DC MetaData for:Existence of turbulent weak solutions to the generalized Navier-Stokes equations in exterior domains and large time behaviour
weak solutions
asymptotic behavior
Existence of turbulent weak solutions to the generalized Navier-Stokes equations in exterior domains and large time behaviour
Jörg Wolf
Wolf
Jörg
Institut für Mathematik, Humboldt-Universität zu Berlin (ISSN 0863-0976), 1-35
Jörg Wolf
Preprint series:
Institut für Mathematik, Humboldt-Universität zu Berlin (ISSN 0863-0976), 1-35
MSC 2000
- 35Q30 Stokes and Navier-Stokes equations
-
35Q40 Equations from quantum mechanics
Abstract
Let $\Omega$ be an exterior domain in $\R^n\,(n=2,3,4)$ , with boundary being not necessarily smooth.
For any initial velocity ${\bf u}_0\in L^2(\Omega)^n$ such that $\nabla\cdot {\bf u}_0=0$ (in sense of distribution) and external forces
\[
\bfF\in L^1(0,\infty; L^2(\Omega )^n)+
L^2(0,\infty; W^{-1,2} (\Omega )^n)
\]
we are able to construct a turbulent weak solution
${\bf u}\in C_w([0,\infty); L^2(\Omega)^n)\cap
L^2(0,\infty; W^{1, 2}_0(\Omega )^n)$ to the equations of motion of a non-Newtonian fluid. Simultaneously, we prove that this solution fulfils the non-uniform decay condition
\[
\|\bfu(t)\|_{L^2(\Omega)} \rightarrow 0
\quad \mbox{as}\quad t \rightarrow \infty.
\]
This document is well-formed XML.