Existence of turbulent weak solutions to the
generalized Navier-Stokes equations in exterior
domains and large time behaviour

Jorg Wolf

Abstract. Let  be an exterior domain in R"™ (n = 2,3,4) , with boundary
being not necessarily smooth. For any initial velocity ug € L*(Q)" such that
V -up = 0 (in sense of distribution) and external forces

F € L'(0,00; L*(Q)") + L*(0, 00, W~ 12(Q)")
we are able to construct a turbulent weak solution u € Cy ([0, 00); L%(Q2)™) N
L*(0,00; Wy 2(2)™) to the equations of motion of a non-Newtonian fluid. Si-
multaneously, we prove that this solution fulfils the non-uniform decay con-
dition
lu@llp2) — 0 as t— oco.
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1. Introduction. Statement of the Main Result
Let Q C R™ (n = 2,3,4) be an exterior domain. We set Q := Q x (0,00). In the

present paper we consider the generalized Navier-Stokes equations

V-ou=0"1 (1.1)
u+V-(u@u—-S+pl) =f-V.-g in Q, (1.2)
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where
p = pressure,
u = {u',...,u"} = velocity,
S = {Sij|i,j=1,...,n} = deviatoric stress tensor,
f — V.g = external force.

Boundary and initial conditions. On the boundary of €2 we assume the fol-
lowing condition of adherence

u=0 on 099 x (0,00). (1.3)
At the initial time ¢ = 0 we assume
u(0) =ug in €, (1.4)

where ug denotes a given initial velocity field, with V - ug = 0.

Constitutive law. For the usual Navier-Stokes equations the stress S is given
by
S = S(D) = 1/0D, 2
where vy = const > 0 denotes the viscosity, while D = {D;;} denotes the "rate
of strain tensor”, which is defined by

D(u) := %(Vu + vu™).

However in many applications one often considers fluids where the viscosity is
not constant but ranges between two positive constants. For instance considering
a fluid where the mechanical energy is transferred into heat the viscosity may
depend on the temperature. In this case the stress is given by the law

S = S(z,t,D) = p(0(z,t))D, (x,t)€Q (1.5)
with
peCR), 0<p <p<py<oo inR,
0 = temperature.

(concerning the continuum mechanical background we refer to [2], [11]).
Having in mind (L.5) as special case we impose the following conditions on
the components of the deviatoric stress tensor S.

() S:QxMY. — MY 3 isa Carathéodory function;

sym sym

0
8xi

1 Here, V- v := axivi, where 0, =

(i =1,...,n). Throughout repeated subscripts imply

summation over 1 to n.
2 Clearly, V - D = A on the space of all divergence free function.

n2

3M22 = vector space of all symmetric n X n matrices & = {£;;}. We equip Mgy, with scalar

sym

product & : m = &;57;; and norm ||&] := (& : £)Y/2. - By a- b we denote the usual scalar product
in R™ and by |a| we denote the Euclidean norm.
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growth condition:
(11) IS(z,t, &)l < colléll + w1 V&€ My, faa. (2,t) € Q
(C() > O,Iil c LQ(Q),Hl > O),

coercivity:
(I11) S(z,t,€): € > wlél]> — ko VEe M, faa (z,t)€Q
(V(] > 0, Ko € LI(Q),FLQ > 0),

strict monotonicity:
(S(I7ta£) - S(%fﬂ?)) : (6 - 7]) >0

(IV) )
V€ meMy,, (§#n), faa (z,t) € Q.

Weak solution to (1.1)), (1.2). Before we introduce the notion of a weak so-
lution to (1.1)-(L1.4)) let us provide some notations and function spaces which will
be used in sequence of the paper. By W*4(Q), Wy %(Q) (k € N;1 < ¢ < o)
we denote the usual Sobolev spaces. Let (X,]| - |lx) be a normed space. By
L10,7;X) (0 < T < oo) we denote the space of all Bochner measurable func-
tions ¢ : (0,7) — X, such that

ellor = [ lelfar) <o it 1q<ox,
[l o< (0,7;x) = esssup [|p(t)]|x < oo if ¢ =o0.
te(0,7)
By D, () we denote set of all ¢ € C§°(Q) with V - ¢ = 0. Then we set
H := closure of D,() in L*(Q)",
V := closure of Dy() in WhHZ(Q)™.

Definition 1.1. Let uy € H. Let f € L'(0,00; L2(Q)") and g € L2(Q)™ be given
forces. A vector-valued function u € L2(0,00; V) N L>(0,00; H) is called a weak
solution to (L.1)-(1.4) if the following identity
/ —u-Op—u®u:Ve+S(z,t,D(u)) : Vededt
Q
:/f~go+g:chdxdt+/u0-cp(O)dz (1.6)
Q Q

holds for all ¢ € C°°(Q)™ with V - ¢ = 0 and supp(¢) CC Q x [0, 0). 4

4Here A CC B means A, B are open subsets of R", A is bounded and A C B.
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In addition, a weak solution u to (1.1)-(1.4) is said to be turbulent if for
almost all 0 < s <t < o0

1 5 ¢
§\|u(t)||L2(Q) + /S /QS(x,T,D(u)) : D(u)dxdr

1 t
< Slu(s)a0 +/ /Qf~u+g:VudxdT. (L.7)

Remark 1.2. By virtue of Sobolev’s imbedding theorem using multiplicative in-
equality one easily verifies
L*(0,T; V)N L>®(0,T;H) — L"(0,T, LP(Q)") (1.8)
for all p € [2,2*] and all r € [1, 00] such that
2,n,n
rop 2

where
2n

2* = n—2
q € [1,00) arbitrarily if n=2.

if n>3,

Statement of the Main Result. The aim of the present paper is to prove the
existence of a turbulent weak solution to (1.1)-(1.4). That is

Theorem 1.3 (Main Theorem). For every given initial velocity ug € H and forces
f € LY(0,00;L2(Q)") , g € LX(Q)" there exists a turbulent weak solution u €
L2(0,00; V) N Cyy([0,00); H) to (1.1)-(1.4) with non-uniform decay

lu()lz2@) — 0 as t— oc. (1.9)

Remark 1.4. The first result on the existence of turbulent weak solutions to the
Navier-Stokes equations in R? is due to Leray. In his pioneering paper [12] he also
pointed out the importance of the strong energy inequality (1.7) for the decay
problem of the energy ||u(t)||zz. Later Masuda [15] provided the property

t
/ lu(r)||gzdr — 0 as t— oo, (1.10)
t—1

and was able to get weak solutions with non-uniform decay in the energy ||u(¢)|| 2
in a general domain if n = 2,f € L'(0,00; L?) or if n > 3,f = 0 (see also Schon-
beck [18]). Using Masuda’s estimate Sohr, von Wahl and Wiegner [22] proved the
existence of a turbulent weak solution in a three dimensional exterior domain satis-
fying the non-uniform decay in the energy norm for initial datas uy € H satisfying
an additional decay as || — co. Later Miyakawa and Sohr [16] achieved a similar
result for all initial data uy € H in case n = 3,4. In particular they extended
Masuda’s result for external forces f € L!(0, 00; L?). These results then were gen-
eralized by Kozono, Ogawa and Sohr in [10] where the authors studied L?-decay for
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weak solution of the Navier-Stokes equations in an exterior domain satisfying the
strong energy inequality. Concerning further results in other unbounded domains
we refer to Heywood [7], Borchers and Miyakawa [3], Ukai [24], Maremonti [14]
and Kozono and Ogawa [9]. However the existence of a turbulent weak solution in
a general unbounded domain with uniform C2-boundary was open for a long time
and has been achieved by Farwig, Kozono and Sohr in the recent paper [5].
Notice that the results stated above were obtained by using functional an-
alytic arguments such as Fourier analysis, semi group theory and well-known
properties for the Stokes operator in appropriate function spaces. Since these
methods make essential use of the special structure of the Navier-Stokes equa-
tions and the regularity of the boundary 02 they are not suitable for proving
similar results in the case of the generalized Navier-Stokes equations in exte-
rior domains with non-smooth boundary. Nevertheless, using an alternative lo-
cal method we are able to prove the existence of turbulent weak solutions to
the generalized Navier-Stokes equations with non-uniform decay in the energy
norm. The key of this method, which has been applied also in [26] for prov-
ing the existence of weak solutions to a general non-Newtonian fluid, lies in
the special local pressure representation based on Simader’s decomposition of
L' =A"®B" (A" = {A¢|p e W'}, B" = {v e L"|Av =0}) (1 <7< o0). By
this method we achieve the necessary estimates of the energy outside a large ball.

The paper is organized as follows. In Section 2 based on a variational estimate
which is due to R.Miiller (cf. Lemma2.1) we study the spaces A" and B". In
particular, we mention the important decomposition L™ = A" & B" by Simader.
Using these properties we finally show the existence of the local pressure together
with optimal estimates on the sets {R < |z| < 16R} (0 < R < 00).

The aim of Section 3 will be the proof of Theorem 1.3, which will be divided
into four main steps. Firstly, by truncating the non-linear term we establish an
approximate weak solution u,, which tends to a weak solution u of (L.1)-(1.4)
as m — oo. Secondly verifying that u,, fulfils a local energy identity on the sets
{271 < |z| < 243} (¢ € N) we obtain an appropriate estimate of the energy norm
outside of the ball Byx (k € N). By the aid of these estimates we get the strong
convergence of u,,(T") to u(T') in L? for almost all T’ > 0. Thirdly, we complete the
proof of the strong energy inequality taking into account the monotonicity of S.
Finally, by virtue of the global bound ||uHL2 ntz < 00 verifying a similar estimate
for u as we have found in the second step for u,, we get the non-uniform decay
lu)|lLz — 0 as t — oo.

2. Harmonic decomposition

The purpose of this section is to state a few lemmas which form the base to
construct an appropriate pressure function for weak solutions to the problem (1.1)-
(L.4).
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During the whole section let G C R™ be a bounded domain with G € C2.
By W5"(G) (1 < r < o0) we denote the closure of C§°(G) with respect to the

norm .
ol o= ([ 18017 az)

Clearly, by the well-known Calderén-Zygmond’s estimate we have

IV26llrc) < Cezlldllwz @), (2.1)

where Ccz = const > 0 depending on n only.
We begin our discussion by stating a variational estimate which is due to
R. Miiller [17].

Lemma 2.1 (Variational estimate in W' (G)). Let 1 < r < co. Then there exists
a constant C. = Cr.(r,n,G) > 0, such that

Jo AuA¢dx

||u||ng"(G) < Cy sup Yu e W02’T(G). (2.2)

0£6eW2 (@) ||¢||W02’T/(G)
O

Next, we introduce the following subspaces of L"(G) (1 < r < o0), which will
be used in the sequel

A"(G) = TBolse @y

B"(G) :={p e L"(G)|Ap =0in G}.

Remark 2.2. Owing to the reflexivity of W' "(G) the space A”(G) introduced
above is given by
A™(G) = {Aulue W (G)}. (2.3)

With help of Lemmal2.1l one obtains the following estimates which play an
essential role in the proof of the main theorem (cf. Section 3).

Lemma 2.3. Let p € A"(G) and h = {h;;} € L"(G)™ (1 < r < o0), such that

/pAngdx :/h:V2¢dx Vo€ C3(G). (2.4)
G G

Then
Ipllzr @) < CrCez|hlLrc)- (2.5)

Lemma 2.4. Let1 < r < oo. Then for every v* € (Wg’r/(G))* there exists a unique
we W (G) such that

/GAUA¢>dx = (v, ¢9) V¢ e C(G). (2.6)



Existence of turbulent solutions 7

(For the proof of this lemma see in [26]).
As an immediate consequence of Lemmal2.4 we get

Corollary 2.5 (C.G.Simader). For every p € L"(G)(1 < r < o0) there exist
po € A"(G) and py, € B"(Q) such that

D = po + Ph- (2.7)

In addition, there exists a constant C. = Cl(r,n,G) such that

Ipollzr@) + llenllz-@) < Crllpllz-o), (2.8)
i.e. the sum A"(G) 4+ B"(G) is direct.

Proof. Let p € L"(G). According to Lemmal2.4 there exists u € W' (G) satisfying

/AquSda: = /pAqua: Vo e CR(G). (2.9)
G G

In particular, by (2.3) we have Au € A"(G). On the other hand, as one can easily
check (2.9)) is equivalent to

/(Au—p)A¢dx =0 V¢e (i aq).
G

Using Weyl’s Lemma we have A(p — Au) = 0 in G. This shows that the function
p — Au belongs to B"(G). Finally, setting pg := Au and pp, := p — Au gives (2.7).

Now, it only remains to prove (2.8). For, let p = pg + pn, with py € A™(G)
and pp € B"(G). It is readily seen that

/ poApdr = / pApdx V¢ € C5°(G).
G G
Thus, applying Lemma/2.3| with h = pI shows that
Ipollzr ey < CrCeozlpllr (-
Whence, (2.8]). O

Next, let us introduce the following subspace of B"(G)

B(G) = {pe B(@)| /Gpda: - o}.

Now we present the following result on the local pressure decomposition (cf. also
in [20]).

Theorem 2.6. Let u € C,,([0,00); L?(G)™) with V -u = 0 (in the sense of distri-
2

butions) and let h € LL ([0,00); L"(G)"") (1 < r < 2). Suppose that

loc

/ / —u-0p + h:Vedrdt =0 (2.10)
o Ja
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for all p € C§°(G x (0,00))™ with V - = 0. Then there exist unique functions
Do € Llloc([()’ 00); A"(G)),
Pr € Cu([0,00); B"(G))  with  pp(0) =0,
such that
/ /—u-@gp—kh:chdxdtz/ /pov-go—kvm-atcpdmdt (2.11)
o Ja o Ja
for all p € C§°(G x (0,00)). Furthermore, we have the a-priori estimates

lpo()llr@y < clh@®)lzr)s (2.12)

/ot h(s)ds

for almost all t € (0,00), where ¢ = const > 0 depending only on r,n and G.

Proof. Let ¢ € C§°(G)" with V-2 = 0 and let nn € C§°(0, 00). Into (2.10) inserting
p(x,t) = n(t)e(z) using Fubini’s theorem yields

7/ an/dt:/ Bndt,
0 0

a(t) == /Gu(t) -p dz,

IA

15n(O)lLr @y < cllu) —u0)|r2@ + ¢ (2.13)

L™(G)

where

B(t) = —/Gh(t) Vi de, te(0,00).

By the assumptions of the theorem we have 3 € L _([0,00)). Therefore o €

loc
W1 1(]0,00)) with o’ = 3. In particular, « is represented by an absolutely con-

tinuous function, which will be denoted also by «. Using integration by parts one
calculates

a(t) = a(0) + /0 B(s)ds Vit e (0,00). (2.14)
Define ,
h(t) ::/0 h(s)ds, te€]0,00).

Let ¢t € (0,00) be fixed. Using Fubini’s theorem the identity (2.14) reads
/ (u(t) — u(0)) -4 + B(t) : Vapdo = 0.
G

Thus, according to [6] (Th.III. 3.1, Th. III. 5.2) there exists a unique function p(¢) €

L"(G) with / #(t) dz = 0 such that for all ¢ € W' (G)"
G

/(u(t) —u(0)) -+ B(t) : Vepdz = /ﬁ(t)V-1/)dx. (2.15)
G

G
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In addition, there exists a constant ¢ > 0 depending only on r,n and G such that

15(2)] Lr(@))- (2.16)

Next, we are going to prove that ¢ — p(¢) is a Bochner measurable function.
For, let v € L" (G) be arbitrarily chosen. From [6] (Th. III. 3.4) we get the existence
of a function ¥ € WOI’T/(G)” such that V-1 = v—vg @ (cf. also [23] (Lemma 2.1,
p. 252)). Thus, from (2.15) we infer that

L) + IIh()]

(@) < c(l[u(t) —u(0)|

/G B(t)vdz = /G A(t) (v — v6) da

_ /G(u(t) —u(0) - + R(t) : Vepda

By the assumption of the theorem the function on the right is continuous, so also
the function on the left. Consequently, p € C.,([0,00); L"(G)), and by a well-known
theorem of Pettis this shows that p is Bochner measurable.

Let ¢ € C§°(G x (0,00))™ be a given test function. Into (2.15) putting ¢ =
(-, t) integrating both sides of this identity over the interval (0, 00) yields

/ /(ufu(O))-cerfl:Vgodxdt:/ /ﬁV~<pda:dt. (2.17)
0o Ja o Ja
Now, applying Corollary2.5 one finds unique functions py € Cy ([0, 00); A™(G))
and pp, € Cy,([0,00); B"(G)) such that
p=po+pn in Gx(0,00).9

As one may easily check (2.15) implies p(0) = 0. Thus, by Corollary2.5 we deduce
pr(0) = 0. Moreover, observing (2.8) using (2.16) gives (2.13).

Into (2.17) inserting @ = V¢ for ¢ € C5°(G) recalling V-u =0 and Ap, =0
using integration by parts one obtains

/B(t):v2¢dx = /p’o(t)A¢dx V¢ e O (G).
G G

Let ¢t € (0,00) and let 0 < p < 1. Then from the above identity we derive

/M;V%dx _ / MAM:E (2.18)
G p ¢ P

1
5 Here vg denotes the mean value @) / v(z) dz.
n G

6 Notice, that /

Po(t)dx =0 and / p(t) dx = 0 implies / pp(t)dz = 0.
G G G
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for all ¢ € C§°(G). With help of Lemmal2.3 one gets the estimate

h(t + p) — h(t)
P

Po(t +p) — po(t)
p

g

L(G)

LT(G).

Then integrating both sides of the above estimate over the interval (0,7) (0 <
T < o0) using Minkowski’s inequality and Fubini’s theorem gives

where ¢ = const > 0 depending only on r,n and G. This shows that py €
WL 1[0, 00); A™(G)). Thus, setting pg := dpo from (2.19) we deduce

Po(- +p) — Do
p

< clhllzr0. 11 p:L7 () (2.19)
LY(0,T;L7(G))

||P0||L1(0,T;L'r(G)) < C||hHL1(0,T;Lr(G))-
Moreover, on both sides of (2.18) passing to the limit p — 0 using Riesz-Fischer’s
theorem one gets

/h(t):v%dx = /po(t)A¢dx V€ Cy(G)
G G

for almost all ¢ € (0,00). Then applying (2.5) (cf. Lemmal2.3) gives (2.12).

On the other hand, the identity (2.11)) easily follows from (2.17) replacing ¢
by O:p therein and applying integration by parts. The uniqueness of py and pp
follows directly from (2.12) and (2.13)). O

Next, by the aid of Theorem 2.6/ we will establish optimal estimates for the
special case G = Dpg, where

Dpr = {x e R"|R < |z| < 16R}.
In the proof of the main result we will make extensive use of the following
Corollary 2.7. Let 0 < R < co. Let u € Cy([0,00); L2(Dg)") with V-u = 0 (in

sense of distributions), such that

(o) o0
—/ / u-atcpdxdt—l—/ / (hy +hy) : Vo —f-pdedt =0 (2.20)
0 DR 0 DR
for all p € C§°(Dgr % (0,00))™ with V - ¢ = 0, where
hy € L% (Dg x (0,00))™,

hy € L*(Dg x (0,00))",
f € L'(0,00; L*(Dg)™)
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are given functions. Then there exist unique functions
pre Ll (OooA (DRr)),
P2 € L2(0 oQ; AQ(DR)),
P3 € Ll(O 05 A2 ( R)),
B € Cu([0,00); B (Dp)),

71+2

such that

—/ / u~8t<pd:cdt+/ / (hy +hy) : Ve —f - pdadt
0 Dgr 0 Dr
=/ / (p1 + po +p3)V~goda:dt—|—/ Vpn - Opdadt (2.21)
Dgr 0 Dgr

for all p € C§°(Dgr x (0,00))™ and

/ pi(t A(;Sda;—/ hy(t) : V¢ du, (2.22)
DR DR
/ pat Aqﬁdx—/ hy(t) : V¢ da, (2.23)
DR DR
/ p3(t Agbdxf/ f(t)-Vodr V¢ e C5°(DR) (2.24)
DR DR

for almost all t € (0,00). In addition, we have the a-priori estimates

2 (@Il < clhy @) nse (2.25)
lIp2(t )HszR) < cllha(t)||z2(py), (2.26)
Ips@)lL2(pry < cRIE@)]L2(Dg) (2.27)
and
= 2 n?+4
”p"(t)”ﬁ%zwﬁ) < R |lu(t) —a(0)[172(p,) + CIIh1|| BEL 1) 000))
t
nn=2 n?i4
+ R |h2l|72(prx(0.00)) + CR 2 /O f(s)ds o (2.28)
R

for almost all t € (0,00), where ¢ = const > 0 depending only on n.

Proof. First, let us prove the assertion for R = 1. To begin with we shall write
f = —V - hy for an appropriate hs : D; — R, For this purpose with help of [6]
(Th.III.3.4) we introduce a linear operator B : L*(D;1) — W1 2(D;)" fulfilling
the following properties

(i) V-Bg=g—gp, YgeL*(Di);

(i) [Bgllwr 2y < cllglezp,y Vg€ L*(Dy).
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Then we set 1
h(t) == Bf(t) + E(f(t))p1 ®x, te(0,00).
Clearly, hy € L'(0,00; W1 2(Dy)). Next, defining
h; :=h; — (h;)p, ae.in D; x (0,00)

it results

V-hy =f ae in Dj x(0,00). (2.29)
In addition, using Poincaré’s inequality and Holder’s inequality combined with the
property (ii) of B one gets

s ()l 2 (pyy < cllVhg(®)l[L2py) < cllf@)]l2(py) (2.30)
for almost all ¢ € (0, 00).
2
Now, set r = &, ro = 2 and r3 = 2*. Let k € {1,2,3}. According to
n

Lemma/2.4! for almost every ¢ € (0,00) there exist unique functions
pr(t) € A™(Dy),
such that
/ pe()Addz — / () : Vda Ve Co(Dy). (2.31)
Dy

D,
We claim that ¢ — py(t) is Bochner measurable. Indeed, letting v € L™ (D))

be a arbitrarily chosen by Corollary(2.5/there exist unique functions ¢ € VVO2 T (D1)
and p € B"k(Dy) such that v = A¢ + p. Thus from (2.31) it follows that

/ pr(t)vdr = / pe(t)Apdr = / hy(t) : V¢ da. (2.32)

D, D, D,

Since ¢ — hy(t) is Bochner measurable the function on the left of (2.32) is Lebesgue

measurable. Thus, by means of Petti’s theorem ¢ — pg(t) is Bochner measurable.
Next, let pg € LL ([0, 00); A5 (Dy)) and fj, € Cy ([0, 00); B*+ (Dy)) denote

the function obtained by Theorem2.6. By an inspection of the proof therein one

finds

/D p(©Asds = [ (n(t) + ho(t) + ha(t) : V2ods Yo € CF(D)

D,

for almost all ¢ € (0,00). On the other hand, summing up (2.31)) from k£ =1 to 3
one sees that for almost all ¢t € (0,00) the function p;(¢) + p2(t) + ps(t) satisfies
the above identity too. This implies

po=p1+p2+ps ae in Dy x (0,00)

which proves (2.21), (2.22)), (2.23) and (2.24).

The a-priori estimate (2.25) ((2.26) resp.) immediately follows from (2.22)
((2.23) resp.) using Lemmal2.3, while (2.27) follows from (2.31) (with k& = 3)
using Lemmal2.3| along with (2.30) and Holder’s inequality. On the other hand,
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the a-priori estimate (2.28) can verified easily from (2.13)) applying Minkowski’s
inequality.
Next, let 0 < R < oo be arbitrarily chosen. Defining

u(y,t) := Ru(Ry,1),
h, (y,1) := hi(Ry,1),
hy(y,t) == ha(Ry,1),
£(y,t) := RE(Ry,t), (y,t) € D1 x (0,00)
using the transformation formula of the Lebesgue integral the identity (2.20) turns
into

—/ /g-@tgodxdt+/ /(h1+h2):Vg0—£-<pdxdt:0 (2.33)
0 Dy 0 D1

for all ¢ € C§°(Dy x (0,00))™ with V - ¢ = 0. From the first part of the proof we
get functions

p, € L5 (0,00, A" (D)),
p, € L*(0,00; A%(Dy)),

py € LY(0,00; A% (D)),

n+2

ﬁh € Ow([0,00),B " (Dl))7
satisfying the identities (2.21)), (2.22), (2.23) and (2.24) and the a priori estimates
(2.25), (2.26)) , (2.27) and (2.28) (with R = 1). Finally setting
pr(x,t) = Bk(Rfla:,t) (k=1,2,3)
n(z,t) = Eh(Rflx,t), (x,t) := DR x (0,00)
once more applying the transformation formula of the Lebesgue integral shows
that these functions fulfil (2.21)), (2.22), (2.23) and (2.24) together with the a

priori estimates (2.25), (2.26) , (2.27) and (2.28)). This completes the proof of the
corollary. O

3. Proof of the Main Theorem

We divide the proof into four steps. At first we provide a sequence of weak solu-
tions {u,,} to the corresponding approximate system, which converge to a weak
solution u to (L.1)-(L.4). Secondly, for almost all 0 < T' < co we prove the strong
convergence of u,,(7T') to u(T) in L?(Q)". Thirdly, based on the monotonicity con-
dition of S and the L?-convergence we have achieved in step 2 we deduce that u
fulfils the strong energy inequality (1.7). Finally, in the fourth step we verify the
decay condition (1.9).
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EXISTENCE OF A WEAK SOLUTION TO THE APPROXIMATE SYSTEM

Let & € C*°([0,00)) be a non-increasing function, such that ¢ =1 on [0, 1],
$=0in [2,00) and 0 < —@’ < 2. For € > 0 we set

& (1) :=P(eT), T €]0,00).

Let up € H, f € L'(0,00; L2(Q)") and g € LQ(Q)”2. Using the method developed

in [26] one gets a unique weak solution u. € L?(0,00; V) N BC(0,00; H) to the
system

V-u. =0 in Q, (3

du. + V- (ue @ ueP.(|ue|) — S(z,t,D(ue))) (3

= -Vp.+f—-V.g in Q, (3.

(3

(3

usl =0,
o0 x(0,T)
u.(0) =uy in

i.e. the following identity
/ —u. - 9y + (S(l‘,t; D(us) —u:Q® ua¢e(‘“a|) : Vepdrdt
Q

:/f-<p+g:Vgodxdt+/uo~Lp(0)dx (3.6)
Q Q

holds for every ¢ € C°(Q)™ with V- ¢ = 0 and supp(yp) CC Q x [0, 00). Further-
more, using integration by parts from (3.6) it follows

sl + [ [ S@.r.Dw) s D) dear

¢
1
= / /f-ug—i—g : Vuodzdr + §Hug(s)||§{ (3.7)
s JQ

for all 0 < s <t < o0.
In what follows let K denote a positive constant, whose numerical value may
vary from line to line and its dependence will be specified if necessary. From (3.7)
observing (I1I) together with Korn’s inequality and Young’s inequality one easily
gets
[ucll Lo (0,00:0) + VU] 22(q) < K. (3.8)
Furthermore observing (II) using (3.8) yields
IS(-, D(ue)||r2q) < K. (3.9)

By virtue of Sobolev’s imbedding theorem using multiplicative inequalities
from (3.8) one deduces

[uc|

Lr(0,00:L0(Q)) < K (3.10)



Existence of turbulent solutions 15

for all p € [2,2*] and all 1 < r < oo such that

2 n n
42 =2 (3.11)
rop 2
By means of reflexivity of the spaces under consideration there exist a sequence of
positive numbers {e,,} with €, — 0 as m — oo and functions u € L?(0,00; V) N

L>(0,00; H) and S € L2(Q)"" such that

u., —u weaklyin L2 (Q)", (3.12)
Vu.,, — Vu weakly in LQ(Q)"2, (3.13)
S(-,D(u., )) — S weakly in LQ(Q)"2 as  m — oo. (3.14)

As it has been proved in [26] we have u € C,, ([0, 00); H) N L?(0, 00; V) and
S = S(x,t,D(u)) ae. in Q.

Thus, u is a weak solution to (1.1)-(L.4). Simultaneously, using Lions’ compactness
argument one has for every G CC Q and 0 < T < o0

: 2 n
uE""lGx(O,T) — ulGX(07T) strongly in  L°(G x (0,T))" as m —oo. (3.15)

In addition, using Riesz-Fischer’s theorem, from (3.15) (eventually passing to a
subsequence) one may assume that for almost all T' € (0, 00) and for every G CC Q
there holds

uc,, (T)lG — u(T)lG in L*(G)" as m — oo. (3.16)

STRONG CONVERGENCE OF u.,, (T) IN L?(12)

To begin with, let us define the following subsets of R"”
Go:={x e R"| 27! < |z < 2°+3},
Gpi={z e R"|2" < |z| <2}, [eN.

Let N € N, such that G, CC Q for all £ > N. Obviously, the identity (3.6])

implies
—/ / u.,, - Opdadt
o Ja,

+ / / (hl,»m’g + hQ,m7[) : VQD —f- (pd$ dt =0 (317)
0 Gy

for all ¢ € C§°(Gy x (0,00))™ with V - ¢ = 0, where

hy e :=—u., ® u,, @, (Ju,|),
hy e :=S(,D(ue,)) —g ae. in Ggx(0,00).
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Hence, we are in a position to apply Corollary2.7/ with h; = h; ,,, and hy =
hy ,,, ¢, which provides unique functions

n+

Prme € L5 (0,00, A" (Gy)),
Pa.me € L2(0,00; A*(Gy)),
P3¢ S Ll(oa o3 A2* (GZ))v

)

Phmye € Cuw(0,00; B = (Gy))  with  ppme(0) =0,

such that
—/ / u., - Opdadt
o Ja
[ ] (st ha) s Vo - £ pdad
o Ja,

= / / (P1,m,e +P2mye +03,0)V -0+ VDpmOppdrdt  (3.18)
0 Gy

for all ¢ € C§°(Gy x (0,00))™ and

/p1,m,e(t)A¢dx:/ hy () : Vg da, (3.19)
GZ Ge
/PZm,é(f)AdeI:/ hy m.e(t) : V2 dz, (3.20)
Gy Gy
| masods = [ 1) Vods voecrG)  (32)
G@ Gg

for almost all ¢t € (0, c0).
It is readily seen that (2.25), (2.26), (2.27) and (2.28)) imply

" < 2. .
||p1,m,€(t)”L#(G£) = KHuSm(t)"LQ%(GZ)? (3 22)
[p2,me()lz2c,) < K|S(-t, D(ue,, (1)) — 8(t)llr2(c,), (3.23)
Ips,e(t)ll L2y < K20E()] L2 (co)s (3.24)
and
5 2 gnitd 2
[15h,m.e(t)] L™ g < K207 ue,, (1) —aoll72(c,)
K|hy pmel?
+ Kby, ’Z||L%2(sz(o,oo))
nn=2
+ K272 g m el| 72 (6, x (0.00))
n2+44 t 2
+ K292 / f(s)ds (3.25)
0 L2(Gy)
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for almost all t € (0,00) 7. In particular, observing (II) using (3.8) and (3.10)
from (3.22), (3.23) and (3.24) one deduces

N

”pl,m,f(t)”L"%Q Go) + HpQ,m,l(t)”Lz(G@) > Ka (326)

(3.27)

(

IA
=
N

p3,e(t)l| L2(c0)

for almost all ¢ € (0,00), while from (3.25) one infers

”ﬁh,m,i(t)Hi"T‘*'?(Gz)
n244 z _
< K25 (e, ()~ wolagay + O, +27%) (329

for all ¢ € (0, 00), where

£(t) ::/0 f(s)ds, te€ (0,00).

We wish to mention that in all these estimates the constant K depends neither on
m nor on ¢ and also not on ¢ € (0, 00).
Next setting

Vi, = Ug,, + Vﬁh,m,é in Ggx (0700)7

from (3.18) we deduce

Ve + V- (u, ®u., 9, (Ju,,|) — S(z,t,D(u.,,)) +8)
=f— V(Pime+D2me+Dp3e) in Gex(0,00). (3.29)

Here v;, , € L2(0,00; WH2(Gy)™) + LY(0,T;X(Gy)*) stands for the distributive
time derivative of v, where

X(Gy) = {n € L*(Ge)" |V -n € L*(Go)} 5.
To be more precise, for every T' € (0,00) we have the following identity
" Recall that Gy = Doy¢—1 (cf. Section 2).
8 Here V -1 € L?(G) means there exists w € L?(Gy), such that

/ wodr = 7/ n-Vodz V¢ e C§°(Gy).
Ja, Gy
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/OT< (1), d5+//c:, (z,t,D(ue,,)) : Ve dadt

- / / (u., ®u., B, (ue,|) + ) : D(@)dadt
0 Gy

T
+ / / (P1,m.0 +P2,me +P3,0)V - @dadt
o Ja,

T
+/ / f.pdzdt (3.30)
0 Gy
for all ¢ € L2(0, 00; Wy *(G)™) N L (0, 00; X(Gy)).

Clearly, for every ¢ € C§°(Gy) the function v,, ¢t appears to be an appro-
priate test function in (3.30). However having in mind a-priori estimates for v on
the complement of a large ball we are going to define an appropriate partition of
unity subordinated to the covering {G¢}¢>n. That is a family of smooth functions
{¥¢}e>n, such that

(1) supp(y) C G,
2 Y ¢e=1 in {zxeR3||z|>2NF}
(=N
(3)  |Vih| < K27°
Obviously, as supp(wg) Nsupp(¥er2) = 0 for all £ > N besides (2) there holds

(2') z r=1 in {xeR3 |2k <|z| <21} VN <k <v<oo.

Now, choose T € (0,00) such that (3.16]) is valid. Then into (3.30)) inserting
@ = V0t using integration by parts yields

3 | e Ponde < 5 [ uofvds
/ S(a,t, D(uc ) : D(vo thy) dadt (3.31)
Q
/ / (U, ® e, @, (U, ) : V (Vi) dodt

+/ /(pl,m,e + P2,me + P3,0)Vim,e - Ve da dt
0o Ja

T T
+ / / f v epededt + / / g V(v ethe) da dt.
o Ja o Ja
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Observing (III) using the product rule one estimates

T
/ /S(m,t,D(ugm)) : D(Vip ot0y) dz dt
o Jo
T
> _/0 /iny/)gd:cdt
T
—|—/ /S(x,t,D(uEm)) t (Vi @ Vb)) dae dt
o Jo
T
+ / /Q S(2,1, D(ue,,)) : V2 gty da .
0

Thus, from (3.31) it follows that

1 1
3 [ Wa@Prds < 5 [ ol
Q Q

T T
+ / / Kotpp dx dt + / / f- leﬂ)g dx dt
0 Q 0 Q

+ 1, + 1+ 111, + IV, + Ve, (3.32)

where

]
3
[

T
- / / S(z,t,D(u.,,)) : (Ve ® Vo) dz dt,
0o Jo

[u—
]

3

~
Il

T
*/ /S(%t,D(Usm)) V2 Phmoete A dt,
0o Jao
T
L, ., :== / / g: V(Vm’ﬂ/)e) dz dt,
0 Ja
T
IV = / /(uem ® U, D.,, (Jue,.|) : V(Vim o)) da dt,
o Ja
T
Ve = / /(me,e + P2me + D3,0)Vin,e - Vi da dt
0 Ja
(m,l € N;£ > N).

In order to estimate integrals I, -V, ¢ we first state the following Lemma,
which for reader’s convenience will be proved in the appendix of this paper.

Lemma 3.1. For every 1 < r < 00,1 < ¢ < 00 and d € NU {0} there exists a
positive constant o, which depends only on r,q,d and n such that

IV%0ll o,y < {2977 w] prg,) Vw € BY(Ge). (3.33)
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2
Proof of Theorem 1.3 continued. Combining (3.33) (with r = nt ) and
n

(3.28) implies

||Vdﬁh,m7g(t)||Lq(Gl) < K{20)-dtion/2n/ay

x (lue,, (t) = woll2(a) + Il 22 +27°) (3.34)

for almost all ¢ € (0,00). Thus, integrating both sides of the last inequality over
(0,T) taking into account (3.8) applying Minkowski’s inequality shows that

) < K{2fmarton/zn/e, (3.35)

(Ge)
(i) Using Hélder’s inequality together with the property (3) of the family {¢¢}e>n
one finds

Lne| < K27VTIIS(, D(ue,, )l p2(@) e, [l 2 (0,00:22(2))
+ K2=%T|S(-, D(u.,,)]| > OT:L G-

Making use of the a-priori estimates (3.9), (3.10) and applying (3.35) (with d =1
and ¢ = 2) yields

L < K2-%T.

(ii) Similarly, estimating

1L,

(-, D(ue,)llz2@)
using (3.35) (with d = 2 and ¢ = 2) gives

1L, | < K27VT.
(iii) Arguing as in (i) and (ii) one gets

(0,T3L2(Gy))

T
[TIL,, ¢ < K27£\/T+/ /\gHVuEngdxdt.
0 Q

(iv) With help of the product rule one easily calculates

T
IV = / /(uem ®ue, P, (
0 Q

T
+ / / (u.,, @u., @ (e, ) : Vphmetpededt  (3.36)

/ / w @ue, P (

=1, + v, + v,

) : Vue, v dedt

Ue,,

Ue,, I)) Ve ® vwe dz dt

Firstly, applying integration by parts one finds

v

me — / / u, @u., P (

) s ue,, ® Vippda dt.

Ue,,
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Then, observing property (3) of the covering {t,},>n applying Hélder’s inequality
along with (3.10) gives

v < K27 u,,

ic‘(Q) < KQ—Z Tl—n/4.
Secondly, by the aid of Holder’s inequality one gets
2 -
V2D, < KTV ue, 3500y IV2Phmtll o 0,105y
Applying (3.35) (with d = 2 and ¢ = 3) using (3.10) implies
|IV£V2L7)5| < K27((1+H/G)Tlf’n/6.

Thirdly, using Holder’s inequality together with property (3) of the covering
{w¢}e>n one estimates

v, < K27(u.,,

12 + T,

2 ~
L3(Q) HVPh’va||L°°(0,T;L3(@g)))'

Once more appealing to (3.35) (with d =1 and ¢ = 3) taking into account (3.10)
gives

|IV£2)Z| < K(Q—ZTl—n/él + 2—@(1+n/6)T1—n/6)-

Thus, inserting the above estimates of TV'!) Isz))e and IVEE?@ into (3.36) taking

m, L)

into account T1~"/* < /T +1 for n = 2, 3,4 shows that

|Ivm,£| < K(Qiz\/m + 27@(1+n/6)T1,n/6).

(v) With help of Holder’s inequality one easily estimates

n+2

, < 27t _
Vil < c2 IIPLm,eIIL#(GIZX L2 (@ (0.T))

oyl

+ 62_£||p2,m,€ LZ(GKX(O,T))||Vm,€||L2(éé><(07T))

T
+ / /p37gvm - Ve dx dt.
0o Ja

Using (3.22), (3.23)) and the a priori estimate (3.10) along with (3.35) gives
T
Vel < K27WT+1 + / /puvm-vw dz dt.
0o Jo

Let £ € N with & > N be arbitrarily chosen. Inserting the estimates for
Ie — Ve into (3.32) summing up the resulting inequalities from ¢ = k to oo
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making use of the property (2’) of the partition of unity {¢;}¢>n gives

3 Vi o (T)|*t¢ da

< K(Q27"WT +1 4 27kQ+n/6)pi=n/6) / lug|? dz
{Jo|>2¢}

T T
/ / ke dadt + / / lg| |Vu,,, | dzdt
0 J{|z|=2*} 0 J{lz[=2*}

o0 T
+ Z/ /f.vmmdxdt
=70 Q

> T
+ Z / / P3,0Vm,e - Vipedz dt.  (3.37)
=k70 JQ

1. Estimation of the right hand side of (3.37) from above. a) With help of
Cauchy-Schwarz’s inequality using (3.8) results

T
[ llivu.,ldedt < Klglpormms. (639
0 J{lz|=2*}

b) Next, we claim that the two sums on the right of (3.37) are convergent.
To prove this fact we proceed as follows. From (3.34) with d = 1,¢ = 2 it follows

/@ Vinme(t)] de < K(|ue,, (t) = uollfa ) + IFOZ2@,) +27%) (3.39)
4

for almost all ¢ € (0,00). Taking the sum on both sides of (3.34) from ¢ = k to
oo recalling that Gy N Gyig = 0 for every £ > N using Minkowski’s inequality
together with (3.8) yields

(oo}
> /A IV Phm.e(t)* dz < K (3.40)
o=k’ Gt
for almost all ¢ € (0,00), where K = const > 0 depending neither on m nor on
t € (0,00).
Now, define

o0
U, = ZW in R".
=k
Recalling the definition of v, ; one calculates

oo T
Z/ /f-vm,mdxdt
=k 70 Q
T > T
:/ /f~u5m\11kdxdt+2/ /f~V;ﬁh,m’¢z/J¢dxdt. (3.41)
0o Ja =70 JQ
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Firstly, by means of Cauchy-Schwarz’s inequality one estimates
T
‘ / / f. ugm\Ijk dl’dt‘ S K||f||L1(O,T;L2(R”\B2k))- (342)
o Ja

Secondly, applying Cauchy-Schwarz’s inequality for sequences in Iy and re-
calling that supp(t¢) N supp(es2) = 0 for all £ > N using (3.40) yields

oo

D

{=k

/Q £(2) - Vinm.e(t) oy da

= :
20w ( 3 [ Fonm a0 o)
o=k 7 G

< K|E(0)l 2@\,

IN

for almost all ¢ € (0,00). Integrating both sides of the last estimate over the
interval (0,7") with respect to ¢ one arrives at

0o LT
Z/ /f-Vﬁh’ml’(/)[d.Tdt' < K”f”Ll(07T;L2(R7L\B2k)). (343)
=k 70 7O

Estimating right hand side of (3.41) by (3.42) and (3.43) gives

o0 T
Z/ /f-Vm7gwgd$dt‘ < K||f||L1(0’T;L2(Rn\B2k)). (344)
o=k 70 Q

¢) To estimate the second sum on the right hand side of (3.37) we argue as
follows. Clearly, by the definition of v,, ¢ we have

0o T
Z/ /p3,evm,e'vwdxdt
=70 0
T o0 T
:/ /pg,’kugm-wk dzdt + Z/ /pg’gv;ﬁh’m’g-vwdxdt. (3.45)
0 Ja —rJ0 Ja

Noticing that [V¥;| < K27F in R" and |[VV¥;| = 0 in R™ \ Gy applying
Cauchy-Schwarz’s inequality together with the a-priori estimate (3.24) yields

T
’/0 /ng,kugm ~V\Ilkdxdt‘ < K||f||2Ll(0’OO;L2(ak)). (3.46)
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Moreover, applying Cauchy-Schwarz’s inequality for sequences in Iy using
(3:40) and (3.24) one finds

> T
ZZ_]:C/OY /st,tz(t)Vﬁh7m7é(t) Vdedt’

T , 3
<x [ (Zz—”||p3,e<t>||22<cg>) dt.
=k

< K”f”Ll(O,T;LQ(R"\Brzk—l))' (347)

Combining (3.45), (3.46) and (3.47) implies
oo T
> P3,Vm,e - Vipede dt < K|f[1710 coin2@n\B,e 1)) (3.48)
=k 70 7O ’

2. Estimation of the left hand side of (3.37) from below. Calculating

o0

D Ve D)Pee = Jue,, (T)P0y

=k

+ D AV Bnm (D) Pbe + 2> e, (T) - Vipm ()
=k L=k

almost everywhere in ) making use of the property (2’) of the family {¢,}o>n it
follows that

3 Vi (T)|*t¢ da

> / fu.,, (D) de + 23 / e, (T) - Vo (T de. (3.49)
|| >2k+1 =Y/ Q

Estimating the left hand side of (3.37) from below by (3.49) and the right
hand side of (3.37)) from above by (3.44) and (3.48) yields

/ e, (T) dz < / Juo? da:
{|z|>2k+1} {|z|>2+}
+ K(2ik\/m + 27k(1+n/6)T17n/6)

+ K||k2| L2 @\ B,x_1 % (0,00))

+ KllgllL2@n\B,i_1 x(0,00)) + KllfllL10,7;020\B,0_1))
= / u,, (T) - Vinme(T)bedz.  (3.50)
o=k

Now, it only remains to estimate the last term on the right of (3.50). For,
take a sequence {n,} in D, (£2) which converges to u., (T) in L*(Q)" as v — oo.
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Using (3.40) applying Cauchy-Schwarz’s inequality in ls recalling Gy N Gyyq = 0
for all £ > N one easily deduces

< Kue, (T) = n,ll2(0)-
L3(Q)

> (e, (T) =n,) - Vinme(T)e
=k

Hence,

> o Vinme(Toe =Y ue, (T) - Vpnme(T)pe in L*Q) as v — oo
=k =k

Next, define
T
ﬁl,m,f(x) = / plmf(x;t) dtv
0
T
ﬁ2,m,€(x) = / p2,m,€(xa t) dtv
0

T
poc@)i= [ puslot)d,
_ T
hLm,g(l‘) ::/ hl,ml(l‘,t)dt,

T
h27m7g(.’£) = / hQ,myg(iﬂ,t) dt, xT € Gz /¢ > N.

As an immediate consequence of (3.19), (3.20) and (3.21) we have

/ PrmeAdde = / it e - V2 da, (3.51)

G[ G@

/ PomeApdz = / fio e : V26 da, (3.52)
Ge GZ

/ﬁumdx:/ f(T)-Vodz Ve CP(Gy). (3.53)
Gz Gl

With help of Minkowski’s inequality and Hoélder’s inequality making use of (3.10)
yields

Ihimellzzc) < Mmoo, @)
< ”usmH%%O,T;L‘*(GZ))
< T e, oo sy < KT

Using Holder’s inequality taking into account (3.9) gives

Ih2,m,ellz2coy < IS¢, D(ue,)) + gllz2cx oy < K.

2n n
9 Notice that — + L —.
8 4 2
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Thus, owing to Lemma/2.3| it is readily seen that

Plom,es P2m,es D3 € L*(Gy).

Furthermore, we have the following a-priori estimates

191, m.ell 22y + IP2mellz2@) < EVT +1, (3.54)
IBs.ellrz(co) < K20l 21(0,00:22(G0)) - (3.55)

By an inspection of the proof of Theorem 2.6 one gets a function p,, € L2 _(Q\
Byn-1), such that for all £ € N, £ > N there holds

Dr,me + D2me + D30 + Dhome(T) = Pm — (Pm)a, a.e.in Gy. (3.56)

In addition, using (3.54), (3.55) and (3.34) (with d = 0,¢ = r = 2) we get the
a-priori estimate

”.ﬁm - (ﬁm)GkHL2(Gk)
< K2%(|luc,, (T) —woll 2y + IfllLo,00s22(Gay + 27VT +1).  (3.57)

Applying integration by parts using (3.56) one calculates

> / Ny - Vinme(T)ede = — / Py - Y Vi de
=k Q Q

{=k

+> / (P1,m,¢ + P2,m,e + P3,e)n, - Vipeda. (3.58)
=k

Thanks to (1) and (2') verifying that > Vi, = 0 in {|z| > 28F1}) yields
=k
- / P, - Y Vippda = — / (B = (Bm) )M - V (k + Ppp1) da
@ =k G

Observing property (3) of the partition of unity {1 }¢>n using Cauchy-Schwarz’s
inequality and applying (3.57) one obtains

‘ [ B Y- Vds
Q I—Fk

< Kln, |2 (e, (T) = wol 2y + IEllL©0.00iL2(G0)) + 27T +1).
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On the other hand, using Cauchy-Schwarz’s inequality for sequences in [s
together with (3.54) and (3.55) it follows that

oo
Z/ (P1,m,e + DP2,m,e + P3,e)n, - Vipedz
=k 7

oo L
< Imllzaco (Z 272|510+ Pame + zag,mi?(cl))
L=k
< Kln, 2@ @7"VT +1 + [If]l10,00:L2(61)))-

Now, estimating the right hand side of (3.58) by the aid of the two estimates we
have just obtained and afterwards carrying out the passage to the limit v — oo
leads to

Ue,, (T) -Vp 7m’g(T)1/Jz dx
@

< K(ue,, (D)Z2 + IwollZz,y + Iflloiorrz@n s, 1)

+ K27"/T + 1.
Hence using the estimate above from (3.50) it follows
[ e @P
{lz|>2~+1}
<K lu., (T))*dx + K lug|? dz (3.59)

G {lz[>2+=1}
+ Kl[k2| 1@\ B, x(0,00))
+ K||gllL2®m\ Bk x(0,00))
+ Kl[fll L1 0,122\ By-1))
+ K@27"T +1 4 27F0+n/6)pl=n/6y

Next, let & > 0 be arbitrarily chosen. Clearly, one can select k¥ > N such that

/ |u(T)|2dx+/ lug|? da
Gr {lz|>2k=1}

+ [[K2ll L1 @\ B, x (0,00))
+ lgllL2@m\ B, x(0,00))
+ [Ifllz10,7:L2®"\B,x—1))

+ (2716 /T+1 4 27k(1+n/6)T17’n/6) S % (360)

and

wWT)dz < —2 3.61
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By the aid of (3.16) one can choose mg € N such that

/G |u5m(T)|2d:c—/G ()2 da < % (3.62)

’/ |u5m(T)|2dm—/ (7)) dz| < & (3.63)
Qﬁsz+1 QﬂB2k+1 4

for all m > myg.
Let m > mg. With help of the triangular inequality making use of (3.59)
along with (3.60), (3.61)), (3.62) and (3.63) one obtains
e, (T) 320y = 10D (ey| < e ()220 00 = 1022000

+ [Jue,, (T)H%Q(]R3\BQ;€+1) + ||U(T)H%2(R3\ng+1)

3
< o+ (K+ Dl[a(D)22@o\5,,_,) < o

Thus,
Huem(T)H%%Q) - HU(T)||2L2(Q) as  m — 0.

Moreover recalling that u. (7)) converges weakly to u(7) in L?(Q)" as m — oo
one infers

u., (T) — u(T) strongly in L*(Q)" as m — oo.

THE STRONG ENERGY INEQUALITY

Let us begin by defining the set J C [0,00) of all real numbers for which
(3.16)) is true. Clearly £1([0,00) \ J) = 0. As it has been proved in the previous
step there holds

e, Ola — [[u(@)lz as m—oo VieJ. (3.64)

Now, let s,t € J with 0 < s < ¢t < 0o be fixed. Owing to (III) one can easily
check that

/ /QS(~,D(u5m)) : D(u,,)dxdr
:/ QS(-,D(u)) : D(u,,,)dzdr
+ / /Q(S(',D(usm)) —S(,D(u))) : D(u.,,)dzdr
Z/S [ 8(.D() : Dlw,, ) dwdr

+ /S /(S(~,D(u5m)) —S(-,D(u))) : D(u)dzdr.

Q
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Thus, from (3.7) one deduces that
1 t
sluc. Ol + [ [ SC.D@) s Dl dor
t 1
< / / f-u, +g:Vu,, dedr + §||u5n(s)||§{
s Q

+ / (S(, D(ue,)) —S(-,D(u))) : D(u)dzdr.  (3.65)

By means of (3.14), (3.13) and (3.64) we are in a position to carry out the
passage to the limit m — oo on both sides of (3.65). This implies

gl + [ [ S.Dw) s Dlw)dedr

t
1
< / /f~u+g:Vudxd7’+ Sln(s)lE (3.66)
s Q

Whence, u is a turbulent solution.

DECAY FOR |[u(T)|[12(q) AS T — oo

First we define

= {T eJ ( u(T) € L+ (Q)”}.

Recalling that u € L2 (Q)™ shows that £;([0,00) \ J) = 0. Moreover, in J
there exists a sequence of numbers 1 <717 < T < ... <T; < ... with T} — oo as
j — oo such that

nt2 1
T de < ———— VYjieN. 3.67
[ mEEE @ < s v (367

Let 0 < § < 1 be a number which will be specified below. Let j € N. Clearly,
there exists a unique integer k = k(j) fulfilling

ok=1 < 574/T; < 2~ (3.68)

Without loss of generality we may assume that k — 1 > N, i.e. G C Q.
Let £ > k. Arguing as in step 2 from Corollaryl2.7| one gets unique functions

pre € L (0,00; A5 (Gy)),
Doy € L2(0,00; A%(Gy)),
P3e S Ll(oa o AQ* (Gf))v

. n+2

Phe € Cy(0,00; B77 (Gy)) with  ppe(0) =0,
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such that

—/ / u-Opdrdt
o Ja,

+/0 /Glu®u+s(-,D(u(t)))—g);V(P_f_(pdxdt

= / / (P10 + D2 +13.0)V - @+ Ve Opdrdt  (3.69)
o Ja,

for all ¢ € C§°(G¢ x (0,00))™ and

/ preB)Addr — / (u(t) ® u(t)) : V2edz, (3.70)
Gg GZ
/pummwx=/<aﬂmwm+gwwva, (3.71)
Ge GZ
/ prc(t)Addr = / £(t) - Vo do (3.72)
Gg GZ

for almost all ¢ € (0, 00), for all ¢ € C§°(Gy).
Observing, (III) taking into account (3.16)), (3.14) (3.12) and the fact

DPhym,e — Phye in L™(0,T; W2’"(@4)) as m — 0o (3.73)

carrying out the passage to the limit on both sides of (3.32)) as m — oo (replacing
T by Tj therein) one arrives at

1 1
f/M@Wwwgf/mwww
2 Q 2 Q

T T
+ / / Koty dax dt + / / f-veppdadt
0 Q 0 Q

+ I, + II, + IIT, + IV, + V,, (3.74)

where vy :=u + VP and

I, := —/ j/S(x,t,D(u))):(Vﬂ@VW)dxdt,

II, = / S(z,t,D(u)): V ﬁh,gwg dz dt,
Q
TJ
111, ':/ /g V Vﬂ/}g dxdt
IV, : / / u®u): V(v de dt,
TJ
Vi / /(p1,e + P2+ p3e)ve Vi dadt
Q
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(£ eN;£> N).
By an analogous reasoning we have used to get (3.59) one proves the a-priori
estimate

[ )P
{lz[>2++1}

< K/ (T2 de + K wl2de (3.75)
Byk+3NQ {lz|>2k=1}

+ K21 @\ B,y x (0,00))
+ KlgllL2 @\ B, x(0,00))
+ K|l L1(0,00:L2(®"\ B, 1))
_ _ —n 1-n/6
+ K270 /T; + 27 -n/0p /0y,

Using Holder’s inequality taking into account (3.68) and (3.67) one estimates

/ lu(T;)Pdz < K (2%/ a(Ty)[>5 dx)
sz+3ﬁQ B2k+3ﬂﬂ
K

< 627/ (n+2) (In(1 + Tj))2n/(n+2) : (3.76)

Combining (3.75) and (3.76]) one gets a positive constant Ky such that

(THIZ2 @) = IT)IZe@m 5,00 + 10T 728,000
S Kl/ ‘110|2d],‘ (377)
{lz|>2F=1}

+ Kil[k2|| L1 (Rr\ By x(0,00))
+ Killgllz2®m\B, x (0,00))
+ K|l 21 (0,00:22 R\ By 1))
+ !
52 ) (In(1 + T;) )2/ 9)

+ K073

Let 0 < a < 1 be arbitrarily chosen. Let § > 0 be fixed such that

K823 < % (3.78)
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Clearly, there exists j; € N, such that

/ lug|? dz
{lz|>2+)-1}

+ ||’€2HLl(O,OO;LQ(R"'\szu)))
+ ||gHL2(O,OO;L2(R”\ng(j)))
+ Ifll L1 (0,0052(RM\ B (5)-1))

1 «
<
+ 52n/(n+2)(ln(1 +Tj))2n/(n+2) ~ 4K,

for all j > j;1. Hence, using (3.78) and (3.79) from (3.77) one gets

« . . .
[a(T)20) < 5 VIEN j=2j1

Owing to the strong energy inequality we have for all T' € J,T > T}

(D) 17200y < ()72
T
- 2/ /(S(m,t,D(u))—g)  Vudadi
1, Ja
T
4 2/ /f.udxdt
<

[a(T)I72 0y + KVl L2@x (.00

+ K|l L2 (1) 00:12(02))-

Finally choosing j» € N such that

Q

K| Vullr2(ax (1,000 + Klfllz1 (1) 0022(0)) < 5
for all j > jo using (3.80) and (3.81) shows that
||u(T)H%2(Q) S a VT Z maX{le,sz}.

Hence the assertion of the theorem is completely proved.

Appendix A. Caccioppoli Inequalities for Harmonic Functions

PRrROOF OF LEMMA 3.1.

(3.79)

(3.80)

(3.81)

1. L*>-estimates for harmonic functions. Let V. CC U be two open bounded sets

with p := dist(V,9U). Let p € L'(U) being harmonic in U. Then

1
< — dz.
suplolo)l < 7 [ ol ds

(A1)
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Indeed, let € V. Then B,(z) C U. By the mean value property of harmonic

functions we have
1
wy)dy| < ———— w| dy.
]{3,,(;70) ) y' - Ln(Bl)pn/U| |dy
Whence (A.1)

2. The case £ = 1. Let w € B"(G;). We define the sets

jw(z)] =

G’::{xeR” g<\m|<5}7

G" = {xeR” §< || <7}.

~ 1
Verifying dist(G;,G') = 3 using (A.1) together with Caccioppli’s inequality yields
sup |de(sc)\ < KHdeHLz(G/) < K sup |w(z)].
(L‘Eé] zeG”
where K = const > 0 depending only on n and d.
1
Next, noticing that dist(G”,G;1) = g once more appealing to (A.1)) gives
w@)| < g [ uld
sup |w(z)] < ——— w| dz.
zeG’ ACn(-Bl) G1

Thus, combining the last two estimates applying Holder’s inequality implies

1 1
< ‘de|q dx) ’ < K<][ |w|" dz) .
él Gl

This completes the proof of (3.33) for ¢ = 1.

3. The case £ € N. Let w € B"(Gy). Using an appropriate changing of coor-
dinates applying the transformation formula of Lebesgue’s integral gives

< |V ea|? dx) ’ < KZ_M( [w|" dx) "
é[ Gl

Whence, (3.33). O
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