singular perturbation asymptotic approximation boundary layer implicit function theorem space depending small diffusion coefficient Boundary Layer Solutions to Problems with Infinite Dimensional Singular and Regular Perturbations Lutz Recke Recke Lutz Oleh Omel'chenko Omel'chenko Oleh Institut für Mathematik, Humboldt-Universität zu Berlin (ISSN 0863-0976),

Boundary Layer Solutions to Problems with Infinite Dimensional Singular and Regular Perturbations

Lutz Recke , Oleh Omel'chenko

Preprint series: Institut für Mathematik, Humboldt-Universität zu Berlin (ISSN 0863-0976),

MSC 2000

34E15 Singular perturbations, general theory
34B15 Nonlinear boundary value problems
47J07 Abstract inverse mapping and implicit function theorems
58C15 Implicit function theorems; global Newton methods

Abstract
We prove existence, local uniqueness and asymptotic estimates for boundary layer solutions to singularly perturbed equations of the type $(\varepsilon(x)^2 u'(x))'=f(x,u(x))+ g(x,u(x),\varepsilon(x) u'(x)), 0< x <1$, with Dirichlet and Neumann boundary conditions. Here the functions~$\varepsilon$ and~$g$ are small and, hence, regarded as singular and regular functional perturbation parameters. The main tool of the proofs is a generalization (to Banach space bundles) of an Implicit Function Theorem of R. Magnus.


This document is well-formed XML.