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Abstract.

The motivation for our studies is coming from the simulation of earthquakes, that are modeled
by elastic wave equations. In our paper we focus on stiff phanomenons for the wave equations. In
the course of this article we discuss iterative operator-splitting methods for wave equations moti-
vated by realistic problems dealing with seismic sources and waves. The operator-splitting methods
are well-known to solve this kind of multi-dimensional and multi-physical problems. We present
the consistency analysis for iterative methods as theoretical background with respect to the un-
derlying boundary conditions. From an algorithmic point of view we discuss the decoupling and
non-decoupling method with respect to the eigenvalues. We verify our methods with test examples,
for which analytical solutions can be derived. Multi-dimensional examples are presented for realistic
applications for the wave equation. Finally we discuss the results.
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ods, seismic sources and waves, consistency analysis.
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1. Introduction. Traditionally by using the classical operator-splitting methods
we decouple the differential equation into more basic equations, in which each equation
contains only one operator. These methods are often not sufficiently stable while also
neglecting the physical correlations between the operators. We are going to develop
new efficient methods based on a stable variant of iterative methods by coupling new
operators and deriving new strong directions. We are going to examine the stability
and consistency analysis for these methods and adopt them to linear acoustic wave
equations (seismic waves).

The paper is organized as follows. A mathematical model based on the wave
equation is introduced in Section 2. The utilized discretization methods are described
in Section 3. A standard splitting method for the wave equation is given in Section 4.
The splitting of the boundary conditions is discussed in Section 5. As a higher-order
splitting method the LOD method is presented in Section 6 as well as the stability
and consistency analysis for the spatial dependent case. We discuss the numerical
results in Section 7. Finally we foresee our future works in the area of splitting and
decomposition methods.

2. Mathematical model. The motivation for the study presented below is com-
ing from a computational simulation of earthquakes, see [3], and the examination of
seismic waves [1] and [2].

We concentrate on the scalar wave equation, see [11], for which the mathematical
equations are given by

∂tt u = D1(x, y) ∂xx u + D2(x, y) ∂yy u + D3(x, y) ∂zz u in Ω, (2.1)

u(x, y, 0) = u0(x, y) , ut(x, y, 0) = u1(x, y) in Ω. (2.2)
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2 3. DISCRETIZATION METHODS

The unknown function u = u(x, t) is considered to be in Ω×(0, T ) ⊂ IRd×IR, where the
spatial dimension is given by d. The function D(x, y) = (D1(x, y), D2(x, y), D3(x, y))t ∈
IR3,+ describes the wave propagation in x, y, z. The functions u0(x, y) and u1(x, y)
are the initial conditions for the wave equation.

We deal with the following boundary conditions:

u(x, y, t) = u3, on ∂Ω × T : Dirichlet boundary condition, (2.3)

∂u(x, y, t)

∂n
= 0, on ∂Ω × T : Neumann boundary condition, (2.4)

D∇u(x, y, t) = uout, on ∂Ω × T : outflow boundary condition. (2.5)

3. Discretization methods. At first we underly finite difference schemes for
the time and space discretization.

For the classical wave equation this is the well-known discretization in time and
space.

Based on this discretization, the time is discretized as follows:

Utt,i =
Un+1

i − 2Un
i + Un−1

i

∆t2
, (3.1)

U(0) = u0, Ut(0) = u1, (3.2)

where the index i refers to the space point xi and ∆t = tn+1 − tn is the time step.
The space is discretized with initial conditions as

Uxx,n =
Un

i+1 − 2Un
i + Un

i−1

∆x2
, (3.3)

U(0) = u0, Ut(0) = u1, (3.4)

where the index n refers to the time tn and ∆x = xi+1 − xi is the grid width.
Then the two-dimensional equation,

utt = D1uxx + D2uyy in Ω, (3.5)

u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y), (3.6)

u(x, y, t) = u2 on ∂Ω, (3.7)

is discretized with the unconditionally stable implicit η-method, see [4]:

Un+1
i,j − 2Un

i,j + Un−1
i,j

∆t2
(3.8)

=
D1

∆x2

(

η
(

Un+1
i+1,j − 2Un+1

i,j + Un+1
i−1,j

)

+(1 − 2η)
(

Un
i+1,j − 2Un

i,j + Un
i−1,j

)

+ η
(

Un−1
i+1,j − 2Un−1

i,j + Un−1
i−1,j

))

+
D2

∆y2

(

η
(

Un
i,j+1 − 2Un

i,j + Un
i,j−1

)

+(1 − 2η)
(

Un
i,j+1 − 2Un

i,j + Un
i,j−1

)

+ η
(

Un−1
i,j+1 − 2Un−1

i,j + Un−1
i,j−1

))

,

where ∆x and ∆y denote the grid width in x and y and 0 ≤ η ≤ 1. The initial
conditions are given by U(x, y, tn) = u0(x, y) and U(x, y, tn−1) = u0(x, y)−∆tu1(x, y).

These discretization schemes are adopted to the operator-splitting schemes.
On the finite differences grid k corresponds to the time step, and hx, hy, hz are

the grid sizes in the different spatial directions. The time nk is denoted by tn, and
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i, j, l refer to the spatial coordinates of the grid point (ihx, jhy, khz). Let un denote
the grid function on the time level n, and let un

i,j,l be the specific value of un at point
i, j, l. The value of the grid function during the iteration is denoted by an extra super
script as un,m

i,j,l .
In the next section we describe the traditional splitting methods for the wave

equation.

4. Traditional splitting methods. Our classical method is based on the split-
ting method of [4] and [9].

The classical splitting methods ADI (alternating direction methods) are based on
the idea of computing the different directions of the given operators. Each direction
is computed independently by solving more basic equations. The result combines all
the solutions of the elementary equations. So we obtain more efficiency by decoupling
the operators.

The classical splitting method for the wave equation is derived from

∂ttu(t) = (A + B + C)u(t) + f(t), (4.1)

t ∈ (tn, tn+1), u(tn) = u0, u
′(tn) = u1,

where the initial functions u0 and u1 are given. We can also apply for u1 that

u′(tn) = u(tn)−u(tn−1)
∆t + O(∆t) = u1. Consequently we have u(tn−1) ≈ u0 − ∆tu1.

The right-hand side f(t) is given as a force term.

We could decouple the equation into 3 simpler equations obtaining a method of
second order.

˜̃u − 2u(tn) + u(tn−1)= ∆t2A(η ˜̃u + (1 − 2η)u(tn) + ηu(tn−1)) (4.2)

+∆t2Bu(tn) + ∆t2Cu(tn)

+∆t2(ηf(tn+1) + (1 − 2η)f(tn) + ηf(tn−1)),

ũ − 2u(tn) + u(tn−1)= ∆t2A(η ˜̃u + (1 − 2η)u(tn) + ηu(tn−1)) (4.3)

+∆t2B(ηũ + (1 − 2η)u(tn) + ηu(tn−1)) + ∆t2Cu(tn)

+∆t2(ηf(tn+1) + (1 − 2η)f(tn) + ηf(tn−1)),

u(tn+1) − 2u(tn) + u(tn−1)= ∆t2A(η ˜̃u + (1 − 2η)u(tn) + ηu(tn−1)) (4.4)

+∆t2B(ηũ + (1 − 2η)u(tn) + ηu(tn−1))

+∆t2C(ηu(tn+1) + (1 − 2η)u(tn) + ηu(tn−1))

+∆t2(ηf(tn+1) + (1 − 2η)f(tn) + ηf(tn−1)),

where the result is given as u(tn+1) with the initial conditions u(tn) = u0 and
u(tn−1) = u0 − ∆tu1 and η ∈ (0, 0.5). A fully coupled method is given for η = 0, for
0 < η ≤ 0.5 the decoupled method consists of a composition of explicit and implicit
Euler methods.

The spatial discretization is given by

A = ∂2

∂2x , B = ∂2

∂2y , C = ∂2

∂2z ,
where the approximated discretization is given by the finite difference method as:

Au(x, y, z) ≈ u(x+∆x,y,z)−2u(x,y,z)+u(x−∆x,y,z)
∆x2 ,

Bu(x, y, z) ≈ u(x,y+∆y,z)−2u(x,y,z)+u(x,y−∆y,z)
∆y2 ,

Cu(x, y, z) ≈ u(x,y,z+∆z)−2u(x,y,z)+u(x,y,z−∆z)
∆z2 .



4 5. BOUNDARY SPLITTING METHOD

We have to compute the first equation 4.2 and get the result ˜̃u, that is a further
initial condition for the second equation 4.3, after whose computation we obtain ũ.
In the third equation 4.4 we have to put c̃ as a further initial condition and get the
result u(tn+1).

The underlying idea consists of the approximation of pairwise operators:

∆t2Aη(˜̃u − 2u(tn) + u(tn−1)) ≈ 0,

∆t2Bη(ũ − 2u(tn) + u(tn−1)) ≈ 0,

which we can raise to second order.

5. Boundary splitting method. The time-dependent boundary conditons also
have to be taken into account for the splitting method. Let us consider the three-
operator example with the equations

∂ttu(t) = (A + B + C)u(t) + h(t), t ∈ (tn, tn+1), (5.1)

u(tn) = g(t), u′(tn) = f(t), (5.2)

where A = D1(x, y, z) ∂2

∂x2 , B = D2(x, y, z) ∂2

∂y2 and A = D3(x, y, z) ∂2

∂z2 are the spatial

operators. The wave propagation functions are given by D1(x, y, z), D2(x, y, z), and
D3(x, y, z) : IR3 → IR+.

Hence for three operators we have the following second-order splitting method:

˜̃u − 2˜̃u(tn) + ˜̃u(tn−1)= ∆t2A(η ˜̃u + (1 − 2η)˜̃u(tn) + η ˜̃u(tn−1)) (5.3)

+∆t2B ˜̃u(tn) + ∆t2C ˜̃u(tn)

+∆t2(ηh(tn+1) + (1 − 2η)h(tn) + ηh(tn−1)),

ũ − 2ũ(tn) + ũ(tn−1)= ∆t2A(η ˜̃u + (1 − 2η)ũ(tn) + ηũ(tn−1)) (5.4)

+∆t2B(ηũ + (1 − 2η)ũ(tn) + ηũ(tn−1)) + ∆t2Cũ(tn)

+∆t2(ηh(tn+1) + (1 − 2η)h(tn) + ηh(tn−1)),

u(tn+1) − 2û(tn) + û(tn−1)= ∆t2A(η ˜̃u + (1 − 2η)û(tn) + ηû(tn−1)) (5.5)

+∆t2B(ηũ + (1 − 2η)û(tn) + ηû(tn−1))

+∆t2C(ηu(tn+1) + (1 − 2η)û(tn) + ηû(tn−1))

+∆t2(ηh(tn+1) + (1 − 2η)h(tn) + ηh(tn−1)),

where the result is given as u(tn+1).

The boundary values are given by

• Dirichlet values. We have to use the same boundary values for all three
equations.

• Neumann values. We have to decouple the values into the different directions:

1)
∂ ˜̃u

∂n
= 0 is splitted in

∂ ˜̃u

∂x
nx +

∂ ˜̃u

∂y
ny +

∂ ˜̃u

∂z
nz = 0, (5.6)

2)
∂ũ

∂n
= 0 is splitted in

∂ ˜̃u

∂x
nx +

∂ũ

∂y
ny +

∂ũ

∂z
nz = 0, (5.7)

3)
∂u(tn+1)

∂n
= 0 is splitted in

∂ ˜̃u

∂x
nx +

∂ũ

∂y
ny +

∂un+1

∂z
nz = 0. (5.8)



5

• Outflow values. We have to decouple the values into the different directions:

1)nD∇˜̃u = cout,

is splitted in D1∂x
˜̃unx + D2∂y

˜̃uny + D3∂z
˜̃unz = uout, (5.9)

2)nD∇ũ = uout,

is splitted in D1∂x
˜̃unx + D2∂yũny + D3∂zũnz = uout, (5.10)

3)nD∇un+1 = uout,

is splitted in D1∂x
˜̃unx + D2∂yũny + D3∂zu

n+1nz = uout, (5.11)

where n is the outer normal vector and D =





D1 0 0
0 D2 0
0 0 D3



 is the pa-

rameter matrix to the wave propagations.
We have the following initial conditions for the three equations:

u(tn) = u0, (5.12)

u(tn−1) = u0 − ∆tu1 +
∆t2

2
((A + B)u0) + O(∆t3), (5.13)

u(tn−1) = u0 − ∆tu1 +
∆t2

2
((A + B)(u0 − ∆t/3u1 +

∆t2

12
(A + B)u0)) + O(∆t5).

(5.14)

Remark 5.1. By solving the two or three splitting steps it is important to men-

tion, that each solution ˜̃u, ũ and u is corrected only once by using the boundary

conditions.

Otherwise an ”overdoing” of the boundary conditions takes place.

6. LOD method: Locally one-dimensional method. In the follwoing we
introduce the LOD method as an improved splitting method while using pre-stepping
techniques.

The method was discussed in [11] and is given by:

un+1,0 − 2un + un−1 = ∆t2(A + B)un, (6.1)

un+1,1 − un+1,0 = ∆t2ηA(un+1 − 2un + un−1), (6.2)

un+1 − un+1,1 = ∆t2ηB(un+1 − 2un + un−1), (6.3)

where η ∈ (0.0, 0.5) and A, B are the spatially discretized operators. The time step is
equidistant and given as ∆t = tn+1 − tn.

If we eliminate the intermediate values in (6.1)- (6.3) we obtain

un+1 − 2un + un−1 = ∆t2(A + B)(ηun+1 − (1 − 2η)un + ηun−1)

+ Bη(un+1 − 2un + un−1), (6.4)

where Bη = η2∆t2(AB) is denoted as the local error of the splitting method and thus
Bη(un+1 − 2un + un−1) = O(∆t4).

So we obtain a higher-order method.

Remark 6.1.

For η ∈ (0.25, 0.5) we have unconditionally stable methods and to receive higher

order we use η = 1
12 . Then for sufficiently small time steps we get a conditionally

stable splitting method.



6 6. LOD METHOD: LOCALLY ONE-DIMENSIONAL METHOD

6.1. Stability and consistency analysis for the LOD method. The con-
sistency of the fourth-order splitting method is given in the next theorem.

Hence we assume discretization orders of O(hp), p = 2, 4, for the discretization in
space, with h = hx = hy being the spatial grid width.

Then we obtain the following consistency result for our method (6.1)-(6.3):

Theorem 6.1. The consistency of the LOD method is given by:

utt − Au − (∂ttu − Ãu) = O(∆t4), (6.5)

where ∂tt is a second-order discretization in time and Ã is the discretized fourth-order

spatial operator.

Proof. We add the equations (6.1)-(6.3) and obtain, see also [11]:

∂ttu
n − Ã(θun+1 + (1 − 2θ)un + θun−1) − B̃(un+1 − 2un + un−1) = 0, (6.6)

where

B̃ = θ2∆t2Ã1Ã2.

Therefore we obtain a splitting error of B̃(un+1 − 2un + un−1).

Sufficient smoothness assumed we have (un+1 − 2un + un−1) = O(∆t2), and we
obtain B̃(un+1 − 2un + un−1) = O(∆t4) .

Thus we obtain a fourth-order method, if the spatial operators are also discretized
as fourth-order terms.

The stability of the fourth-order splitting method is given in the following theo-
rem.

Theorem 6.2. The stability of our method is given by:

||(1 − ∆t2B̃)1/2∂+
t un||2 + P+(un, θ)

≤ ||(1 − ∆t2B̃)1/2∂+
t u0||2 + P+(u0, θ), (6.7)

where θ ∈ [0.25, 0.5] and

P±(uj , θ) := θ(Ãuj , uj) + θ(Ãuj±1, uj±1) + (1 − 2θ)(Ãuj , uj±1).

Proof.

We have to proof the theorem for a test function ∂tu
n, where ∂t denotes the

central difference.
For n ≥ 1 we have

((1 − ∆t2B̃)∂ttu
n, ∂tu

n) + (Ã(θuj+1 − (1 − 2θ)uj + θuj−1), ∂tu
n) = 0. (6.8)

Multiplying with ∆t and summarizing over j yields:

n
∑

j=1

((1 − ∆t2B̃)∂ttu
j , ∂tu

j)∆t + (Ã(uj+1 − 2uj + uj−1), ∂tu
j)∆t = 0. (6.9)
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We can derive the identities,

((1 − ∆t2B̃)∂ttu
j , ∂tu

j)∆t

= 1/2||(1− ∆t2B̃)1/2∂+
t uj ||2 − 1/2||(1− ∆t2B̃)1/2∂−

t uh||2, (6.10)

(Ã(θuj+1 − (1 − 2θ)uj + θuj−1), ∂tu
j)∆t

= 1/2(P+(uj , θ) −P−(uj , θ)), (6.11)

and obtain the result

||(1 − ∆t2B̃)1/2∂+
t un||2 + P+(un, θ)

≤ ||(1 − ∆t2B̃)1/2∂+
t u0||2 + P+(u0, θ), (6.12)

see also the idea of [11].

Remark 6.2. For θ = 1
12 we obtain a fourth-order method.

To compute the error of the local splitting we have to use the multiplier Ã1Ã2,

thus for large constants we have an unconditional small time step.

Remark 6.3.

1. The unconditinal stable version of the LOD method is given for θ ∈ [0.25, 0.5].
2. The truncation error is O(∆t2 + hp), p ≥ 2 for θ ∈ [0, 0.5].
3. For θ = 1/12 we have a fourth-order method in time O(∆t2 + hp), p ≥ 2.
4. For θ = 0 we have a second-order explicit scheme.

5. The CFL-condition is important for all θ ∈ [0, 0.5] with

CFL = ∆t2/∆x2
maxDmax,

where xmax is the maximal spatial step and Dmax is the maximal wave-

propagation parameter in space.

In the next section we apply our theoratical results to our model problems.

7. Numerical examples for the spatial splitting methods. The test ex-
amples are discussed with respect to analytical solutions, boundary conditions and
spatially dependent propagation functions.

7.1. Test example 1: problem with analytical solution and Dirichlet

boundary condition. We deal with a two-dimensional example with constant coef-
ficients where we can derive an analytical solution.

∂ttu = D2
1∂xxu + D2

2∂yyu, (7.1)

u(x, y, 0) = u0(x, y) = sin(
1

D1
πx) sin(

1

D2
πy), ∂tu(x, y, 0) = u1(x, y) = 0, (7.2)

with u(x, y, t) = sin(
1

D1
πx) sin(

1

D2
πy) cos(

√
2 πt) on∂Ω × (0, T ), (7.3)

where the initial conditions can be written as u(x, y, tn) = u0(x, y) and u(x, y, tn−1) =
u(x, y, tn+1) = u(x, y, ∆t).

The analytical solution is given by

uana(x, y, t) = sin(
1

D1
πx) sin(

1

D2
πy) cos(

√
2 πt). (7.4)
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For the approximation error we choose the L1-norm.
The L1-norm is given by

errL1
:=

∑

i,j=1,...,m

Vi,j |u(xi, yj , t
n) − uana(xi, yj , t

n)|, (7.5)

where u(xi, yj , t
n) is the numerical and uana(xi, yj , t

n) is the analytical solution, and
Vi,j = ∆x ∆y.

Our test examples are organized as follows.

1) The non-stiff case: We choose D1 = D2 = 1 with a rectangle as our model
domain Ω = [0, 1] × [0, 1]. We discretize with ∆x = 1/16, ∆y = 1/16 and ∆t = 1/32
and choose our parameter η to satisfy 0 ≤ η ≤ 1. The exemplary function values
unum and uana are taken from the center of our domain.

2) The stiff case: We choose D1 = D2 = 0.01 with a rectangle as our model
domain Ω = [0, 1] × [0, 1]. We discretize with ∆x = 1/32, ∆y = 1/32 and ∆t = 1/64
and choose our parameter η to satisfy 0 ≤ η ≤ 1. The exemplary function values
unum and uana are taken from the point (0.5, 0.5625).

The experiments are done with uncoupled standard discretization methods, i.e.
finite differences methods for time and space, and with operator splitting methods,
i.e. classical operator-splitting methods and LOD methods.

The non-stiff case can be analyzed in the following tables and figures.

η errL1 uana unum

0.0 0.0014 -0.2663 -0.2697
0.1 0.0030 -0.2663 -0.2738
0.3 0.0063 -0.2663 -0.2820
0.5 0.0096 -0.2663 -0.2901
0.7 0.0128 -0.2663 -0.2981
0.9 0.0160 -0.2663 -0.3060
1.0 0.0176 -0.2663 -0.3100

Table 7.1

Numerical results for the finite difference method (see 7.1, Dirichlet boundary).

η errL1 uana unum

0.0 0.0014 -0.2663 -0.2697
0.1 0.0030 -0.2663 -0.2738
0.3 0.0063 -0.2663 -0.2820
0.5 0.0096 -0.2663 -0.2901
0.7 0.0129 -0.2663 -0.2982
0.9 0.0161 -0.2663 -0.3062
1.0 0.0177 -0.2663 -0.3102

Table 7.2

Numerical results for the classical operator-splitting method (Dirichlet boundary).

The stiff case can be analyzed in the following tables and figures.
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η errL1 uana unum

0.0 0.0014 -0.2663 -0.2697
0.1 0.0031 -0.2663 -0.2739
0.3 0.0065 -0.2663 -0.2824
0.5 0.0099 -0.2663 -0.2907
0.7 0.0132 -0.2663 -0.2990
0.9 0.0165 -0.2663 -0.3073
1.0 0.0182 -0.2663 -0.3114

Table 7.3

Numerical results for the LOD method (Dirichlet boundary).

0
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numeric solution dx=1/32 dy=1/32 dt=1/64 eta=0.5
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analytic − numeric dx=1/32 dy=1/32 dt=1/64 eta=0.5

Fig. 7.1. Numerical resolution for the wave equation: numerical approximation (left) and
error functions (right) for the Dirichlet boundary condition (∆x = ∆y = 1/32, ∆t = 1/64, D1 = 1,
D2 = 1, (classical method).

η errL1 uana unum

0.0 0.0036 -0.2663 -0.2728
0.1 0.0037 -0.2663 -0.2736
0.3 0.0048 -0.2663 -0.2740
0.5 0.0067 -0.2663 -0.2737
0.7 0.0088 -0.2663 -0.2738
0.9 0.0111 -0.2663 -0.2744
1.0 0.0123 -0.2663 -0.2749

Table 7.4

Numerical results for the finite difference method (see 7.1/ Neumann boundary).

Remark 7.1. In the experiments we compare the non-splitting with the splitting

methods. We obtain nearly the same results and see improved results for the LOD

method, which is for η = 1/12 a 4th-order method.

In the next test example we study the Neumann boundary conditions.

7.2. Test example 2: problem with analytical solution and Neumann

boundary condition. In this example we modify our boundary conditions with
respect to the Neumann boundary.

We deal with our two-dimensional example where we can derive an analytical
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η errL1 uana unum

0.0 0.0036 -0.2663 -0.2728
0.1 0.0037 -0.2663 -0.2736
0.3 0.0048 -0.2663 -0.2740
0.5 0.0067 -0.2663 -0.2737
0.7 0.0089 -0.2663 -0.2738
0.9 0.0112 -0.2663 -0.2745
1.0 0.0123 -0.2663 -0.2750

Table 7.5

Numerical results for the classical operator-splitting (see 7.1/ Neumann boundary).
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Fig. 7.2. Numerical resolution for the wave equation: numerical approximation (left) and
error functions (right) for the Neumann boundary condition (∆x = ∆y = 1/32, ∆t = 1/64, D1 = 1,
D2 = 1, (classical method).

η errL1 uana unum

0.0 0.0335 0.0830 0.2460
0.1 0.0339 0.0840 0.2460
0.3 0.0347 0.0859 0.2460
0.5 0.0354 0.0878 0.2460
0.7 0.0362 0.0896 0.2460
0.9 0.0369 0.0915 0.2460
1.0 0.0373 0.0924 0.2460

Table 7.6

Numerical results for the finite difference method for the stiff case with Dirichlet boundary
(∆x = ∆y = 1/32, ∆t = 1/64).

solution.

∂ttu = D2
1∂xxu + D2

2∂yyu, (7.6)

u(x, y, 0) = u0(x, y) = sin(
1

D1
πx) sin(

1

D2
πy) , ∂tu(x, y, 0) = u1(x, y) = 0, (7.7)

with
∂u(x, y, t)

∂n
=

∂uana(x, y, t)

∂n
= 0, on∂Ω × (0, T ), (7.8)

where Ω = [0, 1] × [0, 1]. D1 = 1, D2 = 0.5 and the initial conditions can be written
as u(x, y, tn) = u0(x, y) and u(x, y, tn−1) = u(x, y, tn+1) = u(x, y, ∆t).
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η errL1 uana unum

0.0 0.0335 0.2460 0.3227
0.1 0.0339 0.2460 0.3236
0.3 0.0347 0.2460 0.3253
0.5 0.0354 0.2460 0.3271
0.7 0.0362 0.2460 0.3288
0.9 0.0369 0.2460 0.3305
1.0 0.0373 0.2460 0.3314

Table 7.7

Numerical results for the classical operator-splitting for the stiff case with Dirichlet boundary
(∆x = ∆y = 1/32, ∆t = 1/64).

η errL1 uana unum

0.0 0.0335 0.2460 0.3227
0.1 0.0341 0.2460 0.3241
0.3 0.0353 0.2460 0.3268
0.5 0.0365 0.2460 0.3295
0.7 0.0377 0.2460 0.3322
0.9 0.0388 0.2460 0.3349
1.0 0.0394 0.2460 0.3362

Table 7.8

Numerical results for the LOD method for the stiff case with Dirichlet boundary (∆x = ∆y =
1/32, ∆t = 1/64).
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Fig. 7.3. Numerical approximation and error function for the Dirichlet boundary for the stiff
case (∆x = ∆y = 1/32, ∆t = 1/64, D1 = 1, D2 = 0.01).

The analytical solution is given as

cana(x, y, t) = sin(
1

D1
πx) sin(

1

D2
πy) cos(

√
2 πt). (7.9)

We have the same discretization methods as in the first test example.
The underlying numerical results for the Neumann boundary conditions are given

in Tables 7.9–7.10 and Figure 7.4.

Remark 7.2. In the experiments we obtained the same accuracy as for the Dirich-
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η errL1 uana unum

0.0 0.0036 -0.2663 -0.2728
0.1 0.0037 -0.2663 -0.2736
0.3 0.0048 -0.2663 -0.2740
0.5 0.0067 -0.2663 -0.2737
0.7 0.0088 -0.2663 -0.2738
0.9 0.0111 -0.2663 -0.2744
1.0 0.0123 -0.2663 -0.2749

Table 7.9

Numerical results for the finite difference method (see 7.1/ Neumann boundary).

η errL1 uana unum

0.0 0.0036 -0.2663 -0.2728
0.1 0.0037 -0.2663 -0.2736
0.3 0.0048 -0.2663 -0.2740
0.5 0.0067 -0.2663 -0.2737
0.7 0.0089 -0.2663 -0.2738
0.9 0.0112 -0.2663 -0.2745
1.0 0.0123 -0.2663 -0.2750

Table 7.10

Numerical results for the classical operator-splitting (see 7.1/ Neumann boundary).
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Fig. 7.4. Numerical resolution for the wave equation: numerical approximation (left) and
error functions (right) for the Neumann boundary condition (∆x = ∆y = 1/32, ∆t = 1/64, D1 = 1,
D2 = 1, (classical method).

let boundary conditions. More accurate results were gained by the LOD method with

small η. We also obtained stable results in our computations.

7.3. Spatially dependent test example. In this experiment we apply our
method to the spatially dependent problem, given by

∂ttu = D1(x, y)∂xxu + D2(x, y)∂yyu, (7.10)

with u(x, y, tn) = u0, ∂tu(x, y, tn) = u1, (7.11)

with u(x, y, t) = u2, on ∂Ω × (0, T ) (7.12)

where D1(x, y) = 0.1x + 0.01y + 0.01, D2(x, y) = 0.01x + 0.1y + 0.1 .
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In this case we are not able to derive an analytical solution. Thus, for comparing
the numerical results, we have to compute a reference solution. This can be done with
the finite difference scheme with fine temporal and spatial steps.

Concerning the choice of the time steps it is important to consider the CFL con-
diton, that is now based on the spatial coefficients.

Remark 7.3. We have assumed the following CFL condition.

∆t < 0.5 min(∆x, ∆y)/ max
x,y∈Ω

(D1(x, y), D2(x, y)). (7.13)

For the test example we define our model domain as a rectangle Ω = [0, 1] × [0, 1].
The reference solution is obtained by executing the finite difference method and

setting ∆x = 1/256, ∆y = 1/256 as space steps and ∆t = 1/256 < 0.390625 as time
step.

The model domain is given by a rectangle with ∆x = 1/16 and ∆y = 1/32. The
time steps are given by ∆t = 1/16 and 0 ≤ η ≤ 1.

The numerical results are given in the following tables and figures.

η errL1 uana unum

0.0 0.0032 -0.7251 -0.7154
0.1 0.0034 -0.7251 -0.7149
0.3 0.0037 -0.7251 -0.7139
0.5 0.0040 -0.7251 -0.7129
0.7 0.0044 -0.7251 -0.7120
0.9 0.0047 -0.7251 -0.7110
1.0 0.0049 -0.7251 -0.7105

Table 7.11

Numerical results for the finite difference method with spatially dependent parameters and
Dirichlet boundary (error to the reference solution).

η errL1 uana unum

0.0 0.0032 -0.7251 -0.7154
0.1 0.0034 -0.7251 -0.7149
0.3 0.0037 -0.7251 -0.7139
0.5 0.0040 -0.7251 -0.7129
0.7 0.0044 -0.7251 -0.7120
0.9 0.0047 -0.7251 -0.7110
1.0 0.0049 -0.7251 -0.7105

Table 7.12

Numerical results for the classical operator-splitting method with spatially dependent parameters
and Dirichlet boundary (error to the reference solution).

Remark 7.4. In the experiments we analyzed the classical operator-splitting and

the LOD method and showed that the LOD method yields yet more accurate values.

8. Conclusions and discussions. We have presented different time splitting
methods for the spatially dependent case of the wave equation. The contributions
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η errL1 uana unum

0.00 0.0032 -0.7251 -0.7154
0.1 0.7809e-003 -0.7251 -0.7226

0.122 0.6793e-003 -0.7251 -0.7242
0.3 0.0047 -0.7251 -0.7369
0.5 0.0100 -0.7251 -0.7512
0.7 0.0152 -0.7251 -0.7655
0.9 0.0205 -0.7251 -0.7798
1.0 0.0231 -0.7251 -0.7870

Table 7.13

Numerical results for the LOD method with spatially dependent parameters and Dirichlet bound-
ary (error to the reference solution).
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Fig. 7.5. Dirichlet boundary condition: numerical solution and error function for the spatially
dependent test example.

η errL1 uana unum

0.0 0.0180 -0.7484 -0.7545
0.1 0.0182 -0.7484 -0.7532
0.3 0.0185 -0.7484 -0.7504
0.5 0.0190 -0.7484 -0.7477
0.7 0.0194 -0.7484 -0.7451
0.9 0.0199 -0.7484 -0.7425
1.0 0.0201 -0.7484 -0.7412

Table 7.14

Numerical results for the classical operator-splitting method with spatially dependent parameters
and Neumann boundary (error to the reference solution).

of this article concern the boundary splitting and the stiff operator treatment. For
the boundary splitting method we have discussed the theoretical background and
the experiments show the stability of these splitting methods also for the stiff case.
We have presented stable results even for the spatially dependent wave equation.
The benefit of the splitting methods is due to the different scales and therefore the
computational process in decoupling the stiff and non-stiff operators into different
equations is accelerated. The LOD method as a 4th-oder method has the advantage
of higher accuracy and can be used for such decoupling regards. In a next work we
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η errL1 uana unum

0.0 0.0180 -0.7484 -0.7545
0.1 0.0182 -0.7484 -0.7532
0.3 0.0185 -0.7484 -0.7504
0.5 0.0190 -0.7484 -0.7477
0.7 0.0194 -0.7484 -0.7451
0.9 0.0199 -0.7484 -0.7425
1.0 0.0201 -0.7484 -0.7412

Table 7.15

Numerical results for the finite difference method with spatially dependent parameters and Neu-
mann boundary (error to the reference solution).
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Fig. 7.6. Neumann boundary condition: numerical solution and error function for the spatially
dependent test example.

discuss the algorithms based on the eigenmodes of the operators for more flexible
decoupling problems.
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