Boundary Layer Solutions to Problems
with Infinite Dimensional Singular and Regular Perturbations
Lutz Recke
,
Oleh Omel'chenko
Preprint series:
Institut für Mathematik, Humboldt-Universität zu Berlin (ISSN 0863-0976),
MSC 2000
- 34E15 Singular perturbations, general theory
-
34B15 Nonlinear boundary value problems
-
47J07 Abstract inverse mapping and implicit function theorems
-
58C15 Implicit function theorems; global Newton methods
Abstract
We prove existence, local uniqueness
and asymptotic estimates for boundary layer solutions
to singularly perturbed equations of the type
$(\varepsilon(x)^2 u'(x))'=f(x,u(x))+
g(x,u(x),\varepsilon(x) u'(x)), 0< x <1$,
with Dirichlet and Neumann boundary conditions.
Here the functions~$\varepsilon$ and~$g$
are small and, hence, regarded
as singular and regular functional perturbation parameters.
The main tool of the proofs is a generalization
(to Banach space bundles) of an Implicit Function Theorem
of R. Magnus.
This document is well-formed XML.