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Abstract. Our studies are motivated by a desire to model long-time
simulations of possible scenarios for a waste disposal. Numerical meth-
ods are developed for solving the arising systems of convection-diffusion-
dispersion-reaction equations, and the received results of several dis-
cretization methods are presented. For the methods we allow large time
steps to reach major simulation periods of about 10, 000 [a]. For that
we use higher-order discretization methods, which allow us to use large
time steps without losing accuracy. By decoupling a multi-physical and
multi-dimensional equation, simpler physical and one-dimensional equa-
tions are obtained and can be discretized with higher-order methods. The
results of each equation are thereby coupled with an operator-splitting
method. The discretization methods are described for the convection-
reaction equation and for the diffusion-dispersion equation. Both are
based on finite volume methods, which elements are centered in ver-
texes. For the convection-reaction equation a new modified discretization
method is presented by embedding analytical one-dimensional solutions
in the multi-dimensional finite volume methods. Using meliorated higher-
order operator-splitting methods, we can improve our methods for the
solution of the full equations. Some applications containing this methods
are computed with the underlying program tool R3T , and the main con-
cepts are presented. A benchmark problem based on analytical solutions
is introduced for testing the new discretization method and for presenting
higher-order results. Furthermore, a complex problem for the simulation
of radioactive waste disposals with underlying flowing groundwater is
presented. The transport and reaction simulations for the decay chains
are presented in 2d realistic domains, and we discuss the received results.
At the end, we present our conclusions and outlook for further works.

1 Introduction

Our studies are motivated by a desire to model the transport of radioactive and
chemical contaminants through an overlying rock. We are interested, in par-
ticular, in the long-time contamination of the underlying porous media. The
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mathematical model provides us with a coupled system of convection-diffusion-
dispersion-reaction equations. To solve such equation systems on different scales,
we have to deal with adapted discretization and solver methods. One main idea is
to split the full equation system and solve each simpler equation on the adapted
time scale. For such a splitting we apply and develop improved algorithms regard-
ing our target to achieve higher efficiency and more exact accuracy. For the small
scales, where the reaction equations as well as the convection equations belong
to, we use the explicit temporal discretization. For the larger scales, appertaining
equations are the diffusion and dispersion equations, we use the implicit tempo-
ral discretization. The spatial discretization methods deal with the finite volume
methods for all spatial terms. For more accuracy we apply the characteristic
method as an underlying discretization method on the convection equations on
fast scales. A mixture is presented for the convection-reaction equation on the
same scales, where we embed the analytical solutions of the one-dimensional
convection-reaction equations, which are limited by the CFL condition. Higher-
order methods are used by reconstruction with linear test functions. For the
diffusion-dispersion equation we use the implicit temporal discretization and the
standard finite volume methods. The underlying linear system of equations is
solved iteratively with a multi-grid solver. Our main advantage in this context is
the coupling of the different equation types to obtain higher-order discretization
methods. The methods are verified by benchmark problems and the numeri-
cal results are compared with the analytical solutions. A real-life problem is
presented as a simulation of a waste disposal with realistic parameters and un-
derlying layers in the porous media. The calculations are presented with figures
and convergence results.

The paper is outlined as follows. We introduce our mathematical model of
a contaminant transport in flowing groundwater in section 2. In section 3 we
introduce the finite volume methods to be used as basic discretization methods
for our different equations. The modifications on the finite volume methods with
respect to each equation type are explained in section 4 for the convection part,
in section 5 for the reaction part, in section 6 for the mixture of convection
and reaction equations, and in section 7 for the diffusion-dispersion part. The
operator-splitting methods are presented in section 8. Our numerical results
with benchmark problems and realistic waste disposals are described in section
9. Finally we discuss our future works in section 10 with respect to our research
area.

2 Mathematical model

We consider a steady state groundwater flow, that is described by a given velocity
field v = v(x) for x ∈ Ω ⊂ IRd for d = 2 or d = 3. In the groundwater several
radionuclides (or some other chemical species) are dissolved.

We suppose, that these nuclides take part in irreversible, first-order chemical
reactions. Particularly, each nuclide (a “mother”) can decay only to a single
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component (to a “daughter”), whereby each nuclide can be produced by several
reactions, i.e. each daughter can have several mothers.

Moreover, the radionuclides can be adsorbed to the soil matrix. If equilibrium
linear sorption is assumed with different sorption constants for each component,
the advective-dispersive transport of each component is slowed down by a dif-
ferent retardation factor.

Summarizing, the mathematical model can be written in the form, see [4, 5,
12],

R(i)φ
(

∂tu
(i) + λ(ij)u(i)

)

+ ∇ ·
(

vu(i) − D(i)∇u(i)
)

=
∑

k

R(k)φ λ(ki)u(k) , (1)

where i = 1, . . . , Iu. The integer Iu denotes the total number of involved radionu-
clides. A stationary groundwater is supposed by considering only divergence-free
velocity fields, i.e.

∇ · v(x) = 0 , x ∈ Ω . (2)

The unknown functions u(i) = u(i)(t, x) denote the concentrations of ra-
dionuclides, where the space and time variables (t, x) are considered as t ≥ 0
and x ∈ Ω. The constant reaction rate λ(ij) ≥ 0 determines the decay (sink)
term λ(ij)u(i) for the concentration u(i) and the production (source) term for
the concentration u(j). In general, the j-th radionuclide needs not to be included
in the system (1), i.e. j > Iu. The indices k in the right hand side of (1) run
through all mothers of the i-th radionuclide.

The remaining parameters in (1) include the diffusion-dispersion tensors
D(i) = D(i)(x, v), cf. [5], the retardation factors R(i) = R(i)(x) ≥ 1, and the
porosity of the medium φ = φ(x) > 0.

In the following we concentrate on the modeling of processes on the boundary
∂Ω of the domain Ω and describe inflow and outflow boundaries.
We apply standard inflow and outflow boundary conditions. Particularly, we
neglect the diffusive-dispersive flux at the outflow (and “noflow”) boundary
∂outΩ := {x ∈ ∂Ω, n · v ≥ 0},

n · D(i)∇u(i)(t, γ) = 0 , t > 0 , γ ∈ ∂Ω , (3)

where n is the normal unit vector with respect to ∂Ω. For the inflow boundary
∂inΩ := {x ∈ ∂Ω, n · v < 0} we assume, that the concentrations are prescribed
by Dirichlet boundary conditions

u(i)(t, γ) = U (i)(t, γ) , t > 0 , γ ∈ ∂inΩ , (4)

where the functions U (i) describe the boundary condition in the inflow boundary,
see [19].

The initial conditions are considered in a general form,

u(i)(0, x) = U (i)(0, x) , x ∈ Ω . (5)

Several authors present analytical solutions for the problem (1) with the as-
sumption of an unidirectional constant velocity v ≡ (v, 0, 0) and special bound-
ary and initial conditions, see [19, 34]. In this paper we introduce the finite
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volume discretization method to obtain a precise numerical solution of (1) for a
general form of the velocity v, e.g., v = v(x), and for the general boundary and
initial conditions (3) - (5).

The basic idea of our method is to apply a new second-order, explicit dis-
cretization scheme for the advective-reactive part of the system (1). This method
is based on analytical solutions for locally one-dimensional problems on bound-
aries between two finite volumes, analogously to the well-known Godunov algo-
rithm for purely advective problems, cf. [28]. This numerical method is locally
mass conservative and it produces numerical solutions with no unphysical oscil-
lations.

To solve the general model (1) numerically, we have to couple this new
method with some standard discretizations for the dispersion part of (1) us-
ing the operator-splitting procedure. We present a standard “vertex-centered”
finite volume method (or “control-volume finite element method”, see [28]) for
the discretization of the diffusive-dispersive part of the transport.

Due to the linearity of the equations in (1), we can split the problem (1) into
several simpler problems. Applying afterwards the principle of superposition, we
can obtain the solution of (1) by summing the solutions of such simpler problems.

These simpler systems are given for each u(i), where only a single linear decay
chain with u(i) at the top is considered. As each nuclide decays only to a unique
component of the system and only irreversible reactions are assumed, such decay
chains are uniquely defined. Consequently, we end up with the problem of the
form:

R(i)φ
(

∂tu
(i) + λ(i)u(i)

)

+ ∇ ·
(

vu(i) − D(i)∇u(i)
)

= R(i−1)φλ(i−1)u(i−1) , (6)

with the Dirichlet boundary conditions at the inflow boundary for t > 0 and
γ ∈ ∂inΩ

u(1)(t, γ) = U(t, γ) , (7)

u(i)(t, γ) = 0 , i = 2, . . . , I , (8)

and initial conditions for x ∈ Ω,

u(1)(0, x) = U(0, x) , (9)

u(i)(0, x) = 0 , i = 2, . . . , I . (10)

Clearly, the non-zero boundary and initial conditions (4) - (5) are only con-
sidered for u(i) with all other components having zero initial concentrations and
zero inflow concentrations. Moreover, for the first nuclide with concentration
u(1) we define formally λ(0) = 0, i.e. the nuclide at the top only decays. Further-
more, all reaction constants λ(i), except the last one, are supposed to be strictly
positive, i.e. λ(i) > 0 for i = 1, 2, . . . , I − 1, and λI ≥ 0. Of course there holds
I ≤ Iu.

In fact, the problem (6) - (10) can be furthermore splitted into two simpler
problems. Firstly, non-zero initial conditions (10) shall be considered with zero
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concentration at the Dirichlet boundary, i.e. U(t, γ) ≡ 0 in (7), and secondly, the
zero initial conditions shall be taken, i.e. U(0, x) ≡ 0 in (10), with general bound-
ary conditions (7). Again, the sum of both solutions constitutes the solution of
the problem (6) - (10).

Further on in this paper, we only treat the problem of the form (6) - (10).

3 Finite volume methods

The diffusion-dispersion part of the transport equation (6) will be discussed in
section 7.

To solve the remaining advection-reaction part of (6) by finite volume meth-
ods, we consider a mesh of nonempty non-intersecting finite volumes Ωj ⊂ Ω
that cover Ω. We assume that Ωj , j = 1, . . . , N are polygonal (consequently, Ω
must be polygonal, too).

To simplify the notation, we skip the index i in (6), i.e. u := u(i), and we
write:

Rφ (∂tu + λu) + ∇ · (vu) = Q , (11)

where Q = R(i−1)φλ(i−1)u(i−1).
Integrating (11) over Ωj and some time interval (tn, tn+1), we obtain

∫

Ωj

Rφ u(tn+1) =

∫

Ωj

Rφ u(tn) −

tn+1
∫

tn

∫

∂Ωj

nj · v u +

tn+1
∫

tn

∫

Ωj

(Q − λu) , (12)

where nj is the unit normal vector with respect to the boundary ∂Ωj of Ωj . For
simplicity, we skipped the integration variables in (12).

Furthermore, we suppose that the porosity φ and the retardation factor R
have a piecewise constant form with respect to the finite volume mesh, i.e.

φ(x) ≡ φj , R(x) ≡ Rj , x ∈ Ωj . (13)

For a general case of φ and R, we can apply some kind of averaging. Note that
Rj ≥ 1.

Finally, we denote the averaged concentration un
j of u at t = tn in Ωj , i.e.

un
j :=

1

|Ωj |

∫

Ωj

u(tn, x) dx , (14)

where |Ωj | denotes the volume of Ωj . Analogously to (14), we can define the
averaged values un+1

j .
Using the assumptions and notations from above, we can rewrite (12) in a

discrete form,

|Ωj |Rj φj un+1
j = |Ωj |Rj φj un

j −
∑

k

tn+1
∫

tn

∫

Γjk

nj · v u +

tn+1
∫

tn

∫

Ωj

(Q − λu) , (15)



6

where the index k is considered only for neighbors Ωk of Ωj with common sur-
faces, i.e. Γjk := ∂Ωj ∩∂Ωk . Note that the subscripts j and k here are related to
the finite volume mesh, and that they should not be mistaken with superscripts
in (1) reserved for indices of radionuclide components.

In fact, no numerical approximation was used in (15). Before applying some
second-order numerical discretization for (15) with no time-splitting discretiza-
tion error, we first discuss the solutions of the purely advective and purely reac-
tive case of our model.

4 Numerical solution of the advection equation

If no reactions are considered in (11), the remaining advection equation takes
the following form:

R φ ∂tu + ∇ · (vu) = 0 . (16)

The initial conditions are given by (10), and u(t, γ) is explicitly given for t > 0
at the inflow boundary γ ∈ ∂inΩ by (7).

The exact solution of (16) can directly be defined using the so-called forward
tracking form of characteristic curves. If the solution of (16) is known at some
time point t0 ≥ 0 and some point y ∈ Ω ∪ ∂inΩ, then u remains constant for
t ≥ t0 along the characteristic curve X = X(t), i.e. u(t, X(t)) = u(t0, y) and

X(t) = X(t; t0, y) = y +

t
∫

t0

v(X(s))

R(X(s)) φ(X(s))
ds . (17)

The characteristic curve X(t) starts at the time t = t0 in the point y, i.e.
X(t0; t0, y) = y, and it is tracked forward in time for t > t0. Of course, we
can obtain, that X(t) 6∈ Ω, i.e. the characteristic curve can leave the domain Ω
through ∂outΩ.

Consequently, we have that u(t, X(t; t0, y)) = U(t0, y), where the function
U(0, y) is given for t0 = 0 and y ∈ Ω by initial conditions (10) and for t0 > 0
and y ∈ ∂inΩ by the inflow boundary conditions (7).

The solution u(t, x) of (16) can also be expressed in a “backward tracking”
form, that is more suitable for a direct formulation of the discretization schemes.
Concretely, for any characteristic curve X = X(t) = X(t; s, Y ), that is defined
in a forward manner, i.e. X(s; s, Y ) = Y and t ≥ s, we obtain the curve Y =
Y (s) = Y (s; t, x), that is defined in a backward manner, i.e. Y (t; t, X) = X and
s ≤ t. If we express Y as function of t0 for t0 ≤ t, we obtain from (17):

Y (t0) = Y (t0; t, x) = x −

t
∫

t0

v(X(s))

R(X(s)) φ(X(s))
ds , (18)

and we have u(t, x) = u(t0, Y (t0)).
To simplify out treatment of inflow boundary conditions, we suppose that

U(t, γ) = Un+1/2 ≡ const for γ ∈ ∂inΩ and t ∈ [tn, tn+1). Moreover, we define
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formally for any γ ∈ ∂inΩ and t0 ∈ [tn, tn+1], that Y (s; t0, γ) ≡ Y (t0; t0, γ) for
tn ≤ s ≤ t0.

In [13], the so-called flux-based (modified) method of characteristics was de-
scribed. This method can be deemed as an extension of the standard finite vol-
ume methods (FVMs)). Using (15), the standard FVM for differential equations
(16) takes the form:

|Ωj |Rj φj un+1
j = |Ωj |Rj φj un

j −
∑

k

tn+1
∫

tn

∫

Γjk

nj(γ) · v(γ) u(t, γ) dγdt , (19)

The idea of a flux-based method of characteristics is to apply the substitution
u(t, γ) = u(tn, Y (tn; t, γ)) on (19).

Particularly, for the integration variable t ∈ (tn, tn+1) and for each point
γ ∈ ∂outΩj , the characteristic curves Y (s) are tracked backward, starting in
γ at s = t and ending in s = tn. We must reach a point Y = Y (tn), such
that Y ∈ ∂inΩ or Y ∈ Ω. In the first case, u(tn, Y ) is given by the inflow
concentration U(tn, Y ) = Un, in the latter one by u(tn, Y ).

The integral in the right hand side of (19) can be solved exactly for the one-
dimensional case with general initial and boundary conditions, see [30]. For the
general 2D or 3D case, a numerical approximation of u(t0, Y (t0)), respectively
of Y (t0), shall be used. Firstly, we describe such an approximation in the one-
dimensional case, and afterwards for the general 2D or 3D case.

4.1 1D case with a piecewise linear form of u(tn, x).

In the one-dimensional case the domain Ω ⊂ R is given by an interval (0, L).
Due to (2) we obtain, that v(x) ≡ v = const and (16) takes the form:

R φ ∂tu(t, x) + v ∂xu(t, x) = 0 , x ∈ (0, L) , t ≥ 0 . (20)

Next, we treat the case v > 0. An analogous treatment for a negative constant
value of v can be easily derived.

Let the finite volume mesh consist of J + 1 intervals Ωj := (xj−1/2, xj+1/2)
for j = 0, 1, . . . , J , where we define x−1/2 ≡ x0 = 0 and xJ+1/2 ≡ xJ = L. The
length of each interval is hj = xj+1/2 − xj−1/2, and the middle points xj for
j = 1, 2, . . . , J − 1 are defined by xj := xj−1/2 + hj/2. For some illustration of
the notation see figure 1.

Fig. 1. Notations for the one-dimensional case of the finite volume mesh.
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Let us now consider a particular form of the function u at t = tn:

u(tn, x) = un
j + σn

j (x − xj) , x ∈ (xj−1/2, xj+1/2] . (21)

This means, that u(tn, x) is a piecewise linear function with respect to the finite
volume mesh with some piecewise constant slopes (gradients) σn

j . For a general
form of u at t = tn, we have to construct the function u(tn, x) of the form (21).
For that, the values un

j can be obtained with the averaging procedure (14), the
choices for the slopes σn

j will be discussed in the next subsection.
Using (21), we can denote the value u(tn, xj+1/2) at the outflow boundary

point xj+1/2 of Ωj by

un
j+1/2 := un

j + σn
j

hj

2
. (22)

Note that u(tn, x) for x ∈ (0, L) is generally discontinuous over the points xj+1/2,
see figure 2 for an illustration.

The integral equation (19) can now be written in the one-dimensional form:

hjRjφju
n+1
j = hjRjφju

n
j + v

tn+1
∫

tn

(u(t, xj−1/2) − u(t, xj+1/2))dt. (23)

We can easily show, that for v > 0 and some small time interval t ∈ (tn, tn+1),
we have

u(t, xj+1/2) = u(tn, Y (tn; t, xj+1/2)) (24)

= un
j+1/2 + (un

j − un
j+1/2)

2v

Rjφjhj
(t − tn) , (25)

and we have an analogous equation for u(t, xj−1/2) = u(t, x(j−1)+1/2).
Clearly, the dependence on time of u in (24) is linear and the integral in (23)

can be computed exactly using the middle point quadrature rule. For that, we

denote u
n+1/2
j+1/2 := u(tn+1/2, xj+1/2) and obtain

u
n+1/2
j+1/2 = un

j+1/2 +
τn

τj
(un

j − un
j+1/2) , (26)

Fig. 2. Piecewise linear form of u(tn, x).
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where τj is the so-called critical time step, see [13]:

τj :=
hjRjφj

v
. (27)

Note that τn

τj
in (26) represents the so-called local grid Courant number.

The definitions (24) - (26) are valid, only if the time step τn satisfies the
so-called CFL (Courant-Friedrichs-Lewy) condition (see [28])

τn ≤ τCFL := min{τj , j = 0, 1, . . . , J} . (28)

The integral equation (23) now can be evaluated exactly for j = 0, 1, . . . , J
by

hjRjφju
n+1
j = hjRjφju

n
j + vτn

(

u
n+1/2
j−1/2 − u

n+1/2
j+1/2

)

, (29)

where u
n+1/2
−1/2 ≡ Un+1/2.

4.2 Construction of the piecewise linear form of u(tn, x).

To finalize the discretization scheme (29), we have to choose (or construct) the
slopes σn

j . It is well-known, see [28], that σn
j must be chosen carefully, otherwise

non-physical oscillations can be observed in the numerical solution of (29). These
can include under- and overshootings of physically acceptable values for the
solution.

To formulate precisely these difficulties and their solutions, we introduce the
concept of flux limiters (or slope limiters) based on the local discrete minimum
and maximum principle for numerical solutions of (29), as introduced in [13].

The simplest choice for the slopes σn
j in (21) is to set them all equal zero, so

that we obtain un
j+1/2 ≡ un

j . Consequently, the discretization scheme (29) turns
into the well-known first-order upwind scheme

hjRjφju
n+1
j = hjRjφju

n
j + v τn

(

un
j−1 − un

j

)

. (30)

For the equations (30), the local discrete minimum and maximum principle is
satisfied for j = 1, . . . , J ,

min{un
j , un

j−1} =: un
j,min ≤ un+1

j ≤ un
j,max := max{un

j , un
j−1} , (31)

if the CFL condition (28) is valid.
The property (31) is a consequence of the circumstance, that for (30) the

trivial solution un+1
j = un

j = un
j−1 = 1 is valid, that the coefficient before un+1

j

in (30) is positive, i.e. hjRjφj > 0, the coefficients before un
j and un

j−1 are
non-negative, i.e. hjRjφj − vτn ≥ 0, and vτn > 0.

To propose a higher-resolution form of (29), we can follow the approach of
[28] to reconstruct the piecewise linear form of u(tn, x) in (21) by defining the
slopes σn

j with using the values un
j−1, un

j and un
j+1.
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Here we mention only two particular choices of σn
j , for other forms and more

detailed discussion, see [28]. Firstly, as σn
j is used to define the value un

j+1/2 in

(26), we can naturally construct the slope σn
j with only two values un

j and un
j+1,

σj :=
uj+1 − uj

xj+1 − xj
, (32)

or, to consider all three values un
j−1, un

j and un
j+1, we can use the averaged

gradient over (xj−1, xj+1),

σj :=
uj+1 − uj−1

xj+1 − xj−1
=

xj+1 − xj

xj+1 − xj−1

uj+1 − uj

xj+1 − xj
+

xj − xj−1

xj+1 − xj−1

uj − uj−1

xj − xj−1
. (33)

The choice (32) leads to the so-called Lax-Wendroff method with

un
j+1/2 =

1

2
(un

j + un
j+1) , (34)

the choice (33) leads to the so-called Fromm method, see [28]. A generalization
of these two methods for the 2D and 3D case using unstructured grids will be
presented in the next subsection.

We now formulate the conditions, that lead to the local discrete minimum
and maximum principle for (29) with (32) or (33).

After substitution of (26) into (29), we obtain

hjRjφju
n+1
j =

(

hjRjφj − vτn τn

τj

)

un
j

− vτn(1 −
τn

τj
) un

j+1/2 + vτn u
n+1/2
j−1/2 . (35)

The coefficient before un
j+1/2 in (35) is negative, and the discrete min-max

principle (31) can not be directly obtained. Nevertheless, we can rewrite (35)
into a form, where all coefficients are non-negative by introducing the values
un

1/2+j (using a rather formal notation):

un
1/2+j := 2un

j − un
j+1/2 ⇒ un

j+1/2 = 2un
j − un

1/2+j . (36)

By substituting (26) and (36) to (29), we obtain

hjRjφju
n+1
j =

(

hjRjφj − vτn(2 −
τn

τj
)

)

un
j + (37)

+ vτn(1 −
τn

τj
) un

1/2+j + vτn u
n+1/2
j−1/2 .

Now, we can easily show, that all coefficients in (37) are non-negative, if the
CFL condition (28) is satisfied, because of

hjRjφj − vτn(2 −
τn

τj
) = v(τj − τn)(1 −

τn

τj
) . (38)
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Consequently, the local discrete min-max principle can be formulated with re-
spect to the values of u on the right hand side of (37). Of course, we want to
obtain the local discrete min-max principle with respect to the values un

j,min and
un

j,max defined in (31). For that the two following conditions must be fulfilled:

un
j,min ≤ un

1/2+j ≤ un
j,max , (39)

un
j,min ≤ u

n+1/2
j−1/2 ≤ un

j,max . (40)

In general the conditions (39) - (40) are not fulfilled and we have to apply
the so-called limiters to avoid non-physical oscillations in the numerical solution
of (29), as well as the so-called phase error, [28].

Using the discrete min-max principle and the equivalent formulation (37) to
(29), it is very easy and straightforward to formulate such limiters. The idea
is to replace the value un

1/2+j in (37) in the case of un
1/2+j 6∈ [un

j,min, u
n
j,max]

by the corresponding extreme value that was violated (u
n+1/2
j−1/2 can be replaced

analogously).
Particularly, the discretization scheme (29) can be replaced by a flux-limited

version
hjRju

n+1
j = hjRju

n
j + vτn

(

ũ
n+1/2
j−1/2 − ũ

n+1/2
j+1/2

)

, (41)

where

ũ
n+1/2
j+1/2 :=















un
j+1,max ū

n+1/2
j+1/2 > un

j+1,max

ū
n+1/2
j+1/2 un

j+1,min ≤ ū
n+1/2
j+1/2 ≤ un

j+1,max ,

un
j+1,min un

j+1,min > ū
n+1/2
j+1/2

(42)

and

ū
n+1/2
j+1/2 = ūn

j+1/2 +
τn

τi
(un

j − ūn
j+1/2) , (43)

with

ūn
j+1/2 :=















2un
j − un

j,max 2un
j − u

n+1/2
j+1/2 > un

j,max

un
j+1/2 un

j,min ≤ 2un
j − u

n+1/2
j+1/2 ≤ un

j,max .

2un
j − un

j,min un
j,min > 2un

j − u
n+1/2
j+1/2

(44)

The last limiter (44) is necessary to fulfill (39) for the j-th discrete equation
(29).

The first limiter (42) is necessary to fulfill (40) for the (j+1)-st discrete equa-
tion (29)). It needs not to be used for the Lax-Wendroff discretization scheme

(32), where we can directly use ũ
n+1/2
j+1/2 ≡ ū

n+1/2
j+1/2 .

The limiting procedure (42) - (44) can not fail, because the most limiting

choice ũ
n+1/2
j+1/2 = un

j , i.e. σ̃n
j = 0, is always available.

The advantage of the high-resolution finite volume scheme (41) is, that it
can be straightforwardly applied to 2D/3D advection equations computed on
unstructured grids, see the next section.
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4.3 2D/3D case

It is rather straightforward to extend the discretization scheme (41) for a 2D/3D
case of the advection equation (16). To do this, we first denote

vjk :=

∫

Γjk

nj(γ) · v(γ) dγ . (45)

Of course, vkj = −vjk . Further, we call a boundary Γjk of ∂Ωj to be the “out-
flow” boundary, if vjk > 0, and, analogously, “inflow” boundary, if vjk ≤ 0.
Similarly, we denote k ∈ out(j), if vjk > 0, and, consequently, j ∈ in(k).

Due to ∇ · v, we have

∑

k∈in(j)

vkj =
∑

k∈out(j)

vjk . (46)

We can regard (46) as the mass conservation property for the groundwater flow
in a discrete form.

In fact, a numerical approximation of vjk in (45) can be used by choosing
the middle point γjk of Γjk and

vjk :≈ |Γjk|nj(γjk) · v(γjk) , (47)

where |Γjk| denotes the measure of Γjk. Consequently, the discrete form (46) of
the mass balance property does not need to be exactly fulfilled in such a case,
but very often the groundwater velocity field is given as a result of the numerical
modeling, where the discrete equations (46) were included, and hence we suppose
in all our next considerations, that (46) is valid.

Using the notations and approximations from above, we can approximate
(19) by

|Ωj |Rj φj un+1
j = |Ωj |Rj φj un

j −
∑

k

vjk

tn+1
∫

tn

u(tn, Y (tn; t, γjk)) dt . (48)

The simplest discretization scheme for (48) is to assume a piecewise constant
form of u(tn, x) with respect to the finite volume mesh, that means u(tn, x) = un

j

for x ∈ Ωj . Consequently, for “enough small” time steps τn, the characteristic
curves Y (tn; t, γjk), that start at outflow boundaries γjk ∈ Γjk , remain for t ∈
(tn, tn + τn) in Ωj and thus u(tn, Y (tn; t, γjk) ≡ un

j .
Using the assumptions from above, we can evaluate (48) by

|Ωj |Rj φj un+1
j = |Ωj |Rj φj un

j − τnun
j

∑

k∈out(j)

vjk + τn
∑

k∈in(j)

vkju
n
k . (49)

The discretization scheme (49) can be regarded as the first-order upwind
(upstreaming) scheme. If the time step is restricted by the CFL condition τn ≤
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τCFL, see (28), then the numerical solution of (49) satisfies the local discrete
minimum and maximum principle

un
j,min ≤ un+1

i ≤ un
j,max , (50)

where the extreme values are given by

un
j,min := min{un

j ; un
k , k ∈ in(j)} , un

j,max := max{un
j ; un

k , k ∈ in(j)} .

The critical time steps τi in (28) are now defined by

τi :=
|Ωj |Rjφj

vj
, (51)

where vj denotes the total outflow (or inflow) flux for Ωj , i.e.

vj :=
∑

k∈out(j)

vjk . (52)

The extension of the one-dimensional high-resolution scheme (29) on the
2D or 3D case can be derived in several different ways obtaining at the end
several different discretization schemes. Here we present the simplest and the
most straightforward one,

|Ωj |Rj φj un+1
j = |Ωj |Rj φj un

j − τn
∑

k∈out(j)

vjku
n+1/2
jk (53)

+ τn
∑

k∈in(j)

vkju
n+1/2
kj ,

where

u
n+1/2
jk := un

jk +
τn

τi
(un

j − un
jk) . (54)

The value un
jk should represent (approximate) the value of u at xij := 0.5 (xi +

xj). The simplest choice

un
jk :=

1

2
(un

j + un
k ) (55)

can be regarded as the generalization of the Lax-Wendroff scheme (34). A general
choice can be derived from

un
jk := un

j + σn
jk · (xjk − xj) , (56)

where σn
jk is some reconstructed gradient used for the determination of un

jk.
Later we describe a particular algorithm for the reconstruction of σn

jk ≡ σn
j for

the so-called vertex-centered finite volumes.

Theorem 1. We have a second-order method for the equation (56), and our
approximation error is given as:

|u(tn, xjk) − un
jk| ≤ O((∆xjk)2) , (57)

where u(xjk, tn) is the approximated solution and un
jk is the exact solution. Fur-

ther ∆xjk = (xjk − xj) is the spatial step size of the underlying grid.
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Proof. Based on the literature for conservation laws, see [27, 28], we start with
the reconstruction of the approximate solution un

jk given as

un
jk := un

j + σ
n
jk · (xjk − xj) , (58)

where σn
jk is some reconstructed gradient used for the determination of un

jk .
If we reset σn

jk with some reconstructed gradient ∇un
jk, we obtain

un
jk := un

j + ∇un
jk · (xjk − xj) , (59)

where ∇un
jk is reconstructed with the neighborhood elements, see [29, 32].

Furthermore, our analytical solution u(xjk , tn) is given as:

u(tn, xjk) := un
j +∇un

jk · (xjk −xj) + ∆un
jk · (xjk −xj)

2 + O((xjk −xj)
3) . (60)

By subtracting the analytical solution (60) of the approximate solution (59), we
obtain the following error,

|u(tn, xjk) − un
jk | ≤ O((xjk − xj)

2) , (61)

where we obtain a second-order accurate method, see also [28, 35]. This proofs
our statement of the theorem.

For methods higher than second order we have to approximate the second
derivative of the Taylor expansion, see also [32]. It might be more delicate because
of further reconstructions and limiting processes with the neighbor and neighbor-
neighbor elements.

In the next step we prove the discrete min-max principle for (53). We rewrite
it formally into the form

|Ωj |Rj φ un+1
j =

(

|Ωj |Rj φj − τnvj(2 −
τn

τi
)

)

un
j + (62)

+ τn
∑

k∈out(j)

vjk(1 −
τn

τi
)un

jk′ + τn
∑

k∈in(j)

vkju
n+1/2
kj , (63)

where the value un
jk′ is given analogously to (36) by

un
jk = 2un

j − un
jk′ . (64)

Based on (62), we formulate the final discretization scheme with the limiter

|Ωj |Rj un+1
j = |Ωj |Rj un

j − τn
∑

k∈out(j)

vjkũ
n+1/2
jk + τn

∑

k∈in(j)

vkj ũ
n+1/2
kj , (65)

where

ũ
n+1/2
jk :=















un
k,max ū

n+1/2
jk > un

k,max

ū
n+1/2
jk un

k,min ≤ ū
n+1/2
jk ≤ un

k,max ,

un
k,min un

k,min > ū
n+1/2
jk

(66)
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and

ū
n+1/2
jk := ūn

jk +
τn

τi
(un

j − ūn
jk) , (67)

where

ūn
jk :=











2un
j − un

j,max 2un
j − un

jk > un
j,max

un
jk un

j,min ≤ 2un
j − un

jk ≤ un
j,max .

2un
j − un

j,min un
j,min > 2un

j − un
jk

(68)

Using this approach, the so-called grid effect can corrupt the obtained numeri-
cal solutions and we have satisfied the discrete min-max principle. At least the
result of the improved approximation is based on the middle-point rule, which
preserves the min-max principle.
The next section describes the analytical solutions of the reaction-equation sys-
tem.

5 Solution of the reaction-equation system

If we consider only the reaction part of the general equation (6), we have a
system of ordinary differential equations,

R(1)φ
(

∂tu
(1) + λ(1)u(1)

)

= 0 , u(1)(x) = U(0, x) , (69)

R(i)φ
(

∂tu
(i) + λ(i)u(i)

)

= R(i−1)φλ(i−1)u(i−1) , u(i)(x) = 0 ,

for i = 2, . . . , I , where the dependence on the space variable x ∈ Ω is realized
only through initial conditions for the first component and through retardation
factors R(i).

If all reaction constants λ(i) are different, the exact solution is given by

u(i)(t, x) = U(0, x)
R(1)(x)

R(i)(x)
Λi

i
∑

j=1

Λj,i exp(−λ(j)t) , (70)

where the constants Λi and Λj,i for j = 1, . . . , i are defined as:

Λ1 := 1 , Λi :=

i−1
∏

k=1

λ(k) , i = 2, . . . , I , (71)

Λ1,1 := 1 , Λj,i :=
i
∏

k=1
k 6=j

1

λ(k) − λ(j)
, i = 2, . . . , I . (72)

The exact solution of the reaction equations can be used for the numerical
solving of the general system (6) using the so-called operator-splitting method,
see, e.g. [28].
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6 General advection-reaction discretization scheme

The system of equations for the convective transport with decay reactions takes
the form:

∂t

(

R(l)φu(l)
)

+ ∇ ·
(

vu(l)
)

+ λ(l)R(l)φu(l) = λ(l−1)R(l−1)φu(l−1) . (73)

In general, we can use the exact scheme (70) for the decay part of (73) and the
explicit discretization scheme (53) for the transport part. If the parameters θ(l)

for each component are not strongly different, i.e. θ(l) ≈ θ for l = 1, . . . , I , then
the operator-splitting approach ( see [28]) only has a small temporal splitting
error, and it can be successfully used for (73).

But in general, e.g. if the retardation factors are different, the convection
and the reaction operator do not commute, and the standard operator-splitting
method can have a large temporal splitting error.

Here we present a novel algorithm for the computations of (73).
Concretely, for each Ωi and j ∈ out(i), we have the following system of 1D

convection-reaction equations for l = 1, . . . , I :

R
(l)
i φi∂tu

(l)
i + vij ∂xu

(l)
i + λ(l)R

(l)
i φiu

(l)
i = λ(l−1)R

(l−1)
i φiu

(l−1)
i . (74)

The equation can be solved exactly for particular initial conditions, which is
discussed in the next section 6.1. In the following, we consider the space variable
x ∈ (0,∞), and the velocity vij > 0, given by (45).

We rewrite the concentration c
(l)
i := R

(l)
i φiu

(l)
i and the velocity ṽij :=

vij

R
(l)
i

φi

and obtain:

∂tc
(l)
i + ṽij ∂xc

(l)
i + λ(l)c

(l)
i = λ(l−1)c

(l−1)
i . (75)

Because of the time restiction, we first calculate the maximal time step for the
cell j and the concentration i with respect to the total outflow fluxes,

τl,i =
Vi R(l)

νi
, νi = vij , j = out(i).

We get the restricted time step with the local time step of each of the cells and
their underlying components

τn ≤ min
l=1,...,m

i=1,...,I

τl,i .

The velocity of the discrete equation is given as

vl,i =
1

τl,i
.

We calculate the analytical solution of the mass, see the next section 6.1, by
using the equations (80) and (81). We obtain

m
(l),n
ij,rest = m

(l),n
1 (a, b, τn, v1,i, . . . , vl,i, R

(1), . . . , R(l), λ(1), . . . , λ(l)) ,

m
(l),n
ij,out = m

(l)
2 (a, b, τn, v1,i, . . . , vl,i, R

(1), . . . , R(l), λ(1), . . . , λ(l)) ,
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where a = ViR
(l)(c

(l),n
ij − c

(l),n
ij′ ) , b = ViR

(l)c
(l),n
ij′ and m

(l),n
i = ViR

(l)c
(l),n
i are

the parameters and j = out(i), j ′ = in(i) are the indices of the flows. The linear

impulse in the finite volume cell is constructed by c
(l),n
ij′ for the concentration on

the inflow boundary and c
(l),n
ij for the concentration on the outflow boundary of

the cell i.
The discretization with the embedded analytical mass is calculated by

m
(l),n+1
i = m

(l),n
ij,rest + m

(l),n
j′i,out ,

where m
(l),n
ij,rest = m

(l),n
i −m

(l),n
ij,out is the residual mass coming from the total mass

and the outflown mass. The mass in the next time step is m
(l),n+1
i = Vi c

(l),n+1
i ,

and in the old time step it is the residual mass for the concentration l . The
proof is done in [17]. In the next section we derive an analytical solution for the
benchmark problem.

6.1 Exact mass solutions for 1D system of advection-reaction
equations

For a simpler computation we transform the cell Ωi = (0, L) to an unit cell
Ωi = (0, 1). We also have to arrange c(l) = R(l)φu(l) to obtain a simpler system
of equations. For the one-dimensional mass solution the simpler equations are
given as, see [17]:

m
(l)
1 = Λ(l)

l
∑

i=1

Λ
(l)
i exp(−λit)






a
(1 − vit)

2

2
+ b(1 − vit −

l
∑

j=1
j 6=i

1

λij
)

−a(1 − vit)(

l
∑

j=1
j 6=i

1

λij
) + a

( l
∑

j=1
j 6=i

1

λij
(

l
∑

k≥j

k 6=i

1

λik
)

)






, (76)

where the factors λij are defined as:

λji = λij :=
λ(i) − λ(j)

v(i) − v(j)
, (77)

and the factors Λ(l), Λ
(l)
j and Λ

(l)
ij are given as:

Λ(l) =

l−1
∏

i=1

λi , Λ
(l)
i =







l
∏

i=1
j 6=i

1

λj − λi






, Λ

(l)
ij =









l
∏

k=1
k 6=j

k 6=i

λik

λik − λij









. (78)

For the outflowing mass mi2 we compute the summation of the masses miges
,

m(l)
ges = mimpuls c

(l)
GDGL (79)

= m
(l)
1 + m

(l)
2 .
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The total mass is given as

m(l)
ges = Λ(l)

(

l
∑

i=1

Λ
(l)
i exp(−λit)(a

1

2
+ b)

)

.

The outflowing mass is calculated as

m
(l)
2 = m(l)

ges − m
(l)
1 .

For the discretization we get the following functions:

m
(l),n
ij,rest(τ

n) = m
(l)
1 (a, b, τn, v1,i, . . . , vl,i, R

(1), . . . , R(l), λ(1), . . . , λ(l)) , (80)

m
(l),n
ij,out(τ

n) = m
(l)
2 (a, b, τn, v1,i, . . . , vl,i, R

(1), . . . , R(l), λ(1), . . . , λ(l)) , (81)

where a = R
(l)
i Vi(c

(l),n
ij (τn) − c

(l),n
ij′ ) , b = R

(l)
i Vic

(l),n
ij′ and j ∈ out(i) .

For the equations (80) and (81) we have used the one-dimensional outflow
through the outflown boundary, given as

νi = vij , j = out(i) , (82)

where the CFL condition, that has to be fulfilled, is given as

τl,i =
Vi R

(l)
i

νi
.

Therefore the velocity for each cell i on the unit interval is given as

vl,i =
1

τl,i
.

Thus the resulting time step, used in (80) and (81), is given as τn ≤ min l=1,...,M

i=1,...,I

{τl,i}.

For an illustration of the piecewise linear impluse applied for the mass solu-
tion in (76) we refer to the figure 3.

7 Diffusion-dispersion discretization scheme

We discretize the diffusion-dispersion equation with implicit time discretiza-
tion and finite volume methods with constant test functions. We deal with the
diffusion-dispersion equation given as

∂tR u −∇ · (D∇u) = 0 , (83)

where u = u(x, t) with x ∈ Ω and t ≥ 0 . The diffusions-dispersions tensor is
D = D(x,v) given by the Scheidegger approach, cf. [31]. The velocity is given
by v and is piecewise constant in the cells. The retardation factor is R > 0.
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c

x
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x
(l)

x
(l)

c

c

i j’ i i j

i j   

i

i j’
(l),n

(l),n
(l),n

Fig. 3. Piecewise linear impulse given with the concentrations c
(l),n
ij (τn) and c

(l),n

ij′
.

We have Neumann boundary values, given as n · D ∇u(x, t) = 0, where
x ∈ Γ = ∂Ω, cf. [13]. The initial conditions are given as c(x, 0) = c0(x).

We integrate the equation (83) over space and time and get

∫

Ωj

∫ tn+1

tn

∂tR(c) dt dx =

∫

Ωj

∫ tn+1

tn

∇ · (D∇c) dt dx . (84)

We apply the backward Euler method and exactly integrate the left hand side
of the equation (84). The right hand side is lumped for the diffusion-dispersion
term, cf. [17], thus there holds:

∫

Ωj

(R(cn+1) − R(cn)) dx = τn

∫

Ωj

∇ · (D∇cn+1) dx . (85)

The equation (85) is discretized over the space with using the Greens formula.
We obtain the following equation,

∫

Ωj

(R(cn+1) − R(cn)) dx = τn

∫

Γj

D n · ∇cn+1 dγ , (86)

where Γj is the boundary of the finite volume cell Ωj . We use the approximation
in space, cf. [17].

The integration of the equation (86) is done for finite boundaries. Using the
middle-point rule yields:

VjR(cn+1
j ) − VjR(cn

j ) = τn
∑

e∈Λj

∑

k∈Λe
j

|Γ e
jk |n

e
jk · De

jk∇ce,n+1
jk , (87)

where |Γ e
jk| is the length of the boundary element Γ e

jk. The gradients are calcu-
lated with the piecewise finite element function φl and we get

∇ce,n+1
jk =

∑

l∈Λe

cn+1
l ∇φl(x

e
jk) . (88)
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Because of the reconstruction of the gradient with the piecewise linear finite
element functions, we obtain a second-order discretization method, cf. [15]. This
leads to the following discretization form:

VjR(cn+1
j ) − VjR(cn

j ) = (89)

= τn
∑

e∈Λj

∑

l∈Λe\{j}

(

∑

k∈Λe
j

|Γ e
jk |n

e
jk · De

jk∇φl(x
e
jk)
)

(cn+1
j − cn+1

l ) ,

where j = 1, . . . , m.
In the next section we describe the operator-splitting methods, that are used

to decouple the full equations.

8 Operator-splitting methods

The operator-splitting methods are used to decouple complicated partial differ-
ential equations into simpler equations and are often used in the geophysical and
environmental physics. They are developed and applied in [33],[36] and [39].

The ideas based in this article are to solve simpler equations with higher-
order discretization methods. For this aim we use the operator-splitting method
and decouple the equation with respect to the different time scales into simpler
equations. There are many possible ways to combine the methods to achieve
an effective higher-order discretization method. One possibility is to discretize
the convection equation with a characteristic method, the diffusion-dispersion
equations with finite volume methods, and the reaction equations with exact
methods. Another way would be to solve the convection-reaction equations with
one mixed discretization method, and the diffusion-dispersion equation with fi-
nite volume methods.

In the following we consider the system of ordinary differential equations
given as

∂tc(t) = A c(t) + B c(t) , (90)

where the initial conditions are cn = c(tn) . The operators A and B are assem-
bled by the spatial discretizations, e.g. the convection part with characteristic
methods and the diffusion part with finite volume methods.

The operator-splitting method is introduced as a method, which solves the
two equation parts sequentially with respect to the initial conditions. We get
two simpler equations

∂c∗(t)

∂t
= Ac∗(t) , with c∗(tn) = cn , (91)

∂c∗∗(t)

∂t
= Bc∗∗(t) , with c∗∗(tn) = c∗(tn+1) ,

where the time step is τn = tn+1− tn. The solutions of the equations are cn+1 =
c∗∗(tn+1).
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The local splitting error of the sequential splitting method is given as, cf.
[17]:

ρn =
1

2
τn[A, B] c(tn) + O((τn)2) , (92)

where [A, B] := AB−BA is the commutator of A and B. We get an error O(τn),
if the operators A and B do not commute, otherwise the method is exact.

We improve our method by the so-called Strang splitting method, which is of
second order, cf. [33].

The method is presented as

∂c∗(t)

∂t
= Ac∗(t) , with tn ≤ t ≤ tn+1/2 , c∗(tn) = cn , (93)

∂c∗∗(t)

∂t
= Bc∗∗(t) , with tn ≤ t ≤ tn+1 , c∗∗(tn) = c∗(tn+1/2) ,

∂c∗∗∗(t)

∂t
= Ac∗∗∗(t) , with tn+1/2 ≤ t ≤ tn+1 , c∗∗∗(tn+1/2) = c∗∗(tn+1) ,

where the results of the method are cn+1 = c∗∗∗(tn+1).
The splitting error of this method is given as, cf. [24],

ρn =
1

24
(τn)2([B, [B, A]] − 2[A, [A, B]]) c(tn) + O((τn)4) , (94)

where we get the second order for non-commuting operators.
For our methods it is sufficient to have second-order decomposition methods.

Further higher-order splitting methods are described in the literature [8],[22] and
[25].

In the next section we present the results of our numerical experiments.

9 Numerical experiments

9.1 Benchmark model

First, we illustrate the method of the section 6.1 on a simple 1D example with
four components, where the porosity is φ and the retardation factors have the
values R(1) = 1, R(2) = 2, R(3) = 4 and R(4) = 8. The numerical solution at the
last computation time t = 6 is presented in figure 4 and it cannot be distinguish
from the exact solution. The computations were realized with τn = τn

CFL/2, i.e.
with the Courant number 0.5, the domain Ω is given as the interval (0, 8) ⊂ IR+.

In the table 1, we compare the absolute error E1 for the standard operator-
splitting approach (the second column) and the equivalently defined error E2

for the new algorithm (the fourth column). The results are presented for several
uniformly refined grids and the numerical convergence rates are presented for the
operator-splitting algorithm (the third column) and the new algorithm (the fifth
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Fig. 4. Four components of the numerical solution for t = 6 with the retardation factors
R(1) = 1 (top), R(2) = 2, R(3) = 4 and R(4) = 8 (bottom). The velocity is v ≡ 1 and
the domain is (0, 8) ⊂ R.

column). As expected, for the operator-splitting method, the convergence rate
is approximately 1, i.e. the absolute error is halved for one grid refinement, and
the convergence rate for the new algorithm is approximately 2, i.e. the absolute
error is four times smaller after one grid refinement.

h E1 · 10
−4 α1 E2 · 10

−4 α2

1/16 413.2 23.76
1/32 201.3 1.04 5.573 2.09
1/64 99.25 1.02 1.374 2.02
1/128 49.25 1.01 0.344 1.99

Table 1. The absolute error E1 (operator-splitting method) and E2 (the new algorithm)
for the fourth component of the numerical solution. The third and fifth column contain
the corresponding convergence rates.

In the next subsection we present complex scenarios in a waste disposal done
in a salt dome.



23

9.2 Two-dimensional model of a waste disposal

We calculate some scenarios of waste cases, which help us to get new conclusions
about the waste disposals in salt domes.

We have a model based on an overlying rock over a salt dome. We suppose an
waste case, so that a permanent source of radioactive contaminant groundwater
flows from the bottom of the overlying rock, where the waste disposal is suited.
We suppose that the contaminants are flown with the groundwater, which is
flown through the overlying rock. Based on our model we calculate the transport
and the reaction of this contaminants coupled with decay chains. The simulation
time is 10000[a] and we calculate the concentration, that is flown up to the top
of the overlying rock. With this dates we can conclude, if the waste disposal is
save enough. The two-dimensional test case is presented with the dates of our
project partner GRS in Braunschweig (Germany), cf. [10] and [11].

We have a model domain with the size of 6000[m] × 150[m] with four dif-
ferent layers with different permeabilities, see [10]. The domain is spooled with
groundwater from the right boundary to the left boundary. The groundwater is
flowing faster through the permeable layer than through the impermeable layers.
Therefore the groundwater flows from the right boundary to the half middle of
the domain. It is flowing through the permeable layer down to the bottom of the
domain and spooled up in the left domain to the top. The groundwater flows
in the left top part to the outflow at the left boundary. The flow field with the
velocity is calculated with the program package d3f and presented in figure 5.

Fig. 5. Flow field for a two-dimensional calculation.

In the middle of the bottom of the domain, the contaminants are flown in
as a permanent source. With the stationary velocity field, the contaminants are
computed with the software package R3T . The flow field transports the radioac-
tive contaminants up to the top of the domain. The decay chain is presented
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with 26 components as follows,

Pu−244 → Pu−240 → U−236 → Th−232 → Ra−228

Cm−244 → Pu−240

U−232

Pu−241 → Am−241 → Np−237 → U−233 → Th−229

Cm−246 → Pu−242 → U−238 → U−234 → Th−230 →

Ra−226 → Pb−210

Am−242 → Pu−238 → U−234

Am−243 → Pu−239 → U−235 → Pa−231 → Ac−227 .

We present the important concentration in this decay chain. In the figure 6
the contaminant uranium isotope U-236 is presented after 100[a]. This isotope
is less retarded and has a very long half-life period. Therefore the contaminant
is flown furthermost and decays less. This effect is presented in the figure 6. The
diffusion process has spread out the contaminant in the whole left part of the
domain. Also the impermeable layer is contaminated. After the time period of
10000[a], the contaminant is flown up to the top of the domain.

Fig. 6. Concentration of U-236 at the time point t = 100[a] and t = 10000[a].

The calculations are done on uniform grids. The convergence of this grids are
confirmed with adaptive grid calculations. The calculation confirmed the results
of finer and smaller time steps, cf. table 2. The beginning of the calculations is
done with explicit methods until the character of the equation is more diffusive.
Then we chance to the implicit methods and can use larger time steps. With
this procedure we can fulfill the forced maximum calculation time of one day.

Finally we conclude our paper with the next section.
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Processors Refinement Number of Number of Time for Total
elements time steps one time step time

30 uniform 75000 3800 5 sec. 5.5 h.

64 adaptive 350000 3800 14 sec. 14.5 h.

Table 2. Computing the two-dimensional case.

10 Conclusions and discussions

We present discretization methods to solve a complex system of advection-
diffusion-reaction equations. Based on the finite volume methods we present
improved discretization methods for the convection-, diffusion-dispersion and
convection-reaction equations. With a new embedding method for the analyti-
cal solutions we improve the discretization methods for the convection-reaction
equations and we can skip the error in the temporal discretization. Second-order
operator-splitting methods allow us to decouple the full equation system into
simpler equations and to discretize each of them with higher-order finite vol-
ume methods. We verify the theoretical results with benchmark applications.
Realistical test examples and the complex waste scenarios are presented. We
can confirm, that a complex model could be simulated with the help of different
splitting and discretization methods.

In the future we focus on the development of improved discretization methods
and the idea of embedding local analytical solutions with the decoupling into
simpler physical processes.
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