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Abstract. Let Ω be an exterior domain in Rn (n = 2, 3, 4) , with boundary
being not necessarily smooth. For any initial velocity u0 ∈ L2(Ω)n such that
∇ · u0 = 0 (in sense of distribution) and external forces

F ∈ L1(0,∞; L2(Ω)n) + L2(0,∞; W−1,2(Ω)n)

we are able to construct a turbulent weak solution u ∈ Cw([0,∞); L2(Ω)n) ∩
L2(0,∞; W 1,2

0 (Ω)n) to the equations of motion of a non-Newtonian fluid. Si-
multaneously, we prove that this solution fulfils the non-uniform decay con-
dition

‖u(t)‖L2(Ω) → 0 as t →∞.
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1. Introduction. Statement of the Main Result

Let Ω ⊂ Rn (n = 2, 3, 4) be an exterior domain. We set Q := Ω × (0,∞). In the
present paper we consider the generalized Navier-Stokes equations

∇ · u = 0, 1 (1.1)

∂tu + ∇ · (u⊗ u− S + pI) = f −∇ · g in Q, (1.2)
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where

p = pressure,

u = {u1, . . . , un} = velocity,

S = {Sij | i, j = 1, . . . , n} = deviatoric stress tensor,
f −∇ · g = external force.

Boundary and initial conditions. On the boundary of Ω we assume the fol-
lowing condition of adherence

u = 0 on ∂Ω× (0,∞). (1.3)

At the initial time t = 0 we assume

u(0) = u0 in Ω, (1.4)

where u0 denotes a given initial velocity field, with ∇ · u0 = 0.

Constitutive law. For the usual Navier-Stokes equations the stress S is given
by

S = S(D) = ν0D, 2

where ν0 = const > 0 denotes the viscosity, while D = {Dij} denotes the ”rate
of strain tensor”, which is defined by

D(u) :=
1
2
(∇u +∇uT).

However in many applications one often considers fluids where the viscosity is
not constant but ranges between two positive constants. For instance considering
a fluid where the mechanical energy is transferred into heat the viscosity may
depend on the temperature. In this case the stress is given by the law

S = S(x, t, D) = µ(θ(x, t))D, (x, t) ∈ Q (1.5)

with
µ ∈ C(R), 0 < µ1 ≤ µ ≤ µ2 < ∞ in R,

θ = temperature.
(concerning the continuum mechanical background we refer to [2], [11]).

Having in mind (1.5) as special case we impose the following conditions on
the components of the deviatoric stress tensor S.

(I) S : Q×Mn2

sym →Mn2

sym
3 is a Carathéodory function;

1 Here, ∇ · v := ∂xiv
i, where ∂xi =

∂

∂xi
(i = 1, . . . , n). Throughout repeated subscripts imply

summation over 1 to n.
2 Clearly, ∇ ·D = ∆ on the space of all divergence free function.
3Mn2

sym = vector space of all symmetric n × n matrices ξ = {ξij}. We equip Mn2
sym with scalar

product ξ : η = ξijηij and norm ‖ξ‖ := (ξ : ξ)1/2. - By a · b we denote the usual scalar product

in Rn and by |a| we denote the Euclidean norm.
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growth condition:

(II) ‖S(x, t, ξ)‖ ≤ c0‖ξ‖ + κ1 ∀ ξ ∈Mn2

sym, f.a.a. (x, t) ∈ Q

(c0 > 0, κ1 ∈ L2(Q), κ1 ≥ 0);

coercivity:

(III) S(x, t, ξ) : ξ ≥ ν0‖ξ‖2 − κ2 ∀ ξ ∈Mn2

sym, f.a.a. (x, t) ∈ Q

(ν0 > 0, κ2 ∈ L1(Q), κ2 ≥ 0);

strict monotonicity:

(IV)





(S(x, t, ξ)− S(x, t, η)) : (ξ − η) > 0

∀ ξ, η ∈Mn2

sym (ξ 6= η), f.a.a. (x, t) ∈ Q.

Weak solution to (1.1), (1.2). Before we introduce the notion of a weak so-
lution to (1.1)-(1.4) let us provide some notations and function spaces which will
be used in sequence of the paper. By W k, q(Ω),W k, q

0 (Ω) (k ∈ N; 1 ≤ q ≤ ∞)
we denote the usual Sobolev spaces. Let (X, ‖ · ‖X) be a normed space. By
Lq(0, T ; X) (0 < T ≤ ∞) we denote the space of all Bochner measurable func-
tions ϕ : (0, T ) → X, such that





‖ϕ‖Lq(0,T ;X) :=
( ∫ T

0

‖ϕ(t)‖q
X dt

) 1
q

< ∞ if 1 ≤ q < ∞,

‖ϕ‖L∞(0,T ;X) := ess sup
t∈(0,T )

‖ϕ(t)‖X < ∞ if q = ∞.

By Dσ(Ω) we denote set of all ϕ ∈ C∞0 (Ω) with ∇ · ϕ = 0. Then we set

H := closure of Dσ(Ω) in L2(Ω)n,

V := closure of Dσ(Ω) in W 1, 2(Ω)n.

Definition 1.1. Let u0 ∈ H. Let f ∈ L1(0,∞;L2(Ω)n) and g ∈ L2(Q)n2
be given

forces. A vector-valued function u ∈ L2(0,∞;V) ∩ L∞(0,∞;H) is called a weak
solution to (1.1)-(1.4) if the following identity

∫

Q

−u · ∂tϕ− u⊗ u : ∇ϕ + S(x, t, D(u)) : ∇ϕ dxdt

=
∫

Q

f ·ϕ + g : ∇ϕdxdt +
∫

Ω

u0 ·ϕ(0) dx (1.6)

holds for all ϕ ∈ C∞(Q)n with ∇ ·ϕ = 0 and supp(ϕ) ⊂⊂ Ω× [0,∞). 4

4 Here A ⊂⊂ B means A, B are open subsets of Rn, A is bounded and Ā ⊂ B.
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In addition, a weak solution u to (1.1)-(1.4) is said to be turbulent if for
almost all 0 < s < t < ∞

1
2
‖u(t)‖2L2(Ω) +

∫ t

s

∫

Ω

S(x, τ,D(u)) : D(u) dx dτ

≤ 1
2
‖u(s)‖2L2(Ω) +

∫ t

s

∫

Ω

f · u + g : ∇udxdτ. (1.7)

Remark 1.2. By virtue of Sobolev’s imbedding theorem using multiplicative in-
equality one easily verifies

L2(0, T ;V) ∩ L∞(0, T ;H) ↪→ Lr(0, T, Lρ(Ω)n) (1.8)

for all ρ ∈ [2, 2∗] and all r ∈ [1,∞] such that
2
r

+
n

ρ
≥ n

2
,

where

2∗ :=





2n

n− 2
if n ≥ 3,

q ∈ [1,∞) arbitrarily if n = 2.

Statement of the Main Result. The aim of the present paper is to prove the
existence of a turbulent weak solution to (1.1)-(1.4). That is

Theorem 1.3 (Main Theorem). For every given initial velocity u0 ∈ H and forces
f ∈ L1(0,∞;L2(Ω)n) , g ∈ L2(Q)n2

there exists a turbulent weak solution u ∈
L2(0,∞;V) ∩ Cw([0,∞);H) to (1.1)-(1.4) with non-uniform decay

‖u(t)‖L2(Ω) → 0 as t →∞. (1.9)

Remark 1.4. The first result on the existence of turbulent weak solutions to the
Navier-Stokes equations in R3 is due to Leray. In his pioneering paper [12] he also
pointed out the importance of the strong energy inequality (1.7) for the decay
problem of the energy ‖u(t)‖L2 . Later Masuda [15] provided the property

∫ t

t−1

‖u(τ)‖L2 dτ → 0 as t →∞, (1.10)

and was able to get weak solutions with non-uniform decay in the energy ‖u(t)‖L2

in a general domain if n = 2, f ∈ L1(0,∞; L2) or if n ≥ 3, f = 0 (see also Schon-
beck [18]). Using Masuda’s estimate Sohr, vonWahl and Wiegner [22] proved the
existence of a turbulent weak solution in a three dimensional exterior domain satis-
fying the non-uniform decay in the energy norm for initial datas u0 ∈ H satisfying
an additional decay as |x| → ∞. Later Miyakawa and Sohr [16] achieved a similar
result for all initial data u0 ∈ H in case n = 3, 4. In particular they extended
Masuda’s result for external forces f ∈ L1(0,∞; L2). These results then were gen-
eralized by Kozono, Ogawa and Sohr in [10] where the authors studied Lq-decay for
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weak solution of the Navier-Stokes equations in an exterior domain satisfying the
strong energy inequality. Concerning further results in other unbounded domains
we refer to Heywood [7], Borchers and Miyakawa [3], Ukai [24], Maremonti [14]
and Kozono and Ogawa [9]. However the existence of a turbulent weak solution in
a general unbounded domain with uniform C2-boundary was open for a long time
and has been achieved by Farwig, Kozono and Sohr in the recent paper [5].

Notice that the results stated above were obtained by using functional an-
alytic arguments such as Fourier analysis, semi group theory and well-known
properties for the Stokes operator in appropriate function spaces. Since these
methods make essential use of the special structure of the Navier-Stokes equa-
tions and the regularity of the boundary ∂Ω they are not suitable for proving
similar results in the case of the generalized Navier-Stokes equations in exte-
rior domains with non-smooth boundary. Nevertheless, using an alternative lo-
cal method we are able to prove the existence of turbulent weak solutions to
the generalized Navier-Stokes equations with non-uniform decay in the energy
norm. The key of this method, which has been applied also in [26] for prov-
ing the existence of weak solutions to a general non-Newtonian fluid, lies in
the special local pressure representation based on Simader’s decomposition of
Lr = Ar ⊕ Br (Ar = {∆φ |φ ∈ W 2, r

0 }, Br = {v ∈ Lr|∆v = 0}) (1 < r < ∞). By
this method we achieve the necessary estimates of the energy outside a large ball.

The paper is organized as follows. In Section 2 based on a variational estimate
which is due to R. Müller (cf. Lemma 2.1) we study the spaces Ar and Br. In
particular, we mention the important decomposition Lr = Ar ⊕ Br by Simader.
Using these properties we finally show the existence of the local pressure together
with optimal estimates on the sets {R < |x| < 16R} (0 < R < ∞).

The aim of Section 3 will be the proof of Theorem 1.3, which will be divided
into four main steps. Firstly, by truncating the non-linear term we establish an
approximate weak solution um which tends to a weak solution u of (1.1)-(1.4)
as m → ∞. Secondly verifying that um fulfils a local energy identity on the sets
{2`−1 < |x| < 2`+3} (` ∈ N) we obtain an appropriate estimate of the energy norm
outside of the ball B2k (k ∈ N). By the aid of these estimates we get the strong
convergence of um(T ) to u(T ) in L2 for almost all T > 0. Thirdly, we complete the
proof of the strong energy inequality taking into account the monotonicity of S.
Finally, by virtue of the global bound ‖u‖

L2 n+2
n

< ∞ verifying a similar estimate
for u as we have found in the second step for um we get the non-uniform decay
‖u(t)‖L2 → 0 as t →∞.

2. Harmonic decomposition

The purpose of this section is to state a few lemmas which form the base to
construct an appropriate pressure function for weak solutions to the problem (1.1)-
(1.4).
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During the whole section let G ⊂ Rn be a bounded domain with ∂G ∈ C2.
By W 2, r

0 (G) (1 < r < ∞) we denote the closure of C∞0 (G) with respect to the
norm

‖φ‖W 2, r
0 (G) :=

( ∫

G

|∆φ|r dx

) 1
r

.

Clearly, by the well-known Calderón-Zygmond’s estimate we have

‖∇2φ‖Lr(G) ≤ CCZ‖φ‖W 2, r
0 (G), (2.1)

where CCZ = const > 0 depending on n only.
We begin our discussion by stating a variational estimate which is due to

R.Müller [17].

Lemma 2.1 (Variational estimate in W 2, r
0 (G)). Let 1 < r < ∞. Then there exists

a constant Cr = Cr(r, n,G) > 0, such that

‖u‖W 2, r
0 (G) ≤ Cr sup

0 6=φ∈W 2, r′
0 (G)

∫
G

∆u∆φ dx

‖φ‖
W 2, r′

0 (G)

∀u ∈ W 2, r
0 (G). (2.2)

¤

Next, we introduce the following subspaces of Lr(G) (1 < r < ∞), which will
be used in the sequel

Ar(G) := {∆φ |φ ∈ C∞0 (G)}Lr(G)
,

Br(G) := {ϕ ∈ Lr(G) |∆ϕ = 0 in G}.

Remark 2.2. Owing to the reflexivity of W 2, r
0 (G) the space Ar(G) introduced

above is given by
Ar(G) = {∆u |u ∈ W 2, r

0 (G)}. (2.3)

With help of Lemma 2.1 one obtains the following estimates which play an
essential role in the proof of the main theorem (cf. Section 3).

Lemma 2.3. Let p ∈ Ar(G) and h = {hij} ∈ Lr(G)n2
(1 < r < ∞), such that

∫

G

p∆φdx =
∫

G

h : ∇2φ dx ∀φ ∈ C∞0 (G). (2.4)

Then
‖p‖Lr(G) ≤ Cr CCZ ‖h‖Lr(G). (2.5)

Lemma 2.4. Let 1 < r < ∞. Then for every v∗ ∈ (W 2, r′
0 (G))∗ there exists a unique

u ∈ W 2, r
0 (G) such that

∫

G

∆u∆φdx = 〈v∗, φ〉 ∀φ ∈ C∞0 (G). (2.6)
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(For the proof of this lemma see in [26]).

As an immediate consequence of Lemma 2.4 we get

Corollary 2.5 (C.G. Simader). For every p ∈ Lr(G) (1 < r < ∞) there exist
p0 ∈ Ar(G) and ph ∈ Br(G) such that

p = p0 + ph. (2.7)

In addition, there exists a constant C ′r = C ′r(r, n,G) such that

‖p0‖Lr(G) + ‖ph‖Lr(G) ≤ C ′r‖p‖Lr(G), (2.8)

i.e. the sum Ar(G) + Br(G) is direct.

Proof. Let p ∈ Lr(G). According to Lemma 2.4 there exists u ∈ W 2, r
0 (G) satisfying

∫

G

∆u∆φ dx =
∫

G

p∆φdx ∀φ ∈ C∞0 (G). (2.9)

In particular, by (2.3) we have ∆u ∈ Ar(G). On the other hand, as one can easily
check (2.9) is equivalent to

∫

G

(∆u− p)∆φ dx = 0 ∀φ ∈ C∞0 (G).

Using Weyl’s Lemma we have ∆(p−∆u) = 0 in G. This shows that the function
p−∆u belongs to Br(G). Finally, setting p0 := ∆u and ph := p−∆u gives (2.7).

Now, it only remains to prove (2.8). For, let p = p0 + ph with p0 ∈ Ar(G)
and ph ∈ Br(G). It is readily seen that

∫

G

p0∆φ dx =
∫

G

p∆φdx ∀φ ∈ C∞0 (G).

Thus, applying Lemma 2.3 with h = p I shows that

‖p0‖Lr(G) ≤ CrCCZ‖p‖Lr(G).

Whence, (2.8). ¤

Next, let us introduce the following subspace of Br(G)

Ḃr(G) :=
{

p ∈ Br(G)
∣∣∣

∫

G

p dx = 0
}

.

Now we present the following result on the local pressure decomposition (cf. also
in [26]).

Theorem 2.6. Let u ∈ Cw([0,∞); L2(G)n) with ∇ · u = 0 (in the sense of distri-
butions) and let h ∈ L1

loc([0,∞); Lr(G)n2
) (1 < r ≤ 2). Suppose that

∫ ∞

0

∫

G

−u · ∂tϕ + h : ∇ϕdxdt = 0 (2.10)
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for all ϕ ∈ C∞0 (G× (0,∞))n with ∇ ·ϕ = 0. Then there exist unique functions

p0 ∈ L1
loc([0,∞); Ar(G)),

p̃h ∈ Cw([0,∞); Ḃr(G)) with p̃h(0) = 0,

such that∫ ∞

0

∫

G

−u · ∂tϕ + h : ∇ϕdxdt =
∫ ∞

0

∫

G

p0∇ ·ϕ +∇p̃h · ∂tϕdxdt (2.11)

for all ϕ ∈ C∞0 (G× (0,∞)). Furthermore, we have the a-priori estimates

‖p0(t)‖Lr(G) ≤ c ‖h(t)‖Lr(G), (2.12)

‖p̃h(t)‖Lr(G)) ≤ c ‖u(t)− u(0)‖L2(G) + c

∥∥∥∥
∫ t

0

h(s) ds

∥∥∥∥
Lr(G)

(2.13)

for almost all t ∈ (0,∞), where c = const > 0 depending only on r, n and G.

Proof. Let ψ ∈ C∞0 (G)n with∇·ψ = 0 and let η ∈ C∞0 (0,∞). Into (2.10) inserting
ϕ(x, t) = η(t)ψ(x) using Fubini’s theorem yields

−
∫ ∞

0

α η′ dt =
∫ ∞

0

β η dt,

where

α(t) :=
∫

G

u(t) ·ψ dx,

β(t) := −
∫

G

h(t) : ∇ψ dx, t ∈ (0,∞).

By the assumptions of the theorem we have β ∈ L1
loc([0,∞)). Therefore α ∈

W 1, 1([0,∞)) with α′ = β. In particular, α is represented by an absolutely con-
tinuous function, which will be denoted also by α. Using integration by parts one
calculates

α(t) = α(0) +
∫ t

0

β(s) ds ∀ t ∈ (0,∞). (2.14)

Define

h̃(t) :=
∫ t

0

h(s) ds, t ∈ [0,∞).

Let t ∈ (0,∞) be fixed. Using Fubini’s theorem the identity (2.14) reads
∫

G

(u(t)− u(0)) ·ψ + h̃(t) : ∇ψ dx = 0.

Thus, according to [6] (Th. III. 3.1, Th. III. 5.2) there exists a unique function p̃(t) ∈
Lr(G) with

∫

G

p̃(t) dx = 0 such that for all ψ ∈ W 1, r′
0 (G)n

∫

G

(u(t)− u(0)) ·ψ + h̃(t) : ∇ψ dx =
∫

G

p̃(t)∇ ·ψ dx. (2.15)
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In addition, there exists a constant c > 0 depending only on r, n and G such that

‖p̃(t)‖Lr(G) ≤ c (‖u(t)− u(0)‖Lr(G) + ‖h̃(t)‖Lr(G)). (2.16)

Next, we are going to prove that t 7→ p̃(t) is a Bochner measurable function.
For, let v ∈ Lr′(G) be arbitrarily chosen. From [6] (Th. III. 3.4) we get the existence
of a function ψ ∈ W 1, r′

0 (G)n such that ∇·ψ = v−vG
5 (cf. also [23] (Lemma 2.1,

p. 252)). Thus, from (2.15) we infer that
∫

G

p̃(t) v dx =
∫

G

p̃(t) (v − vG) dx

=
∫

G

(u(t)− u(0)) ·ψ + h̃(t) : ∇ψ dx.

By the assumption of the theorem the function on the right is continuous, so also
the function on the left. Consequently, p̃ ∈ Cw([0,∞); Lr(G)), and by a well-known
theorem of Pettis this shows that p̃ is Bochner measurable.

Let ϕ ∈ C∞0 (G× (0,∞))n be a given test function. Into (2.15) putting ψ =
ϕ(·, t) integrating both sides of this identity over the interval (0,∞) yields

∫ ∞

0

∫

G

(u− u(0)) ·ϕ + h̃ : ∇ϕdx dt =
∫ ∞

0

∫

G

p̃∇ ·ϕdxdt. (2.17)

Now, applying Corollary 2.5 one finds unique functions p̃0 ∈ Cw([0,∞); Ar(G))
and p̃h ∈ Cw([0,∞); Ḃr(G)) such that

p̃ = p̃0 + p̃h in G× (0,∞). 6

As one may easily check (2.15) implies p̃(0) = 0. Thus, by Corollary 2.5 we deduce
p̃h(0) = 0. Moreover, observing (2.8) using (2.16) gives (2.13).

Into (2.17) inserting ψ = ∇φ for φ ∈ C∞0 (G) recalling ∇·u = 0 and ∆p̃h = 0
using integration by parts one obtains

∫

G

h̃(t) : ∇2φdx =
∫

G

p̃0(t)∆φdx ∀φ ∈ C∞0 (G).

Let t ∈ (0,∞) and let 0 < ρ < 1. Then from the above identity we derive

∫

G

h̃(t + ρ)− h̃(t)
ρ

: ∇2φdx =
∫

G

p̃0(t + ρ)− p̃0(t)
ρ

∆φdx (2.18)

5 Here vG denotes the mean value
1

Ln(G)

∫

G
v(x) dx.

6 Notice, that

∫

G
p̃0(t) dx = 0 and

∫

G
p̃(t) dx = 0 implies

∫

G
p̃h(t) dx = 0.
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for all φ ∈ C∞0 (G). With help of Lemma 2.3 one gets the estimate
∥∥∥∥

p̃0(t + ρ)− p̃0(t)
ρ

∥∥∥∥
Lr(G)

≤ c

∥∥∥∥
h̃(t + ρ)− h̃(t)

ρ

∥∥∥∥
Lr(G)

= c

∥∥∥∥
1
ρ

∫ t+ρ

t

h(s) ds

∥∥∥∥
Lr(G)

.

Then integrating both sides of the above estimate over the interval (0, T ) (0 <
T < ∞) using Minkowski’s inequality and Fubini’s theorem gives

∥∥∥∥
p̃0(·+ ρ)− p̃0

ρ

∥∥∥∥
L1(0,T ;Lr(G))

≤ c ‖h‖L1(0,T+ρ;Lr(G)), (2.19)

where c = const > 0 depending only on r, n and G. This shows that p̃0 ∈
W 1, 1

loc ([0,∞); Ar(G)). Thus, setting p0 := ∂tp̃0 from (2.19) we deduce

‖p0‖L1(0,T ;Lr(G)) ≤ c ‖h‖L1(0,T ;Lr(G)).

Moreover, on both sides of (2.18) passing to the limit ρ → 0 using Riesz-Fischer’s
theorem one gets

∫

G

h(t) : ∇2φdx =
∫

G

p0(t)∆φ dx ∀φ ∈ C∞0 (G)

for almost all t ∈ (0,∞). Then applying (2.5) (cf. Lemma 2.3) gives (2.12).
On the other hand, the identity (2.11) easily follows from (2.17) replacing ϕ

by ∂tϕ therein and applying integration by parts. The uniqueness of p0 and p̃h

follows directly from (2.12) and (2.13). ¤

Next, by the aid of Theorem 2.6 we will establish optimal estimates for the
special case G = DR, where

DR := {x ∈ Rn |R < |x| < 16R}.
In the proof of the main result we will make extensive use of the following

Corollary 2.7. Let 0 < R < ∞. Let u ∈ Cw([0,∞); L2(DR)n) with ∇ · u = 0 (in
sense of distributions), such that

−
∫ ∞

0

∫

DR

u · ∂tϕdxdt +
∫ ∞

0

∫

DR

(h1 + h2) : ∇ϕ− f ·ϕ dxdt = 0 (2.20)

for all ϕ ∈ C∞0 (DR × (0,∞))n with ∇ ·ϕ = 0, where

h1 ∈ L
n+2

n (DR × (0,∞))n2
,

h2 ∈ L2(DR × (0,∞))n2
,

f ∈ L1(0,∞; L2(DR)n)



Existence of turbulent solutions 11

are given functions. Then there exist unique functions

p1 ∈ L
n+2

n (0,∞;A
n+2

n (DR)),

p2 ∈ L2(0,∞; A2(DR)),

p3 ∈ L1(0,∞; A2∗(DR)),

p̃h ∈ Cw([0,∞); Ḃ
n+2

n (DR)),

such that

−
∫ ∞

0

∫

DR

u · ∂tϕdxdt +
∫ ∞

0

∫

DR

(h1 + h2) : ∇ϕ− f ·ϕ dxdt

=
∫ ∞

0

∫

DR

(p1 + p2 + p3)∇ ·ϕ dxdt +
∫ ∞

0

∫

DR

∇p̃h · ∂tϕdxdt (2.21)

for all ϕ ∈ C∞0 (DR × (0,∞))n and
∫

DR

p1(t)∆φdx =
∫

DR

h1(t) : ∇2φdx, (2.22)
∫

DR

p2(t)∆φdx =
∫

DR

h2(t) : ∇2φdx, (2.23)
∫

DR

p3(t)∆φdx =
∫

DR

f(t) · ∇φdx ∀φ ∈ C∞0 (DR) (2.24)

for almost all t ∈ (0,∞). In addition, we have the a-priori estimates

‖p1(t)‖
L

n+2
n (DR)

≤ c ‖h1(t)‖
L

n+2
n (DR)

, (2.25)

‖p2(t)‖L2(DR) ≤ c ‖h2(t)‖L2(DR), (2.26)

‖p3(t)‖L2(DR) ≤ cR‖f(t)‖L2(DR) (2.27)

and

‖p̃h(t)‖2
L

n+2
n (DR)

≤ cR
n2+4
n+2 ‖u(t)− u(0)‖2L2(DR) + c‖h1‖2

L
n+2

n (DR×(0,∞))

+ cRn n−2
n+2 ‖h2‖2L2(DR×(0,∞)) + cR

n2+4
n+2

∥∥∥∥
∫ t

0

f(s) ds

∥∥∥∥
L2(DR)

(2.28)

for almost all t ∈ (0,∞), where c = const > 0 depending only on n.

Proof. First, let us prove the assertion for R = 1. To begin with we shall write
f = −∇ · h3 for an appropriate h3 : D1 → Rn2

. For this purpose with help of [6]
(Th. III. 3.4) we introduce a linear operator B : L2(D1) → W 1, 2(D1)n fulfilling
the following properties

(i) ∇ · Bg = g − gD1 ∀ g ∈ L2(D1);
(ii) ‖Bg‖W 1, 2(D1) ≤ c ‖g‖L2(D1) ∀ g ∈ L2(D1).
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Then we set
h3(t) := Bf(t) +

1
n

(f(t))D1 ⊗ x, t ∈ (0,∞).

Clearly, h3 ∈ L1(0,∞;W 1, 2(D1)). Next, defining

h3 := h3 − (h3)D1 a.e. in D1 × (0,∞)

it results
∇ · h3 = f a.e. in D1 × (0,∞). (2.29)

In addition, using Poincaré’s inequality and Hölder’s inequality combined with the
property (ii) of B one gets

‖h3(t)‖L2∗ (D1) ≤ c ‖∇h3(t)‖L2(D1) ≤ c ‖f(t)‖L2(D1) (2.30)

for almost all t ∈ (0,∞).

Now, set r1 =
n + 2

n
, r2 = 2 and r3 = 2∗. Let k ∈ {1, 2, 3}. According to

Lemma 2.4 for almost every t ∈ (0,∞) there exist unique functions

pk(t) ∈ Ark(D1),

such that ∫

D1

pk(t)∆φdx =
∫

D1

hk(t) : ∇2φ dx ∀φ ∈ C∞0 (D1). (2.31)

We claim that t 7→ pk(t) is Bochner measurable. Indeed, letting v ∈ Lr′k(D1)
be a arbitrarily chosen by Corollary 2.5 there exist unique functions φ ∈ W

2, r′k
0 (D1)

and p ∈ Br′k(D1) such that v = ∆φ + p. Thus from (2.31) it follows that
∫

D1

pk(t)v dx =
∫

D1

pk(t)∆φ dx =
∫

D1

hk(t) : ∇2φdx. (2.32)

Since t 7→ hk(t) is Bochner measurable the function on the left of (2.32) is Lebesgue
measurable. Thus, by means of Petti’s theorem t 7→ pk(t) is Bochner measurable.

Next, let p0 ∈ L1
loc([0,∞); A

n+2
n (D1)) and p̃h ∈ Cw([0,∞); Ḃ

n+2
n (D1)) denote

the function obtained by Theorem 2.6. By an inspection of the proof therein one
finds ∫

D1

p0(t)∆φdx =
∫

D1

(h1(t) + h2(t) + h3(t)) : ∇2φ dx ∀φ ∈ C∞0 (D1)

for almost all t ∈ (0,∞). On the other hand, summing up (2.31) from k = 1 to 3
one sees that for almost all t ∈ (0,∞) the function p1(t) + p2(t) + p3(t) satisfies
the above identity too. This implies

p0 = p1 + p2 + p3 a.e. in D1 × (0,∞)

which proves (2.21), (2.22), (2.23) and (2.24).
The a-priori estimate (2.25) ((2.26) resp.) immediately follows from (2.22)

((2.23) resp.) using Lemma 2.3, while (2.27) follows from (2.31) (with k = 3)
using Lemma 2.3 along with (2.30) and Hölder’s inequality. On the other hand,
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the a-priori estimate (2.28) can verified easily from (2.13) applying Minkowski’s
inequality.

Next, let 0 < R < ∞ be arbitrarily chosen. Defining

u(y, t) := Ru(Ry, t),

h1(y, t) := h1(Ry, t),

h2(y, t) := h2(Ry, t),

f(y, t) := Rf(Ry, t), (y, t) ∈ D1 × (0,∞)

using the transformation formula of the Lebesgue integral the identity (2.20) turns
into

−
∫ ∞

0

∫

D1

u · ∂tϕdxdt +
∫ ∞

0

∫

D1

(h1 + h2) : ∇ϕ− f ·ϕdxdt = 0 (2.33)

for all ϕ ∈ C∞0 (D1 × (0,∞))n with ∇ ·ϕ = 0. From the first part of the proof we
get functions

p
1
∈ L

n+2
n (0,∞; A

n+2
n (D1)),

p
2
∈ L2(0,∞;A2(D1)),

p
3
∈ L1(0,∞;A2∗(D1)),

p̃
h
∈ Cw([0,∞); Ḃ

n+2
n (D1)),

satisfying the identities (2.21), (2.22), (2.23) and (2.24) and the a priori estimates
(2.25), (2.26) , (2.27) and (2.28) (with R = 1). Finally setting

pk(x, t) := p
k
(R−1x, t) (k = 1, 2, 3)

p̃h(x, t) := p
h
(R−1x, t), (x, t) := DR × (0,∞)

once more applying the transformation formula of the Lebesgue integral shows
that these functions fulfil (2.21), (2.22), (2.23) and (2.24) together with the a
priori estimates (2.25), (2.26) , (2.27) and (2.28). This completes the proof of the
corollary. ¤

3. Proof of the Main Theorem

We divide the proof into four steps. At first we provide a sequence of weak solu-
tions {um} to the corresponding approximate system, which converge to a weak
solution u to (1.1)-(1.4). Secondly, for almost all 0 < T < ∞ we prove the strong
convergence of um(T ) to u(T ) in L2(Ω)n. Thirdly, based on the monotonicity con-
dition of S and the L2-convergence we have achieved in step 2 we deduce that u
fulfils the strong energy inequality (1.7). Finally, in the fourth step we verify the
decay condition (1.9).
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Existence of a weak solution to the approximate system

Let Φ ∈ C∞([0,∞)) be a non-increasing function, such that Φ ≡ 1 on [0, 1],
Φ ≡ 0 in [2,∞) and 0 ≤ −Φ′ ≤ 2. For ε > 0 we set

Φε(τ) := Φ(ετ), τ ∈ [0,∞).

Let u0 ∈ H, f ∈ L1(0,∞;L2(Ω)n) and g ∈ L2(Q)n2
. Using the method developed

in [26] one gets a unique weak solution uε ∈ L2(0,∞;V) ∩ BC(0,∞;H) to the
system

∇ · uε = 0 in Q, (3.1)

∂tuε +∇ · (uε ⊗ uεΦε(|uε|)− S(x, t,D(uε))) (3.2)

= −∇pε + f −∇ · g in Q, (3.3)

uε
∂Ω×(0,T )

= 0, (3.4)

uε(0) = u0 in Ω, (3.5)

i.e. the following identity
∫

Q

−uε · ∂tϕ + (S(x, t; D(uε)− uε ⊗ uεΦε(|uε|) : ∇ϕdxdt

=
∫

Q

f ·ϕ + g : ∇ϕdxdt +
∫

Ω

u0 ·ϕ(0) dx (3.6)

holds for every ϕ ∈ C∞(Q)n with ∇·ϕ = 0 and supp(ϕ) ⊂⊂ Ω× [0,∞). Further-
more, using integration by parts from (3.6) it follows

1
2
‖uε(t)‖2H +

∫ t

s

∫

Ω

S(x, τ, D(uε)) : D(uε) dxdτ

=
∫ t

s

∫

Ω

f · uε + g : ∇uε dx dτ +
1
2
‖uε(s)‖2H (3.7)

for all 0 ≤ s < t < ∞.
In what follows let K denote a positive constant, whose numerical value may

vary from line to line and its dependence will be specified if necessary. From (3.7)
observing (III) together with Korn’s inequality and Young’s inequality one easily
gets

‖uε‖L∞(0,∞;H) + ‖∇uε‖L2(Q) ≤ K. (3.8)

Furthermore observing (II) using (3.8) yields

‖S(·, D(uε)‖L2(Q) ≤ K. (3.9)

By virtue of Sobolev’s imbedding theorem using multiplicative inequalities
from (3.8) one deduces

‖uε‖Lr(0,∞;Lρ(Ω)) ≤ K (3.10)
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for all ρ ∈ [2, 2∗] and all 1 ≤ r ≤ ∞ such that

2
r

+
n

ρ
=

n

2
. (3.11)

By means of reflexivity of the spaces under consideration there exist a sequence of
positive numbers {εm} with εm → 0 as m →∞ and functions u ∈ L2(0,∞;V) ∩
L∞(0,∞;H) and S̃ ∈ L2(Q)n2

such that

uεm → u weakly in L2 n+2
n (Q)n, (3.12)

∇uεm → ∇u weakly in L2(Q)n2
, (3.13)

S(·, D(uεm
)) → S̃ weakly in L2(Q)n2

as m →∞. (3.14)

As it has been proved in [26] we have u ∈ Cw([0,∞);H) ∩ L2(0,∞;V) and

S̃ = S(x, t, D(u)) a.e. in Q.

Thus, u is a weak solution to (1.1)-(1.4). Simultaneously, using Lions’ compactness
argument one has for every G ⊂⊂ Ω̄ and 0 < T < ∞

uεm
G×(0,T )

→ u
G×(0,T )

strongly in L2(G× (0, T ))n as m →∞. (3.15)

In addition, using Riesz-Fischer’s theorem, from (3.15) (eventually passing to a
subsequence) one may assume that for almost all T ∈ (0,∞) and for every G ⊂⊂ Ω̄
there holds

uεm(T )
G
→ u(T )

G
in L2(G)n as m →∞. (3.16)

Strong convergence of uεm(T ) in L2(Ω)

To begin with, let us define the following subsets of Rn

G` := {x ∈ Rn | 2`−1 < |x| < 2`+3},
Ĝ` := {x ∈ Rn | 2` < |x| < 2`+2}, ` ∈ N.

Let N ∈ N, such that G` ⊂⊂ Ω for all ` ≥ N . Obviously, the identity (3.6)
implies

−
∫ ∞

0

∫

G`

uεm · ∂tϕdxdt

+
∫ ∞

0

∫

G`

(h1,m,` + h2,m,`) : ∇ϕ− f ·ϕdxdt = 0 (3.17)

for all ϕ ∈ C∞0 (G` × (0,∞))n with ∇ ·ϕ = 0, where

h1,m,` := −uεm ⊗ uεmΦεm(|uεm |),
h2,m,` := S(·, D(uεm))− g a.e. in G` × (0,∞).



16 J. Wolf

Hence, we are in a position to apply Corollary 2.7 with h1 = h1,m,` and h2 =
h2,m,`, which provides unique functions

p1,m,` ∈ L
n+2

n (0,∞;A
n+2

n (G`)),

p2,m,` ∈ L2(0,∞; A2(G`)),

p3,` ∈ L1(0,∞; A2∗(G`)),

p̃h,m,` ∈ Cw(0,∞; Ḃ
n+2

n (G`)) with p̃h,m,`(0) = 0,

such that

−
∫ ∞

0

∫

G`

uεm
· ∂tϕdxdt

+
∫ ∞

0

∫

G`

(h1,m,` + h2,m,`) : ∇ϕ− f ·ϕdxdt

=
∫ ∞

0

∫

G`

(p1,m,` + p2,m,` + p3,`)∇ ·ϕ +∇p̃h,m,`∂tϕdxdt (3.18)

for all ϕ ∈ C∞0 (G` × (0,∞))n and
∫

G`

p1,m,`(t)∆φdx =
∫

G`

h1,m,`(t) : ∇2φdx, (3.19)
∫

G`

p2,m,`(t)∆φdx =
∫

G`

h2,m,`(t) : ∇2φdx, (3.20)
∫

G`

p3,`(t)∆φdx =
∫

G`

f(t) · ∇φdx, ∀φ ∈ C∞0 (G`) (3.21)

for almost all t ∈ (0,∞).
It is readily seen that (2.25), (2.26), (2.27) and (2.28) imply

‖p1,m,`(t)‖
L

n+2
n (G`)

≤ K‖uεm(t)‖2
L2 n+2

n (G`)
, (3.22)

‖p2,m,`(t)‖L2(G`) ≤ K‖S(·, t, D(uεm(t)))− g(t)‖L2(G`), (3.23)

‖p3,`(t)‖L2(G`) ≤ K2`‖f(t)‖L2(G`), (3.24)

and

‖p̃h,m,`(t)‖2
L

n+2
n (G`)

≤ K2` n2+4
n+2 ‖uεm(t)− u0‖2L2(G`)

+ K‖h1,m,`‖2
L

n+2
n (G`×(0,∞))

+ K2`n n−2
n+2 ‖h2,m,`‖2L2(G`×(0,∞))

+ K2` n2+4
n+2

∥∥∥∥
∫ t

0

f(s) ds

∥∥∥∥
2

L2(G`)

(3.25)
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for almost all t ∈ (0,∞) 7 . In particular, observing (II) using (3.8) and (3.10)
from (3.22), (3.23) and (3.24) one deduces

‖p1,m,`(t)‖
L

n+2
n (G`)

+ ‖p2,m,`(t)‖L2(G`) ≤ K, (3.26)

‖p3,`(t)‖L2(G`) ≤ K2` (3.27)

for almost all t ∈ (0,∞), while from (3.25) one infers

‖p̃h,m,`(t)‖2
L

n+2
n (G`)

≤ K2` n2+4
n+2

(
‖uεm

(t)− u0‖2L2(G`)
+ ‖f̃(t)‖2L2(G`)

+ 2−2`
)

(3.28)

for all t ∈ (0,∞), where

f̃(t) :=
∫ t

0

f(s) ds, t ∈ (0,∞).

We wish to mention that in all these estimates the constant K depends neither on
m nor on ` and also not on t ∈ (0,∞).

Next setting

vm,` := uεm +∇p̃h,m,` in G` × (0,∞),

from (3.18) we deduce

v′m,` + ∇ · (uεm ⊗ uεmΦεm(|uεm |) − S(x, t, D(uεm)) + g)

= f − ∇(p1,m,` + p2,m,` + p3,`) in G` × (0,∞). (3.29)

Here v′m,` ∈ L2(0,∞; W 1, 2(G`)n) + L1(0, T ;X(G`)∗) stands for the distributive
time derivative of v, where

X(G`) := {η ∈ L2(G`)n |∇ · η ∈ L2(G`)} 8 .

To be more precise, for every T ∈ (0,∞) we have the following identity

7 Recall that G` = D2`−1 (cf. Section 2).
8 Here ∇ · η ∈ L2(G`) means there exists w ∈ L2(G`), such that

∫

G`

wφ dx = −
∫

G`

η · ∇φ dx ∀φ ∈ C∞0 (G`).
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∫ T

0

〈v′m,`(t), ϕ(t)〉 ds +
∫ T

0

∫

G`

S(x, t,D(uεm)) : ∇ϕdx dt

=
∫ T

0

∫

G`

(uεm ⊗ uεmΦεm(|uεm |) + g) : D(ϕ) dxdt

+
∫ T

0

∫

G`

(p1,m,` + p2,m,` + p3,`)∇ ·ϕdxdt

+
∫ T

0

∫

G`

f ·ϕdxdt (3.30)

for all ϕ ∈ L2(0,∞; W 1, 2
0 (G`)n) ∩ L∞(0,∞;X(G`)).

Clearly, for every ψ ∈ C∞0 (G`) the function vm,`ψ appears to be an appro-
priate test function in (3.30). However having in mind a-priori estimates for v on
the complement of a large ball we are going to define an appropriate partition of
unity subordinated to the covering {G`}`≥N . That is a family of smooth functions
{ψ`}`≥N , such that

(1) supp(ψ`) ⊂ Ĝ`,

(2)
∞∑

`=N

ψ` ≡ 1 in {x ∈ R3 | |x| > 2N+1},
(3) |∇ψ`| ≤ K2−`.

Obviously, as supp(ψ`) ∩ supp(ψ`+2) = ∅ for all ` ≥ N besides (2) there holds

(2′)
ν∑

`=k

ψ` ≡ 1 in {x ∈ R3 | 2k+1 < |x| < 2ν+1} ∀N ≤ k < ν ≤ ∞.

Now, choose T ∈ (0,∞) such that (3.16) is valid. Then into (3.30) inserting
ϕ = vm,`ψ` using integration by parts yields

1
2

∫

Ω

|vm,`(T )|2ψ` dx ≤ 1
2

∫

Ω

|u0|2ψ` dx

−
∫ T

0

∫

Ω

S(x, t, D(uεm)) : D(vm,`ψ`) dx dt (3.31)

+
∫ T

0

∫

Ω

(uεm ⊗ uεmΦεm(|uεm |)) : ∇(vm,`ψ`) dxdt

+
∫ T

0

∫

Ω

(p1,m,` + p2,m,` + p3,`)vm,` · ∇ψ` dxdt

+
∫ T

0

∫

Ω

f · vm,`ψ` dx dt +
∫ T

0

∫

Ω

g : ∇(vm,`ψ`) dx dt.
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Observing (III) using the product rule one estimates

∫ T

0

∫

Ω

S(x, t, D(uεm)) : D(vm,`ψ`) dx dt

≥ −
∫ T

0

∫

Ω

κ2ψ` dxdt

+
∫ T

0

∫

Ω

S(x, t, D(uεm
)) : (vm,` ⊗∇ψ`) dxdt

+
∫ T

0

∫

Ω

S(x, t, D(uεm
)) : ∇2p̃h,m,`ψ` dxdt.

Thus, from (3.31) it follows that

1
2

∫

Ω

|vm,`(T )|2ψ` dx ≤ 1
2

∫

Ω

|u0|2ψ` dx.

+
∫ T

0

∫

Ω

κ2ψ` dx dt +
∫ T

0

∫

Ω

f · vm,`ψ` dxdt

+ Im,` + IIm,` + IIIm,` + IVm,` + Vm,`, (3.32)

where

Im,` := −
∫ T

0

∫

Ω

S(x, t, D(uεm)) : (vm,` ⊗∇ψ`) dxdt,

IIm,` := −
∫ T

0

∫

Ω

S(x, t, D(uεm)) : ∇2p̃h,m,`ψ` dxdt,

IIIm,` :=
∫ T

0

∫

Ω

g : ∇(vm,`ψ`) dx dt,

IVm,` :=
∫ T

0

∫

Ω

(uεm ⊗ uεmΦεm(|uεm |)) : ∇(vm,`ψ`) dx dt,

Vm,` :=
∫ T

0

∫

Ω

(p1,m,` + p2,m,` + p3,`)vm,` · ∇ψ` dxdt

(m, ` ∈ N; ` ≥ N).
In order to estimate integrals Im,`-Vm,` we first state the following Lemma,

which for reader’s convenience will be proved in the appendix of this paper.

Lemma 3.1. For every 1 < r < ∞, 1 ≤ q ≤ ∞ and d ∈ N ∪ {0} there exists a
positive constant γ0, which depends only on r, q, d and n such that

‖∇dw‖Lq(Ĝ`)
≤ γ0{2`}−d−n/r+n/q‖w‖Lr(G`) ∀w ∈ Br(G`). (3.33)
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Proof of Theorem1.3 continued. Combining (3.33) (with r =
n + 2

n
) and

(3.28) implies

‖∇dp̃h,m,`(t)‖Lq(Ĝ`)
≤ K{2`}−d+1−n/2+n/q×

× (‖uεm
(t)− u0‖L2(G`) + ‖f̃(t)‖L2(G`) + 2−`) (3.34)

for almost all t ∈ (0,∞). Thus, integrating both sides of the last inequality over
(0, T ) taking into account (3.8) applying Minkowski’s inequality shows that

‖∇dp̃h,m,`‖L∞(0,∞;Lq(Ĝ`))
≤ K{2`}−d+1−n/2+n/q. (3.35)

(i) Using Hölder’s inequality together with the property (3) of the family {ψ`}`≥N

one finds

|Im,`| ≤ K2−`
√

T‖S(·, D(uεm)‖L2(Q)‖uεm‖L∞(0,∞;L2(Ω))

+ K2−`
√

T‖S(·, D(uεm)‖L2(Q)‖∇p̃h,m,`‖L∞(0,T ;L2(Ĝ`))
.

Making use of the a-priori estimates (3.9), (3.10) and applying (3.35) (with d = 1
and q = 2) yields

|Im,`| ≤ K2−`
√

T .

(ii) Similarly, estimating

|IIm,`| ≤
√

T‖S(·, D(uεm))‖L2(Q)‖∇2p̃h,m,`‖L∞(0,T ;L2(Ĝ`))

using (3.35) (with d = 2 and q = 2) gives

|IIm,`| ≤ K2−`
√

T .

(iii) Arguing as in (i) and (ii) one gets

|IIIm,`| ≤ K2−`
√

T +
∫ T

0

∫

Ω

|g| |∇uεm |ψ` dxdt.

(iv) With help of the product rule one easily calculates

IVm,` =
∫ T

0

∫

Ω

(uεm ⊗ uεmΦεm(|uεm |)) : ∇uεmψ` dxdt

+
∫ T

0

∫

Ω

(uεm ⊗ uεmΦεm(|uεm |)) : ∇2p̃h,m,`ψ` dxdt (3.36)

+
∫ T

0

∫

Ω

(uεm ⊗ uεmΦεm(|uεm |)) : vm,` ⊗∇ψ` dxdt

= IV(1)
m,` + IV(2)

m,` + IV(3)
m,`.

Firstly, applying integration by parts one finds

IV(1)
m,` = −

∫ T

0

∫

Ω

(uεm ⊗ uεmΦεm(|uεm |)) : uεm ⊗∇ψ` dxdt.
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Then, observing property (3) of the covering {ψ`}`≥N applying Hölder’s inequality
along with (3.10) gives

|IV(1)
m,`| ≤ K2−`‖uεm

‖3L3(Q) ≤ K2−` T 1−n/4.

Secondly, by the aid of Hölder’s inequality one gets

|IV(2)
m,`| ≤ KT 1/3‖uεm

‖2L3(Q)‖∇2p̃h,m,`‖L∞(0,T ;L3(Ĝ`))
.

Applying (3.35) (with d = 2 and q = 3) using (3.10) implies

|IV(2)
m,`| ≤ K2−`(1+n/6)T 1−n/6.

Thirdly, using Hölder’s inequality together with property (3) of the covering
{ψ`}`≥N one estimates

|IV(3)
m,`| ≤ K2−`(‖uεm

‖3L3(Q) + T 1/3‖uεm
‖2L3(Q)‖∇p̃h,m,`‖L∞(0,T ;L3(Ĝ`))

).

Once more appealing to (3.35) (with d = 1 and q = 3) taking into account (3.10)
gives

|IV(3)
m,`| ≤ K(2−` T 1−n/4 + 2−`(1+n/6)T 1−n/6).

Thus, inserting the above estimates of IV(1)
m,`, IV

(2)
m,` and IV(3)

m,` into (3.36) taking
into account T 1−n/4 ≤√T + 1 for n = 2, 3, 4 shows that

|IVm,`| ≤ K(2−`
√

T + 1 + 2−`(1+n/6)T 1−n/6).

(v) With help of Hölder’s inequality one easily estimates

|Vm,`| ≤ c 2−`‖p1,m,`‖
L

n+2
n (G`×(0,T ))

‖vm,`‖
L

n+2
2 (Ĝ`×(0,T ))

+ c 2−`‖p2,m,`‖L2(G`×(0,T ))‖vm,`‖L2(Ĝ`×(0,T ))

+
∫ T

0

∫

Ω

p3,`vm · ∇ψ` dxdt.

Using (3.22), (3.23) and the a priori estimate (3.10) along with (3.35) gives

|Vm,`| ≤ K2−`
√

T + 1 +
∫ T

0

∫

Ω

p3,`vm · ∇ψ` dxdt.

Let k ∈ N with k ≥ N be arbitrarily chosen. Inserting the estimates for
Im,` − Vm,` into (3.32) summing up the resulting inequalities from ` = k to ∞
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making use of the property (2′) of the partition of unity {ψ`}`≥N gives
∞∑

`=k

∫

Ω

|vm,`(T )|2ψ` dx

≤ K(2−k
√

T + 1 + 2−k(1+n/6)T 1−n/6) +
∫

{|x|>2k}
|u0|2 dx

∫ T

0

∫

{|x|≥2k}
κ2 dxdt +

∫ T

0

∫

{|x|≥2k}
|g| |∇uεm

|dxdt

+
∞∑

`=k

∫ T

0

∫

Ω

f · vm,`ψ` dxdt

+
∞∑

`=k

∫ T

0

∫

Ω

p3,`vm,` · ∇ψ` dxdt. (3.37)

1. Estimation of the right hand side of (3.37) from above. a) With help of
Cauchy-Schwarz’s inequality using (3.8) results

∫ T

0

∫

{|x|≥2k}
|g| |∇uεm

| dxdt ≤ K‖g‖L2(0,T ;L2(Rn\B2k )). (3.38)

b) Next, we claim that the two sums on the right of (3.37) are convergent.
To prove this fact we proceed as follows. From (3.34) with d = 1, q = 2 it follows∫

Ĝ`

|∇p̃h,m,`(t)|2 dx ≤ K(‖uεm(t)− u0‖2L2(G`)
+ ‖f̃(t)‖2L2(G`)

+ 2−2`) (3.39)

for almost all t ∈ (0,∞). Taking the sum on both sides of (3.34) from ` = k to
∞ recalling that G` ∩ G`+4 = ∅ for every ` ≥ N using Minkowski’s inequality
together with (3.8) yields

∞∑

`=k

∫

Ĝ`

|∇p̃h,m,`(t)|2 dx ≤ K (3.40)

for almost all t ∈ (0,∞), where K = const > 0 depending neither on m nor on
t ∈ (0,∞).

Now, define

Ψk :=
∞∑

`=k

ψ` in Rn.

Recalling the definition of vm,` one calculates
∞∑

`=k

∫ T

0

∫

Ω

f · vm,`ψ` dxdt

=
∫ T

0

∫

Ω

f · uεmΨk dxdt +
∞∑

`=k

∫ T

0

∫

Ω

f · ∇p̃h,m,` ψ` dxdt. (3.41)
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Firstly, by means of Cauchy-Schwarz’s inequality one estimates

∣∣∣∣
∫ T

0

∫

Ω

f · uεm
Ψk dxdt

∣∣∣∣ ≤ K‖f‖L1(0,T ;L2(Rn\B2k )). (3.42)

Secondly, applying Cauchy-Schwarz’s inequality for sequences in l2 and re-
calling that supp(ψ`) ∩ supp(ψ`+2) = ∅ for all ` ≥ N using (3.40) yields

∞∑

`=k

∣∣∣∣
∫

Ω

f(t) · ∇p̃h,m,`(t)ψ` dx

∣∣∣∣

≤ 2‖f(t)‖L2(Rn\B2k )

( ∞∑

`=k

∫

Ĝ`

|∇p̃h,m,`(t)|2 dx

) 1
2

≤ K‖f(t)‖L2(Rn\B2k )

for almost all t ∈ (0,∞). Integrating both sides of the last estimate over the
interval (0, T ) with respect to t one arrives at

∣∣∣∣
∞∑

`=k

∫ T

0

∫

Ω

f · ∇p̃h,m,` ψ` dxdt

∣∣∣∣ ≤ K‖f‖L1(0,T ;L2(Rn\B2k )). (3.43)

Estimating right hand side of (3.41) by (3.42) and (3.43) gives

∣∣∣∣
∞∑

`=k

∫ T

0

∫

Ω

f · vm,`ψ` dx dt

∣∣∣∣ ≤ K‖f‖L1(0,T ;L2(Rn\B2k )). (3.44)

c) To estimate the second sum on the right hand side of (3.37) we argue as
follows. Clearly, by the definition of vm,` we have

∞∑

`=k

∫ T

0

∫

Ω

p3,`vm,` · ∇ψ` dxdt

=
∫ T

0

∫

Ω

p3,kuεm · ∇Ψk dxdt +
∞∑

`=k

∫ T

0

∫

Ω

p3,`∇p̃h,m,` · ∇ψ` dxdt. (3.45)

Noticing that |∇Ψk| ≤ K2−k in Rn and |∇Ψk| ≡ 0 in Rn \ Ĝk applying
Cauchy-Schwarz’s inequality together with the a-priori estimate (3.24) yields

∣∣∣∣
∫ T

0

∫

Ω

p3,kuεm · ∇Ψk dxdt

∣∣∣∣ ≤ K‖f‖2
L1(0,∞;L2(Ĝk))

. (3.46)
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Moreover, applying Cauchy-Schwarz’s inequality for sequences in l2 using
(3.40) and (3.24) one finds

∣∣∣∣
∞∑

`=k

∫ T

0

∫

Ω

p3,`(t)∇p̃h,m,`(t) · ∇ψ` dxdt

∣∣∣∣

≤ K

∫ T

0

( ∞∑

`=k

2−2`‖p3,`(t)‖2L2(G`)

) 1
2

dt.

≤ K‖f‖L1(0,T ;L2(Rn\B2k−1 )). (3.47)

Combining (3.45), (3.46) and (3.47) implies
∞∑

`=k

∫ T

0

∫

Ω

p3,`vm,` · ∇ψ` dxdt ≤ K‖f‖2L1(0,∞;L2(Rn\B2k−1 )). (3.48)

2. Estimation of the left hand side of (3.37) from below. Calculating

∞∑

`=k

|vm,`(T )|2ψ` = |uεm
(T )|2Ψk

+
∞∑

`=k

|∇p̃h,m,`(T )|2ψ` + 2
∞∑

`=k

uεm(T ) · ∇p̃h,m,`(T )ψ`

almost everywhere in Ω making use of the property (2′) of the family {ψ`}`≥N it
follows that

∞∑

`=k

∫

Ω

|vm,`(T )|2ψ` dx

≥
∫

|x|≥2k+1
|uεm(T )|2 dx + 2

∞∑

`=k

∫

Ω

uεm(T ) · ∇p̃h,m,`(T )ψ` dx. (3.49)

Estimating the left hand side of (3.37) from below by (3.49) and the right
hand side of (3.37) from above by (3.44) and (3.48) yields

∫

{|x|>2k+1}
|uεm(T )|2 dx ≤

∫

{|x|>2k}
|u0|2 dx

+ K(2−k
√

T + 1 + 2−k(1+n/6)T 1−n/6)

+ K‖κ2‖L2(Rn\B2k−1×(0,∞))

+ K‖g‖L2(Rn\B2k−1×(0,∞)) + K‖f‖L1(0,T ;L2(Rn\B2k−1 ))

− 2
∞∑

`=k

∫

Ω

uεm(T ) · ∇p̃h,m,`(T )ψ` dx. (3.50)

Now, it only remains to estimate the last term on the right of (3.50). For,
take a sequence {ην} in Dσ(Ω) which converges to uεm(T ) in L2(Ω)n as ν → ∞.
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Using (3.40) applying Cauchy-Schwarz’s inequality in l2 recalling G` ∩ G`+4 = ∅
for all ` ≥ N one easily deduces

∥∥∥∥
∞∑

`=k

(uεm
(T )− ην) · ∇p̃h,m,`(T )ψ`

∥∥∥∥
L2(Ω)

≤ K‖uεm
(T )− ην‖L2(Ω).

Hence,
∞∑

`=k

ην · ∇p̃h,m,`(T )ψ` →
∞∑

`=k

uεm(T ) · ∇p̃h,m,`(T )ψ` in L2(Ω) as ν →∞.

Next, define

p̃1,m,`(x) :=
∫ T

0

p1,m,`(x, t) dt,

p̃2,m,`(x) :=
∫ T

0

p2,m,`(x, t) dt,

p̃3,`(x) :=
∫ T

0

p3,`(x, t) dt,

h̃1,m,`(x) :=
∫ T

0

h1,m,`(x, t) dt,

h̃2,m,`(x) :=
∫ T

0

h2,m,`(x, t) dt, x ∈ G` ` ≥ N.

As an immediate consequence of (3.19), (3.20) and (3.21) we have
∫

G`

p̃1,m,`∆φ dx =
∫

G`

h̃1,m,` : ∇2φdx, (3.51)
∫

G`

p̃2,m,`∆φ dx =
∫

G`

h̃2,m,` : ∇2φdx, (3.52)
∫

G`

p̃3,`∆φ dx =
∫

G`

f̃(T ) · ∇φdx ∀φ ∈ C∞0 (G`). (3.53)

With help of Minkowski’s inequality and Hölder’s inequality making use of (3.10)
yields

‖h̃1,m,`‖L2(G`) ≤ ‖h1,m,`‖L1(0,T ;L2(G`))

≤ ‖uεm‖2L2(0,T ;L4(G`))

≤ T 1−n/4‖uεm‖2L8/n(0,T ;L4(G`))
≤ KT 1−n/4 9 .

Using Hölder’s inequality taking into account (3.9) gives

‖h̃2,m,`‖L2(G`) ≤ ‖S(·, D(uεm)) + g‖L2(G`×(0,T )) ≤ K.

9 Notice that
2n

8
+

n

4
=

n

2
.
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Thus, owing to Lemma 2.3 it is readily seen that

p̃1,m,`, p̃2,m,`, p̃3,` ∈ L2(G`).

Furthermore, we have the following a-priori estimates

‖p̃1,m,`‖L2(G`) + ‖p̃2,m,`‖L2(G`) ≤ K
√

T + 1, (3.54)

‖p̃3,`‖L2(G`) ≤ K2`‖f‖L1(0,∞;L2(G`)). (3.55)

By an inspection of the proof of Theorem 2.6 one gets a function p̃m ∈ L2
loc(Ω\

B2N−1), such that for all ` ∈ N, ` ≥ N there holds

p̃1,m,` + p̃2,m,` + p̃3,` + p̃h,m,`(T ) = p̃m − (p̃m)G`
a.e. in G`. (3.56)

In addition, using (3.54), (3.55) and (3.34) (with d = 0, q = r = 2) we get the
a-priori estimate

‖p̃m − (p̃m)Gk
‖L2(Gk)

≤ K2k(‖uεm(T )− u0‖L2(Gk) + ‖f‖L1(0,∞;L2(Gk)) + 2−k
√

T + 1). (3.57)

Applying integration by parts using (3.56) one calculates

∞∑

`=k

∫

Ω

ην · ∇p̃h,m,`(T )ψ` dx = −
∫

Ω

p̃mην ·
∞∑

`=k

∇ψ` dx

+
∞∑

`=k

∫

Ω

(p̃1,m,` + p̃2,m,` + p̃3,`)ην · ∇ψ` dx. (3.58)

Thanks to (1) and (2′) verifying that
∞∑

`=k

∇ψ` ≡ 0 in {|x| > 2k+1}) yields

−
∫

Ω

p̃mην ·
∞∑

`=k

∇ψ` dx = −
∫

Ĝk

(p̃m − (p̃m)Gk
)ην · ∇(ψk + ψk+1) dx.

Observing property (3) of the partition of unity {ψ`}`≥N using Cauchy-Schwarz’s
inequality and applying (3.57) one obtains

∣∣∣∣
∫

Ω

p̃mην ·
∞∑

`=k

∇ψ` dx

∣∣∣∣

≤ K‖ην‖L2(Gk)(‖uεm(T )− u0‖L2(Gk) + ‖f‖L1(0,∞;L2(Gk)) + 2−k
√

T + 1).



Existence of turbulent solutions 27

On the other hand, using Cauchy-Schwarz’s inequality for sequences in l2
together with (3.54) and (3.55) it follows that

∣∣∣∣
∞∑

`=k

∫

Ω

(p̃1,m,` + p̃2,m,` + p̃3,`)ην · ∇ψ` dx

∣∣∣∣

≤ ‖ην‖L2(Ω)

( ∞∑

`=k

2−2`‖p̃1,m,` + p̃2,m,` + p̃3,`)‖2L2(G`)

) 1
2

≤ K‖ην‖L2(Ω)(2−k
√

T + 1 + ‖f‖L1(0,∞;L2(Gk))).

Now, estimating the right hand side of (3.58) by the aid of the two estimates we
have just obtained and afterwards carrying out the passage to the limit ν → ∞
leads to

∣∣∣∣
∞∑

`=k

∫

Ω

uεm
(T ) · ∇p̃h,m,`(T )ψ` dx

∣∣∣∣

≤ K(‖uεm
(T )‖2L2(Gk) + ‖u0‖2L2(Gk) + ‖f‖L1(0,T ;L2(Rn\B2k−1 )))

+ K2−k
√

T + 1.

Hence using the estimate above from (3.50) it follows
∫

{|x|>2k+1}
|uεm(T )|2 dx

≤ K

∫

Gk

|uεm(T )|2 dx + K

∫

{|x|>2k−1}
|u0|2 dx (3.59)

+ K‖κ2‖L1(Rn\B2k×(0,∞))

+ K‖g‖L2(Rn\B2k×(0,∞))

+ K‖f‖L1(0,T ;L2(Rn\B2k−1 ))

+ K(2−k
√

T + 1 + 2−k(1+n/6)T 1−n/6).

Next, let α > 0 be arbitrarily chosen. Clearly, one can select k ≥ N such that
∫

Gk

|u(T )|2 dx +
∫

{|x|>2k−1}
|u0|2 dx

+ ‖κ2‖L1(Rn\B2k×(0,∞))

+ ‖g‖L2(Rn\B2k×(0,∞))

+ ‖f‖L1(0,T ;L2(Rn\B2k−1 ))

+ (2−k
√

T + 1 + 2−k(1+n/6)T 1−n/6) ≤ α

4K
(3.60)

and ∫

{|x|>2k−1}
|u(T )|2 dx ≤ α

4(K + 1)
. (3.61)
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By the aid of (3.16) one can choose m0 ∈ N such that
∫

Gk

|uεm
(T )|2 dx−

∫

Gk

|u(T )|2 dx ≤ α

4K
, (3.62)

∣∣∣∣
∫

Ω∩B2k+1

|uεm(T )|2 dx−
∫

Ω∩B2k+1

|u(T )|2 dx

∣∣∣∣ ≤
α

4
(3.63)

for all m ≥ m0.
Let m ≥ m0. With help of the triangular inequality making use of (3.59)

along with (3.60), (3.61), (3.62) and (3.63) one obtains
∣∣∣‖uεm

(T )‖2L2(Ω) − ‖u(T )‖2L2(Ω)

∣∣∣ ≤
∣∣∣‖uεm

(T )‖2L2(Ω∩B2k+1 ) − ‖u(T )‖2L2(Ω∩B2k+1 )

∣∣∣
+ ‖uεm

(T )‖2L2(R3\B2k+1 ) + ‖u(T )‖2L2(R3\B2k+1 )

≤ 3
4
α + (K + 1)‖u(T )‖2L2(R3\B2k−1 ) ≤ α.

Thus,
‖uεm(T )‖2L2(Ω) → ‖u(T )‖2L2(Ω) as m →∞.

Moreover recalling that uεm
(T ) converges weakly to u(T ) in L2(Ω)n as m → ∞

one infers

uεm(T ) → u(T ) strongly in L2(Ω)n as m →∞.

The Strong Energy Inequality

Let us begin by defining the set J ⊂ [0,∞) of all real numbers for which
(3.16) is true. Clearly L1([0,∞) \ J ) = 0. As it has been proved in the previous
step there holds

‖uεm(t)‖H → ‖u(t)‖H as m →∞ ∀ t ∈ J . (3.64)

Now, let s, t ∈ J with 0 < s < t < ∞ be fixed. Owing to (III) one can easily
check that∫ t

s

∫

Ω

S(·, D(uεm)) : D(uεm) dxdτ

=
∫ t

s

∫

Ω

S(·, D(u)) : D(uεm) dxdτ

+
∫ t

s

∫

Ω

(S(·, D(uεm))− S(·, D(u))) : D(uεm) dx dτ

≥
∫ t

s

∫

Ω

S(·, D(u)) : D(uεm) dxdτ

+
∫ t

s

∫

Ω

(S(·, D(uεm))− S(·, D(u))) : D(u) dxdτ.
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Thus, from (3.7) one deduces that

1
2
‖uεm(t)‖2H +

∫ t

s

∫

Ω

S(·, D(u)) : D(uεm) dxdτ

≤
∫ t

s

∫

Ω

f · uεm + g : ∇uεm dxdτ +
1
2
‖uεm

(s)‖2H

+
∫ t

s

(S(·, D(uεm
))− S(·, D(u))) : D(u) dxdτ. (3.65)

By means of (3.14), (3.13) and (3.64) we are in a position to carry out the
passage to the limit m →∞ on both sides of (3.65). This implies

1
2
‖u(t)‖2H +

∫ t

s

∫

Ω

S(·, D(u)) : D(u) dxdτ

≤
∫ t

s

∫

Ω

f · u + g : ∇u dxdτ +
1
2
‖u(s)‖2H. (3.66)

Whence, u is a turbulent solution.

Decay for ‖u(T )‖L2(Ω) as T →∞
First we define

J̃ :=
{

T ∈ J
∣∣∣u(T ) ∈ L2 n+2

n (Ω)n
}

.

Recalling that u ∈ L2 n+2
n (Q)n shows that L1([0,∞) \ J̃ ) = 0. Moreover, in J̃

there exists a sequence of numbers 1 < T1 < T2 < . . . < Tj < . . . with Tj →∞ as
j →∞ such that

∫

Ω

|u(Tj)|2
n+2

n dx ≤ 1
Tj ln(1 + Tj)

∀ j ∈ N. (3.67)

Let 0 < δ < 1 be a number which will be specified below. Let j ∈ N. Clearly,
there exists a unique integer k = k(j) fulfilling

2k−1 ≤ δ−1
√

Tj < 2k. (3.68)

Without loss of generality we may assume that k − 1 > N , i.e. Gk ⊂ Ω.
Let ` ≥ k. Arguing as in step 2 from Corollary 2.7 one gets unique functions

p1,` ∈ L
n+2

n (0,∞;A
n+2

n (G`)),

p2,` ∈ L2(0,∞; A2(G`)),

p3,` ∈ L1(0,∞; A2∗(G`)),

p̃h,` ∈ Cw(0,∞; Ḃ
n+2

n (G`)) with p̃h,`(0) = 0,
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such that

−
∫ ∞

0

∫

G`

u · ∂tϕdxdt

+
∫ ∞

0

∫

G`

u⊗ u + S(·, D(u(t)))− g) : ∇ϕ− f ·ϕ dxdt

=
∫ ∞

0

∫

G`

(p1,` + p2,` + p3,`)∇ ·ϕ +∇p̃h,` · ∂tϕdxdt (3.69)

for all ϕ ∈ C∞0 (G` × (0,∞))n and
∫

G`

p1,`(t)∆φdx =
∫

G`

(u(t)⊗ u(t)) : ∇2φ dx, (3.70)
∫

G`

p2,`(t)∆φdx =
∫

G`

(S(·, D(u(t))) + g(t)) : ∇2φdx, (3.71)
∫

G`

p3,`(t)∆φdx =
∫

G`

f(t) · ∇φ dx (3.72)

for almost all t ∈ (0,∞), for all φ ∈ C∞0 (G`).
Observing, (III) taking into account (3.16), (3.14) (3.12) and the fact

ph,m,` → ph,` in Ln(0, T ; W 2, n(Ĝ`)) as m →∞ (3.73)

carrying out the passage to the limit on both sides of (3.32) as m →∞ (replacing
T by Tj therein) one arrives at

1
2

∫

Ω

|v`(Tj)|2ψ` dx ≤ 1
2

∫

Ω

|u0|2ψ` dx.

+
∫ Tj

0

∫

Ω

κ2ψ` dxdt +
∫ Tj

0

∫

Ω

f · v`ψ` dx dt

+ I` + II` + III` + IV` + V`, (3.74)

where v` := u + ∇p̃h,` and

I` := −
∫ Tj

0

∫

Ω

S(x, t, D(u))) : (v` ⊗∇ψ`) dxdt,

II` := −
∫ Tj

0

∫

Ω

S(x, t, D(u)) : ∇2p̃h,`ψ` dxdt,

III` :=
∫ Tj

0

∫

Ω

g : ∇(v`ψ`) dxdt,

IV` :=
∫ Tj

0

∫

Ω

(u⊗ u) : ∇(v`ψ`) dxdt,

V` :=
∫ Tj

0

∫

Ω

(p1,` + p2,` + p3,`)v` · ∇ψ` dxdt
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(` ∈ N; ` ≥ N).

By an analogous reasoning we have used to get (3.59) one proves the a-priori
estimate

∫

{|x|>2k+1}
|u(Tj)|2 dx

≤ K

∫

B2k+3∩Ω

|u(Tj)|2 dx + K

∫

{|x|>2k−1}
|u0|2 dx (3.75)

+ K‖κ2‖L1(Rn\B2k×(0,∞))

+ K‖g‖L2(Rn\B2k×(0,∞))

+ K‖f‖L1(0,∞;L2(Rn\B2k−1 ))

+ K(2−k
√

Tj + 2−2k(1−n/6)T
1−n/6
j ).

Using Hölder’s inequality taking into account (3.68) and (3.67) one estimates

∫

B2k+3∩Ω

|u(Tj)|2 dx ≤ K

(
22k

∫

B2k+3∩Ω

|u(Tj)|2
n+2

n dx

) n
n+2

≤ K

δ2n/(n+2)(ln(1 + Tj))2n/(n+2)
. (3.76)

Combining (3.75) and (3.76) one gets a positive constant K1 such that

‖u(Tj)‖2L2(Ω) = ‖u(Tj)‖2L2(Rn\B2k+1 ) + ‖u(Tj)‖2L2(B2k+1∩Ω)

≤ K1

∫

{|x|>2k−1}
|u0|2 dx (3.77)

+ K1‖κ2‖L1(Rn\B2k×(0,∞))

+ K1‖g‖L2(Rn\B2k×(0,∞)))

+ K1‖f‖L1(0,∞;L2(Rn\B2k−1 ))

+
K1

δ2n/(n+2)(ln(1 + Tj))2n/(n+2)
+ K1δ

2/3.

Let 0 < α < 1 be arbitrarily chosen. Let δ > 0 be fixed such that

K1δ
2/3 ≤ α

4
. (3.78)
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Clearly, there exists j1 ∈ N, such that
∫

{|x|>2k(j)−1}
|u0|2 dx

+ ‖κ2‖L1(0,∞;L2(Rn\B
2k(j) ))

+ ‖g‖L2(0,∞;L2(Rn\B
2k(j) )) (3.79)

+ ‖f‖L1(0,∞;L2(Rn\B
2k(j)−1 ))

+
1

δ2n/(n+2)(ln(1 + Tj))2n/(n+2)
≤ α

4K1

for all j ≥ j1. Hence, using (3.78) and (3.79) from (3.77) one gets

‖u(Tj)‖2L2(Ω) ≤
α

2
∀ j ∈ N, j ≥ j1. (3.80)

Owing to the strong energy inequality we have for all T ∈ J , T > Tj

‖u(T )‖2L2(Ω) ≤ ‖u(Tj)‖2L2(Ω)

− 2
∫ T

Tj

∫

Ω

(S(x, t, D(u))− g) : ∇udx dt

+ 2
∫ T

Tj

∫

Ω

f · udx dt (3.81)

≤ ‖u(Tj)‖2L2(Ω) + K‖∇u‖L2(Ω×(Tj ,∞))

+ K‖f‖L1(Tj ,∞;L2(Ω)).

Finally choosing j2 ∈ N such that

K‖∇u‖L2(Ω×(Tj ,∞)) + K‖f‖L1(Tj ,∞;L2(Ω)) ≤
α

2

for all j ≥ j2 using (3.80) and (3.81) shows that

‖u(T )‖2L2(Ω) ≤ α ∀T ≥ max{Tj1 , Tj2}.
Hence the assertion of the theorem is completely proved. ¤

Appendix A. Caccioppoli Inequalities for Harmonic Functions

Proof of Lemma 3.1.

1. L∞-estimates for harmonic functions. Let V ⊂⊂ U be two open bounded sets
with ρ := dist(V, ∂U). Let p ∈ L1(U) being harmonic in U . Then

sup
x∈V

|w(x)| ≤ 1
Ln(B1)ρn

∫

U

|w| dx. (A.1)
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Indeed, let x ∈ V . Then Bρ(x) ⊂ U . By the mean value property of harmonic
functions we have

|w(x)| =
∣∣∣∣
∫
−
Bρ(x)

w(y) dy

∣∣∣∣ ≤
1

Ln(B1)ρn

∫

U

|w| dy.

Whence (A.1)
2. The case ` = 1. Let w ∈ Br(G1). We define the sets

G′ :=
{

x ∈ Rn
∣∣∣ 7
8

< |x| < 5
}

,

G′′ :=
{

x ∈ Rn
∣∣∣ 5
8

< |x| < 7
}

.

Verifying dist(Ĝ1, G
′) =

1
8

using (A.1) together with Caccioppli’s inequality yields

sup
x∈Ĝ1

|∇dw(x)| ≤ K‖∇dw‖L2(G′) ≤ K sup
x∈G′′

|w(x)|.

where K = const > 0 depending only on n and d.

Next, noticing that dist(G′′, G1) =
1
8

once more appealing to (A.1) gives

sup
x∈G′′

|w(x)| ≤ 8n

Ln(B1)

∫

G1

|w|dx.

Thus, combining the last two estimates applying Hölder’s inequality implies
(∫
−̂
G1

|∇dw|q dx

) 1
q

≤ K

(∫
−
G1

|w|r dx

) 1
r

.

This completes the proof of (3.33) for ` = 1.

3. The case ` ∈ N. Let w ∈ Br(G`). Using an appropriate changing of coor-
dinates applying the transformation formula of Lebesgue’s integral gives

(∫
−̂
G`

|∇dw|q dx

) 1
q

≤ K2−`d

(∫
−
G`

|w|r dx

) 1
r

.

Whence, (3.33). ¤
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