Neumann boundary value problem initial function of front type asymptotic method of differential inequalities Moving Fronts in Integro-Parabolic Reaction-Diffusion-Advection Equations Nikolai Nefedov Nefedov Nikolai Andrei Nikitin Nikitin Andrei Lutz Recke Recke Lutz Institut für Mathematik, Humboldt-Universität zu Berlin (ISSN 0863-0976),

Moving Fronts in Integro-Parabolic Reaction-Diffusion-Advection Equations

Nikolai Nefedov , Andrei Nikitin, Lutz Recke

Preprint series: Institut für Mathematik, Humboldt-Universität zu Berlin (ISSN 0863-0976),

MSC 2000

35B25 Singular perturbations
35C20 Asymptotic expansions
35K60 Nonlinear boundary value problems for linear parabolic PDE; boundary value problems for nonlinear parabolic PDE
45K05 Integro-partial differential equations

Abstract
The Neumann boundary value problem for a class of singularly perturbed integro-parabolic equations is considered. An asymptotic expansion of a new class of solutions of moving front type is constructed, and a theorem of existence of such solutions is proved.


This document is well-formed XML.