x0 − xk.
(iii) Solvability of (4.25) means that the mapping SJ(p) = {x ∈ X | gi(x) ≤ pi ∀i ∈ J} obeys
the Aubin property at (0, x0).
(iv) With the (larger) sets J = {i | gi(xk) > 0} and some nonlinear gi, the given condition is
no longer necessary, cf. (3.10).

Proof. We consider sequences x = xk → x0 with φ(x) > 0 and λ = λk ↓ 0 such that, for

bi =
si(x)
λ

− λ ( where b = b(k) depends on k →∞ ),

the limits li = limk→∞ bi ∈ [0,∞] exist. We call such a sequence (xk, λk) critical.
By de�nition, li = 0 yields, due to si = λ2 +λbi, that si = oi(λ). Conversely, si = oi(λ) = αiλ
for αi → 0, implies si = λ2 + λbi with bi = αi − λ→ 0. Thus,

li = 0 simply means si(x) = oi(λ).
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De�ne as above,
J = {i | lim

k→∞
si(xk) = 0} and µ(x) = max

i∈J
si(x).

Next we shall modify λ, for a critical sequence, in such a way that

(4.26) li = 0 and bi < 0 ∀i ∈ J.

If µ(x) = 0 or si(x) = 0, we have nothing to do since si(x) = oi(λ) and bi = −λk < 0 follow
immediately. Otherwise, both si = oi(λ) and bi < 0 can be satis�ed for i ∈ J by increasing
the elements λk ↓ 0 if necessary. So it su�ces to put

λk = 2
√
µ(xk)

which ensures

si(xk)/λk ≤ 1
2

√
si(xk) → 0 and bi

√
µ(xk) = 1

2si(x)− 2µ(xk) < 0.

Hence, given any sequence xk → x0 with φ(xk) > 0, there are λk (depending on xk) such that
(xk, λk) is a critical sequence satisfying (4.26). We call such a sequence critical∗.
Under calmness, we know by Theorem 4.4 that the system

(4.27) Dgi(x0)u ≤ bi ∀i ∈ I, ‖u‖ ≤ 1 where b = b(k)

is solvable for all k (su�ciently large), even if b(k) is de�ned by a critical∗ sequence (xk, λk).
Conversely, if calmness is violated, Theorem 4.4 ensures, for certain xk → x0, φ(xk) > 0, λk ↓
0, that (4.27) is inconsistent for all k. By passing to some subsequence, (xk, λk) is critical. By
increasing λk if necessary up to 2

√
µ(xk) (this makes bi smaller) (4.27) remains inconsistent

and also (4.26) holds true.
Therefore, calmness at (0, x0) is equivalent to solvability of (4.27) for all critical∗ sequences.
For such sequences, we may omit all inequalities of (4.27) which are assigned to i /∈ J since,
due to bi → li > 0, these inequalities already hold for small ‖u‖ (and large k), namely if
‖u‖ ≤ mini∈I\J li ‖1 +Dgi(x0)‖−1. In consequence, (4.27) may be replaced by

(4.28) Dgi(x0)u ≤ bi ∀i ∈ J, ‖u‖ ≤ 1; where 0 > bi → 0 as k →∞.

Using �nally that (4.28) is solvable for all su�ciently large k i� system (4.25) is consistent,
we obtain the claimed result.

The situation for S = SM .

For S = SM , calmness at (0, x0) means similarly the existence of solutions u to (4.27) for
all critical∗- sequences with xk ∈ M and xk + λkφ(xk)u ∈ M . One obtains now a su�cient
calmness condition after replacing (4.25) by

(4.29) Dgi(x0)u < 0 ∀i ∈ J, u ∈ TC
M (x0)

where

TC
M (x0) = {u | lim

k→∞

dist(xk + tku,M)
tk

= 0 ∀ tk ↓ 0, xk → x0, xk ∈M}

is Clarke's tangent cone ofM at x0. The condition is only su�cient since we consider particular
tk = λkφ(xk). It is known [6], [39] that the possibilities for an analytical description of this
cone depend on the description of M .
The main problem for direct applications of Theorem 4.6 consists in �nding the crucial sets J .
Less directly, it can be also used to see that certain functions are not important for calmness.
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Corollary 4.7. (Complementarity)
Suppose that system S (4.19) contains (among others) three conditions of the type

g1(x) = u(x) ≤ p1, g2(x) = v(x) ≤ p2, g3(x) = u(x)v(x) ≤ p3

which require complementarity u ≤ 0, v ≤ 0, uv = 0 for p = 0. Let x be restricted to the set
M = {x | max{u(x), v(x)} ≥ 0}. Then calmness of S = SM at (0, x0) does not depend on
the condition g3 ≤ p3 if strict complementarity is violated, i.e., if u(x0) = v(x0) = 0.

Proof. Let xk → x0, φ(xk) > 0. Because of u(x0)v(x0) = 0 it holds
u(xk)v(xk) << max{u(xk), v(xk)} ≤ φ(xk) whenever g3(xk) > 0 and xk ∈ M . This implies
l3 = lim s3(xk) ≥ 1, hence 3 /∈ J .

If the usual complementarity condition x1 ≤ 0, x2 ≤ 0, x1x2 = 0 is involved, the setting
M = {x | x1x2 = 0} is well-known standard. Of course, here and in the corollary, also more
than 1 complementarity pair can be considered.
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