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Abstract. In this article we study the stability of an overlapping operator-
splitting methods based on iterative methods. We discuss the overlapping
iterative Operator Splitting method in the context of decoupling the stiff
and non-stiff operators. In the context of stabilisation the stiff operators,
we present the overlapping ideas as extension to the standard iterative
operator splitting method. The efficiency of considering the overlapping
method instead of the standard method whole domain in the is discussed.
We apply our theoretical results on model problems in stiff parabolic par-
tial differential equations.
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1 Introduction

Overlapping Schwarz waveform relaxation is the name for a combination of two
standard algorithms, Schwarz alternating method and wave form relaxation al-
gorithm to solve evolution problems in parallel. The method is defined by par-
titioning the spatial domain into overlapping sub-domains, as in the classical
Schwarz method.

The combined time-space iterative operator-splitting method combines the
Schwarz-wave formrelaxation and the iterative operator-splitting method.

The outline of the paper is as follows. For our mathematical model we de-
scribe the convection-diffusion-reaction equation in section 2. The overlapping
Schwarz waveform-relaxation method is introduced in section 3. We introduce
the operator splitting method in section 4 and discuss the overlapping operator
splitting method. We derive the consistency-analysis for the overlapping method
in section 5. In section 6 we present the numerical results from the solution of
a model problem with stiff equation terms. We end the article in section 7 with
conclusion and comments.
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2 Mathematical Model and Methods

2.1 Model-Problem

The motivation for the study presented below is coming from a computational
simulation of heat-transfer [12] and convection-diffusion-reaction-equations [10],
[17], [18] and [16].

In our paper we concentrate us to a one dimensional convection-diffusion-
reaction equation as our model problem and given by

ut − D uxx + ν ux = −λ u , in Ω × (0, T ) , (1)

u(x, 0) = u0 , (Initial-Condition) , (2)

u(x, t) = u1 , on ∂Ω × (0, T ) , (Dirichlet-Boundary-Condition) . (3)

The unknown u = u(x, t) is considered in Ω× (0, T ) ⊂ IR× IR, where Ω = [0, L].
The parameters u0, u1 ∈ IR+ are constants and used as initial- and boundary-
parameter respectively. The parameter λ is a constant factor, for example a
decay-rate of a chemical reaction. D is constant factor, for example the diffusion
factor of a transport-process and v is a constant factor, for example the velocity-
rate of a transport-process.

The aim of this paper is to present a new method based on a mixed discretiza-
tion method with Fractional-Splitting and Domain decomposition methods for
an effective solver-methods of strong coupled parabolic differential equations.

In the next subsection we discuss the decoupling of the time-scale with a first
oder fractional splitting-method.

3 Overlapping Schwarz wave form relaxation for the

solution of convection reaction diffusion equation

In this section we shall present the necessary conditions for the convergence of
the overlapping Schwarz wave form relaxation method for the solution of the
convection-reaction diffusion equation with constant coefficients. We will utilize
the convergence analysis for the solution of the decoupled and coupled system
of convection reaction diffusion equation to elaborate the impact of the coupling
on the convergence of the overlapping Schwarz wave form relaxation.

Given the following model problem

ut + Lu = f , in Ω × (0, T ) , Ω × (0, T ) := Ω1 × (0, T ) ∪ Ω2 × (0, T ) , (4)

u(x, 0) = u0 , (Initial-Condition) , (5)

u = g , on ∂Ω × (0, T ) , (6)

where L denotes for each time t a second-order partial differential operator
Lu = −∇D∇u + v∇u + cu for the given coeffients D ∈ IR+, v ∈ IRn, c ∈ IR+,
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and n is the dimension of the space. Iteration step consists of two half steps,
associated with the two subdomains and we solve 2 subproblems

u1t + Lun
1 = f , in Ω1 × (0, T ) , (7)

u1(x, 0) = u10 , (Initial-Condition) , (8)

un
1 = g , on L0 = ∂Ω × (0, T ) ∩ ∂Ω1 × (0, T ) , (9)

un
1 = un−1

2 , on L2 = ∂Ω1 × (0, T )\∂Ω × (0, T ) , (10)

u2t + Lun
2 = f , in Ω2 × (0, T ) , (11)

u2(x, 0) = u20 , (Initial-Condition) , (12)

un
2 = g , on L3 = ∂Ω × (0, T ) ∩ ∂Ω2 × (0, T ) , (13)

un
2 = un

1 , on L1 = ∂Ω2 × (0, T )\∂Ω × (0, T ); , (14)

4 The operator splitting methods

In the following we discuss the iterative and the overlapping operator splitting
methods.

4.1 The iterative operator splitting method

Because of improved The following algorithm is based on the iteration with fixed
splitting discretization step-size τ . On the time interval [tn, tn+1] we solve the
following sub-problems consecutively for i = 0, 2, . . .2m.

Initial idea:

∂ci(x, t)

∂t
= Aci(x, t) + Bci−1(x, t), with ci(t

n) = cn (15)

and c0(t
n) = cn , c−1 = 0.0,

and ci(x, t) = ci−1(x, t) = c1 , on ∂Ω × (0, T ) ,

∂ci+1(x, t)

∂t
= Aci(x, t) + Bci+1(x, t), (16)

with ci+1(t
n) = cn ,

and ci(x, t) = ci−1(x, t) = c1 , on ∂Ω × (0, T ) ,

where cn is the known split approximation at the time level t = tn, cf. [8].

4.2 The overlapping iterative operator splitting method

The idea behind the overlapping iterative operator splitting method is balancing
of the eigenvalues of the different operators by weighting.
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∂ci(x, t)

∂t
= (1 − ω1)Aci(x, t) + ω1(A + B)ci(x, t) + (1 − ω1)Bci−1(x, t),

with ci(t
n) = cnand c0(t

n) = cn , c−1 = cn, (17)

∂ci+1(x, t)

∂t
= (1 − ω1)Aci(x, t) + ω1(A + B)ci(x, t) + (1 − ω1)Bci+1(x, t),

with ci+1(t
n) = cn , (18)

where cn is the known split approximation at the time level t = tn, cf. [8].

5 Consistency and stability analysis of the overlapping

splitting method

In the following we discuss the consistency results for the overlapping iterative
operator splitting method.

Theorem 1. Let us consider the nonlinear operator-equation in a Banach space
X

∂tc(t) = A1(c(t)) + A2(c(t)) + B1(c(t)) + B2(c(t)), 0 < t ≤ T ,

c(0) = c0 ,
(19)

where A1, A2, B1, B2, A1 + A2 + B1 + B2 : X → X are given linear operators
being generators of the C0-semigroup and c0 ∈ X is a given element. Then the
iteration process (17)–(18) is convergent and the rate of the convergence is of
second order.

We obtain the iterative result :

Proof. Let us consider the iteration (17)–(18) on the sub-interval [tn, tn+1]. For
the error function ei(t) = c(t) − ci(t) we have the relations

∂tei,j(t) = A1(ei,j(t)) + A2(ei,j−1(t)) + B1(ei−1,j(t)) + B2(ei−1,j−1(t)),

t ∈ (tn, tn+1], ei,j(t
n) = 0 , (20)

and

∂tei+1,j(t) = A1(ei,j(t)) + A2(ei,j−1(t)) + B1(ei+1,j(t)) + B2(ei−1,j−1(t)),

t ∈ (tn, tn+1], ei+1,j(t
n) = 0 , (21)

and

∂tei,j+1(t) = A1(ei,j(t)) + A2(ei,j+1(t)) + B1(ei+1,j(t)) + B2(ei−1,j−1(t)),

t ∈ (tn, tn+1], ei,j+1(t
n) = 0 , (22)
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and

∂tei,j(t) = A1(ei,j(t)) + A2(ei,j+1(t)) + B1(ei+1,j(t)) + B2(ei+1,j+1(t)),

t ∈ (tn, tn+1], ei,j(t
n) = 0 , (23)

for i, j = 0, 2, 4, . . ., with e0,0(0) = 0 and e−1,0 = e0,−1 = e−1,−1(t) = c(t).
In the following we derive the linear system of equations. We use the notations

X2 for the product space X×X enabled with the norm ‖(u, v)‖ = max{‖u‖, ‖v‖}
(u, v ∈ X). The elements Ei(t), Fi(t) ∈ X2 and the linear operator A : X2 → X2

are defined as follows

Ei,j(t) =









ei,j(t)
ei+1,j(t)
ei,j+1(t)

ei+1,j+1(t)









; A =









A1 0 0 0
A1 A2 0 0
A1 A2 B1 0
A1 A2 B1 B2









, (24)

Fi,j(t) =









A2(ei,j−1(t)) + B1(ei−1,j(t)) + B2(ei−1,j−1)
B1(ei−1,j(t)) + B2(ei−1,j−1)

B2(ei−1,j−1)
0









. (25)

Then, using the notations (25), the relations (20)–(23) can be written in the
form

∂tEi,j(t) = AEi,j(t) + Fi,j(t), t ∈ (tn, tn+1],

Ei,j(t
n) = 0.

(26)

Due to our assumptions, A is a generator of the one-parameter C0 semigroup
(A(t))t≥0. We also assume the estimation of our term Fi(t) with the growth
conditions.

We could estimate the right hand side Fi(t) in the following lemma :

Lemma 1. Let us consider the the bounded Jacobian of A(u) and B(u)
We could then estimate the Fi(t) as

||Fi,j(t)|| ≤ C||ei−1,j−1|| . (27)

Proof. We have the following norm
||Fi,j(t)|| = max{Fi,j,1(t),Fi,j,2(t),Fi,j,3(t),Fi,j,4(t)}.

We have to estimate each term :

||Fi,j,1(t)|| ≤ ||A2(ei,j−1(t)) + B1(ei−1,j(t)) + B2(ei−1,j−1)|| ≤ C1||(ei−1,j−1)||
||Fi,j,2(t)|| ≤ ||B1(ei−1,j(t)) + B2(ei−1,j−1)|| ≤ C2||(ei−1,j−1)||
||Fi,j,3(t)|| ≤ ||B2(ei−1,j−1)|| ≤ C3||(ei−1,j−1)||

So we obtain the estimation :
||Fi,j(t)|| ≤ C̃||ei−1,j−1(t)||
where C̃ is the maximum value of C1, C2 and C3.
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Hence using the variations of constants formula, the solution of the abstract
Cauchy problem (26) with homogeneous initial condition can be written as

Ei,j(t) =

∫ t

tn

exp(A(t − s))Fi,j(s)ds, t ∈ [tn, tn+1]. (28)

(See, e.g. [5].) Hence, using the denotation

‖Ei,j‖∞ = supt∈[tn,tn+1] ‖Ei,j(t)‖ , (29)

we have

‖Ei,j‖(t) ≤ ‖Fi,j‖∞
∫ t

tn

‖exp(A(t − s))‖ds =

= C ‖ei−1,j−1‖
∫ t

tn

‖exp(A(t − s))‖ds, t ∈ [tn, tn+1].

(30)

We have estimate ||Fi,j || ≤ C||ei−1,j−1||, where C is a constant that bounds
the nonlinear terms of Fi,j(t).

Since (A(t))t≥0 is a semigroup therefore the so called growth estimation

‖ exp(At)‖ ≤ K exp(ωt); t ≥ 0 , (31)

holds with some numbers K ≥ 0 and ω ∈ IR, see [5].

– Assume that (A(t))t≥0 is a bounded or exponentially stable semigroup, i.e.
(31) holds with some ω ≤ 0. Then obviously the estimate

‖ exp(At)‖ ≤ K; t ≥ 0 , (32)

holds, and, hence on base of (30), we have the relation

‖Ei,j‖(t) ≤ Kτn‖ei−1,j−1‖, t ∈ (0, τn). (33)

– Assume that (A(t))t≥0 has an exponential growth with some ω > 0. Using
(30) we have

∫ tn+1

tn

‖exp(A(t − s))‖ds ≤ Kω(t), t ∈ [tn, tn+1], (34)

where

Kω(t) =
K

ω
(exp(ω(t − tn)) − 1) , t ∈ [tn, tn+1] , (35)

and hence

Kω(t) ≤ K

ω
(exp(ωτn) − 1) = Kτn + O(τ2

n) , (36)
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so the estimations (33) and (36) result in

‖Ei,j‖∞ = Kτn‖ei−1,j−1‖ + O(τ2
n). (37)

Taking into the account the definition of Ei and the norm ‖ · ‖∞, we obtain

‖ei,j‖ = Kτn‖ei−1,j−1‖ + O(τ2
n), (38)

and hence

‖ei+1,j+1‖ = K1τ
2
n‖ei−1,j−1‖ + O(τ3

n), (39)

which proves our statement.

6 Numerical Results

In this section we will present the numerical results from the solution of the
Convection-diffusion-reaction equation using several variations of the proposed
methods in comparison with already known classical methods.

6.1 Numerical example

We consider the one-dimensional convection-reaction-diffusion equation

∂tu + v∂xu − ∂xD∂xu = −λu , in Ω × (T0, Tf ) , (40)

u(x, 0) = uex(x, 0) , (Initial-Condition) , (41)

u(x, t) = uex(x, t) , on ∂Ω × (T0, Tf ) , (42)

where Ω × [T0, Tf ] = [0, 150]× [100, 105].
The exact solution is given as

uex(x, t) =
u0

2
√

Dπt
exp(− (x − vt)2

4Dt
) exp(−λt) . (43)

The initial condition and the Dirichlet boundary conditions are defined using
the exact solution (43) at starting time T0 = 100 and with u0 = 1.0. We have
λ = 10−5, v = 0.001 and D = 0.0001.

6.2 Solution using classical methods

A-B splitting combined with Schwarz wave form relaxation method In
order to solve the model problem using overlapping Schwarz wave form relaxation
method, we divide the domain Ω in two overlapping sub-domains Ω1 = [0, L2]
and Ω2 = [L1, L], where L1 < L2, and Ω1

⋂

Ω2 = [L1, L2] is the overlapping
region for Ω1 and Ω2.
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To start the wave form relaxation algorithm we consider first the solution of
the model problem (40 - 42) over Ω1 and Ω2 as follows

vt = Dvxx − νvx − λv over Ω1 , t ∈ [T0, Tf ]
v(0, t) = f1(t) , t ∈ [T0, Tf ]
v(L2, t) = w(L2, t) , t ∈ [T0, Tf ]
v(x, T0) = u0 x ∈ Ω1,

(44)

wt = Dwxx − νwx − λw over Ω2 , t ∈ [T0, Tf ]
w(L1, t) = v(L1, t) , t ∈ [T0, Tf ]
w(L, t) = f2(t) , t ∈ [T0, Tf ]
w(x, T0) = u0 x ∈ Ω2,

(45)

where v(x, t) = u(x, t)|Ω1
and w(x, t) = u(x, t)|Ω2

.
Then the Schwarz wave form relaxation is given by

vk+1
t = Dvk+1

xx − νvk+1
x − λvk+1 over Ω1 , t ∈ [T0, Tf ]

vk+1(0, t) = f1(t) , t ∈ [T0, Tf ]
vk+1(L2, t) = wk(L2, t) , t ∈ [T0, Tf ]
vk+1(x, T0) = u0 x ∈ Ω1,

(46)

wk+1
t = Dwk+1

xx − νwk+1
x − λwk+1 over Ω2 , t ∈ [T0, Tf ]

wk+1(L1, t) = vk(L1, t) , t ∈ [T0, Tf ]
wk+1(L, t) = f2(t) , t ∈ [T0, Tf ]
wk+1(x, T0) = u0 x ∈ Ω2.

(47)

For the solution of (46) and (47) we will apply the sequential operator split-
ting method (A-B splitting). For this purpose we divide each of these two equa-

tions in terms of the operators A = D ∂2

∂x2 − ν ∂
∂x

and B = −λ. The splitting
scheme for each of them is given in the following form:

∂u∗(x, t)

∂t
= D u∗

xx − ν u∗
x , with u∗(x, tn) = u0 , (48)

∂u∗∗(x, t)

∂t
= −λu∗∗(t) , with u∗∗(x, tn) = u∗(x, tn+1) , (49)

where u∗(x, t) = u∗∗(x, t) = u1 , on ∂Ω × (0, T ), are the Dirichlet-Boundary-
Conditions for the equations. The solution is given as u(x, tn+1) = u∗∗(x, tn+1).
We obtain an exact method because of commuting operators.

For the discretization of equation (48) we apply the finite-difference method
for the spatial discretization and the implicite Euler method for the time dis-
cretization. The discretization is given as

1

tn+1 − tn
(u∗(xi, t

n+1) − u∗(xi, t
n)) (50)

= D
1

h2
i

(−u∗(xi+1, t
n+1) + 2u∗(xi, t

n+1) − u∗(xi−1, t
n+1))

− ν
1

hi

(u∗(xi, t
n+1) − u∗(xi−1, t

n+1)) ,
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with u∗(x1, t
n) = u∗(x2, t

n) = u0 and u∗(x0, t
n) = u∗(xm, tn) = 0

u∗∗(x, t) = exp(−λ(t − tn) u∗(x, tn+1) , (51)

where hi = xi+1 − xi and we assume a partition with m-nodes.

We are interested in specifying the error between the solution obtained with
the above described algorithm and the exact solution. We provide a variety of
results for several sizes of space- and time-partition, and also for various overlap
sizes. Precisely, we treat the cases h = 1, 0.5, 0.25 as spatial step-size, ∆t =
5, 10, 20 as time step. The considered subdomains are Ω1 = [0, 80] and Ω2 =
[70, 150], Ω1 = [0, 60] and Ω2 = [30, 150] and Ω1 = [0, 100] and Ω2 = [30, 150],
with overlap sizes 10, 30 and 70, respectively. Both the approximated and the
exact solution are evaluated at the end-time t = 105. The errors given in Table
1 are the maximum errors that occurred over the whole space domain, i.e. they
are calculated using the ∞−norm for vectors.

time-step err err err err err err err err err

∆t = 5 2.85e − 3 2.24e − 3 1.28e − 3 2.66e − 4 2.21e − 4 2.20e − 4 2.09e − 5 1.99e − 5 1.97e − 5

∆t = 10 3.94e − 3 2.61e − 3 2.56e − 3 3.03e − 4 3.02e − 4 3.01e − 4 4.55e − 5 4.34e − 5 4.29e − 5

∆t = 20 5.03e − 3 2.81e − 3 2.73e − 3 8.51e − 4 5.22e − 4 5.14e − 4 8.10e − 4 5.66e − 4 4.88e − 4

overlap 10 30 70 10 30 70 10 30 70

space-step h = 1 h = 0.5 h = 0.25

Table 1. Error for the scalar convection diffusion reaction-equation using the Schwarz
waveform relaxation method for three different sizes of overlapping 10,30 and 70.

6.3 Solution using the overlapping operator splitting method

For the solution of (40 - 42) with the combined time-space iterative splitting

method we divide again the equation in terms of the operators A = D ∂2

∂x2 − ν ∂
∂x

and B = −λ. We will utilize the proposed scheme (17 - 18).
The index k = 0, 1, . . . p is associated with the subdomains, i.e. for k =

0, . . . , p/2 we are working on Ω1 and for k = p/2+1, . . . , p on Ω2. For the first set
of values for k we have actually only the effect of the restrictions of the operators
A and B on Ω1. Similarly, the second set of values for k indicates the action of
the restrictions of both operators on Ω2. The outline of the method in section 4,
which is also adopted here, is given without loss of generality for a subdomain-
determining value k = p/2, just for an overview. This crucial value is determined
appropriately according to the three cases of the overlapping subdomains, which
we examine in our experiments.

The indices i and j are related to the time- and space-discretization, respec-
tively. For every k = 0, . . . , p/2 and for every interval of the space-discretization
we solve the appropriate problems on Ω1, for every interval of the time-discretization.
Similarly for k = p/2 + 1, . . . , p on Ω2.
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From a software development point of view, the above described numerical
scheme can be realized with three ”for” loops. The first, outer loop is for all
values of k. After this loop there exists a control for k, which discriminates two
cases for k < p/2 and for k ≥ p/2 + 1, and sets up the data of the algorithm
appropriately for Ω1 or Ω2, respectively. The second, middle loop is running for
all values of i and the third, inner loop is for all values of j.

By a closer examination of the scheme (17)–(18), taking into account the def-
initions (??)–(??), we observe that the problems to be solved in the innermost
loop are of the form ∂tc = Ac + Bc, c(x, tn) = cn, where c appears with ap-
propriate indices i and j. These problems are solved with suitable modification
and implementation of the iterative operator splitting scheme. The notion of the
iterative process takes place in both time- and space-dimensions.

We are interested again in specifying the error between the solution obtained
with the above described algorithm and the exact solution. We provide the same
variety of results as in the previous subsection, so that a comparison between
the proposed and classical methods can be established. Both the approximated
and the exact solution are evaluated at the end-time t = 105. The errors given in
the following tables are the maximum errors that occurred over the whole space
domain, i.e. they are calculated using the ∞−norm for vectors. The results are
given in Table 2.

time-step err err err err err err err err err

∆t = 5 4.38e − 2 1.47e − 2 3.49e − 3 2.59e − 4 2.13e − 4 1.54e − 4 7.23e − 6 6.49e − 6 8.29e − 6

∆t = 10 5.12e − 2 2.26e − 2 7.46e − 3 2.45e − 4 2.22e − 4 2.15e − 4 3.49e − 5 3.47e − 5 3.37e − 5

∆t = 20 6.14e − 2 4.39e − 2 1.20e − 2 7.43e − 4 5.21e − 4 4.53e − 4 5.23e − 4 5.42e − 4 3.21e − 4

overlap 10 30 70 10 30 70 10 30 70

space-step h = 1 h = 0.5 h = 0.25

Table 2. Error for the scalar convection diffusion reaction-equation using the over-
lapping operator splitting method for three different sizes of overlapping 10,30 and
70.

7 Conclusions and Discussions

We present decomposition methods for complex equations based on the one hand
with to classical methods, overlapping Schwarz wave form relaxation method for
the space and A-B splitting for time and on the other hand with a combined
space-time iterative operator splitting method. The combined method allows
more accurate results and improved convergence results.
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