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Abstract.

The paper consists of two parts. In the first part of the paper, we proposed a procedure
to estimate local errors of low order methods applied to solve initial value problems
in ordinary differential equations (ODEs) and index 1 differential-algebraic equations
(DAESs). Based on the idea of Defect Correction we developed local error estimates for
the case when the problem data is only moderately smooth, which is typically the case
in stochastic differential equations. In this second part, we will consider the estimation
of local errors in context of mean-square convergent methods for stochastic differen-
tial equations (SDEs) with small noise and index 1 stochastic differential-algebraic
equations (SDAEs). Numerical experiments illustrate the performance of the mesh
adaptation based on the local error estimation developed in this paper.
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1 Introduction.

In the first part of the paper we focused our attention on the local error estimates
in context of ODEs and index 1 DAEs. We were especially interested on low
order linear multi-step methods applied to solve initial value problems. The
error estimation procedure based on the idea of Defect Correction, proved to
work dependably for the case when the problem data is only moderately smooth,
which is typically the case in stochastic differential equations.

Many SDEs of interest in science and engineering feature small noise. When the
noise is small, one can expect that the stochastic system, though of a completely
different analytical character, has a solution that is somehow ‘close’ to a deter-
ministic one. Our aim here is to show that the strategies developed in Part I of
this paper for low order linear multi-step methods can be applied also in context

*The first author acknowledges support by the BMBF-project 03RONAVN and the second
author support by the Austrian Science Fund Project P17253.
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of small noise SDEs and SDAEs for stochastic analogues of linear multi-step
methods and work reliably for this class of problems. However, we will discuss
to which extend this statement is correct depending on the size (smallness) of
the noise in relation to the step-sizes or accuracy requirements. We concentrate
on two-step schemes, since the higher numerical effort for higher deterministic
order pays only off if the noise is very small. Our interest in stochastic multi-
step methods originates from applications with small noise in circuit simulation,
where especially the backward differential equation (BDF) and the trapezoidal
rule have proven valuable in the deterministic case.

Several variable step-size strategies for SDEs were developed during the last few
years. Most of them are based on path-wise arguments and lead to path-wise
different step-size sequences. The classical paper [6] proposes a path-wise strat-
egy by comparing results of a given integration scheme with those of a higher
order method. The approaches discussed in [12] and [4] utilize the comparison of
two Runge-Kutta schemes of different order. In [11] conditions are provided that
imply mean-square convergence of the Euler-Maruyama scheme with path-wise
different step-size sequences. A different approach was developed in [8], where
the authors obtain step-size sequences that are optimal for asymptotically small
step-sizes.

In contrast to the above approaches we aim at an efficient estimate of the mean-
square of the local error and present a strategy for controlling the step-size in the
numerical integration based on this. An important prerequisite for estimating
local errors in context of SDEs and SDAEs is an understanding and a precise
definition of local and global errors and their relation to each other. We use
the notion of mean-square local and global errors and the corresponding conver-
gence analysis developed in [3, 18]. As in [17] for the family of Euler-Maruyama
schemes we propose to estimate the mean-square of the local errors by means of
a number of simultaneously computed solution paths, which leads to an adaptive
step-size sequence that is identical for all paths.

The paper is organized in the following way. In Section 2 we give a brief intro-
duction into the ideas and techniques used in the analysis of SDEs, in particular
the Ito calculus. To help those who are not familiar with the concept of SDEs
we will concentrate on the main ideas and avoid technicalities. Stochastic linear
multi-step methods and their convergence properties are recapitulated in Section
3. The analysis of the local errors is done in Section 4. In Section 5 we provide
a reliable error estimate for systems with small noise and in Section 6 we adapt
this technique for SDAEs. We present the step-size control algorithm in Section
7 and finally, report on numerical experiments illustrating the performance of
the mesh adaptation in Section 8.

We will repeatedly refer to results and formulas from Part I of this paper and
cite formula (s.x) from Part I by (I.s.x).

2 Ito0 calculus and SDEs.

SDEs formally arise when white noise of a certain intensity is added to the right
hand side of an ODE. In the engineering literature the resulting system is often
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simply written as

(2.1) 2'(t) = f(t,x(t) + g(t, 2(1)) £(b),

where the time t varies in a compact interval J = [0,tcnq]. The drift and
diffusion functions are given as f,g: J x R®™ — R", and £ is a scalar Gaussian
white noise process. Considering a number m of independent white noise sources
leads to

(2.2) 2(t) = f(t (1) + D gt 2(t)) & (1),

r=1
where the diffusion function is given as G = (g1,...,9m) : J X R — R™*™ and
£ =(&,...,&n)T is an m-dimensional Gaussian white noise process.

Gaussian white noise is a model of random fluctuations, comprising many small
independent random events like thermal noise in physics or volatility in finance.
It is a stochastic process depending on time ¢ and chance w. The latter argument
is usually omitted in the notation. The noise is called white since the spectral
density of the process is constant, meaning that all frequencies equally con-
tribute to the process. In the time domain Gaussian white noise is characterized
by Gaussian distributed and delta correlated random values £(t). Realizations or
paths £(-,w) of Gaussian white noise turn out to be highly irregular and nowhere
continuous. A serious mathematical description of the problems (2.1) or (2.2)
begins by introducing the Brownian motion or the Wiener Process that is caused

by integrating the white noise ” W (t) = fot £(s)ds = fg dW(s)”.

The (scalar) Brownian motion W is defined as a stochastic process given on a
probability space (€2, F,P) with a filtration {F;};>0. F: can be seen as the o-
algebra of those events that are observable with the information available at time
t. The Brownian motion is characterized by W(0) = 0 and independent non-
overlapping increments that are Gaussian distributed, W (t+h)—W (t) ~ N(0, h).
Typical realizations W (-, w), also called paths, are Holder-continuous with expo-
nents smaller than %, nowhere differentiable, not of bounded variation and with
quadratic variation (W), =t (see, e.g., [9]). Multi-dimensional Wiener processes
consist of independent scalar Wiener processes.

Problem (2.2) is then understood as a stochastic integral equation
t m

(23)  X(1) = Xo +/ F(s, X(5)) ds + Z/ gn(5, X (s)) AW, (s) |
0 /o

and is abbreviated as dX(t) = f(¢t, X (¢))dt + G(t, X (t))dW (¢) with X(0) =
Xo, where the second integral is a stochastic integral, and W denotes an m-
dimensional Wiener process (or Brownian motion).

Due to the unbounded variation of paths of the Wiener process one cannot
interpret the stochastic integrals in (2.3) as ordinary Riemann-Stieltjes integrals,
but need to apply a special stochastic calculus. In this paper we use the Ito
calculus. First, we recall the definition of an Ito integral.
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Let W be a Wiener process and Y be an adapted stochastic process on the
probability space (£2, F,P) with filtration {F;};c7. The stochastic process Y is
called adapted if Y (¢) is Fi-measurable. We consider partitions 0 =ty < t; <

- < tN = tena of the interval J and set h = maxo<;<n(¢; —t;—1). Then the
[t0 integral is defined as the limit of non-anticipative Riemann sums for h — 0
in Lo(Q,R). The integrand is evaluated at left endpoints,

/ Y dW - }llli)l%) Y( )[W(ti+1) - W(tz)] in LQ(Q,R) .

It6 integrals satisfy the usual linearity and additivity properties of integrals,
moreover, zero expectation, E fot Y (s)dW(s) = 0, and 1t6 isometry,

]E(/OtY(s)dW(s)>2 =/OtE(Y(s))2ds.

With this interpretation of the stochastic integrals the problem (2.3) is called an
Ito SDE. Let the drift function f and the diffusion function G be continuous and
Lipschitz continuous with respect to the second variable, and assume that X
is a given JFy-measurable initial value, independent of the Wiener process with
finite second moments, i.e., square integrable. Then there exists a path-wise
unique strong solution X : J x  — R™ of (2.3) with square integrable values
X(t) € La(Q2,R™).

The value of the solution process at fixed time ¢ is a random variable X (¢,-) =
X (t) whose argument w is usually dropped. For a fixed sample w representing
a fixed realization of the driving Wiener process, the function X (-,w) is called a
realization or a path of the solution. Due to the influence of the Gaussian white
noise, typical paths of the solution are nowhere differentiable. While using the
sloppy formulations (2.1), (2.2) one always should keep this in mind.

The unbounded variation of the Wiener paths leads to a modified chain rule,
the famous It6 formula. Let X be a solution of (2.3). Let the function y :
J x R™ — R™ be continuously differentiable and additionally, have continuous
second partial derivatives with respect to the second variable. Then the Ito
formula reads

(2.4) y(t, X (1)) - (0, X(0)) = / (vi+9f + 5 Zym 9r,90] ) (5, X (s) ds

m

+Z/O yogr(s, X (s)) dW,(s), teJ.

r=1

The term involving the second derivative of y is sometimes called It6 correction.
We refer, e.g., to [1] for more details.

For further reference we state the following notations and definitions: We denote
by | - | the Euclidian norm in R™ and by || - | the corresponding induced matrix
norm. The mean-square norm of a vector valued square integrable random
variable Z € Ly(€2,R™) will be denoted by ||Z||L, := (E|Z|*)Y/?.
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Let us denote by C*~ 1% the class of all functions y : J x R® — R” having
continuous partial derivatives up to order s—1 and continuous partial derivatives
of order s with respect to the second variable. Moreover, let C¥ be the class of
functions y : J x R"™ — R"™ satisfying the linear growth condition of the form

(2.5) ly(t,2)| < K(1+|z|?)2, VteJ, z€R".

Furthermore, we introduce the notation

t+h S1 Sj—1
(2.6) ILHh () = / / / y(s;, X (5;)) AW, (s7) - AW, (s1),
t t t

where r; € {0,1,...,m} and dWy(s) = ds, for general multiple stochastic (1t6)
integrals. If y = 1 we write IH'HP ;- Note that the integral IHHh s simply

T1,72,...,T
the increment W,.(t + h) — W,.(t) of the scalar Wiener process W,.. To estimate
the multiple integrals (2.6) we will use the following lemma (see Lemma 2.1 and
2.2 in [14]).

LEMMA 2.1. For any function y € CX and any t € J, h > 0, such that
t+h € J, we have

(2.7) ]E(If,lH,}fJ (y)|F:) =0, if r; #0 for some i€ {l,...,j},
(2.8) 15 )], = O(R /%),

T1yeeey
where 1y is the number of zero indices r; and ly the number of non-zero indices
Ti.

The present paper is devoted to SDEs and SDAEs with small noise. Following
[15] we indicate the size of the noise by a small factor € in front of the diffusion

coefficient, i.e., G = G. Thus, we consider SDEs with small noise of the type

(2.9) X(s)‘;:/o f(s,X(s))ds+e/O @(S,X(s))dW(s), X(0) = Xo.

We stress that the presence of the small parameter € in (2.9) is not required to
design the respective numerical schemes. It is used here, because it is crucial in
the discussion of the errors of the involved numerical schemes.

3 Stochastic linear multi-step schemes: Mean-square consistency,
stability and convergence.

In the literature on numerical methods for SDEs two concepts of convergence are
discussed, the weak and the strong convergence. Weak convergence relates to
Monte-Carlo methods and is mainly concerned with statistical properties of the
solution of the SDEs, such as moments of the solution process like expectation
and variance. The term strong convergence is often used synonymously for the
expression mean-squares convergence, i.e., convergence in the norm || - ||z,. It
is used when one is interested in paths of solutions. The related applications
originate e.g., from the computation of phase noise in circuit simulation [5, 20],
or pricing of American options in finance. In this paper, we investigate the
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mean-square convergence.

From the variety of stochastic linear multi-step schemes discussed in [3, 18],
we consider those schemes which only include information from the increments
of the driving Wiener process. We are not interested in schemes that include
higher stochastic integrals because they are not efficient for problems with small
noise. Moreover we restrict the subsequent analysis to two-step schemes. This
simplifies the notation but is not a serious restriction. Stochastic schemes with
higher deterministic order of convergence than two are only efficient in case of
extremely small noise.

Let
(3.1) F={0=ty<t1 < ---<t; < - <ty =tena}

be a deterministic partition of the interval 7. We denote the length of the
subinterval [t;_1,t;] by h; =t; —t;—1, i =1,..., N. Let h be the maximal step-
size of T', h := maxi<;<ny h; and k; = h;/h;—1, i = 2,..., N, be the step-size
ratio. A linear two-step Maruyama method takes the form

(3.2)

2 2 2 m
Do Xi g =hiy Biaf(tigy Xig) + > vja Y grltijs Xiy) Ifotizite,
5=0 j=0 j=1  r=1

where i = 2,...,N. Generally, X; denotes an approximation to the solution
X(t;). We assume that the initial values Xy, X7 € Lo(Q,R™) are given such
that X, is Fi,-measurable for ¢ = 0, 1. Let the coefficients of the scheme be
normalized in such a way that o ;=1 for all 3.

As in the deterministic case, usually only Xy, = X (0) is given by the initial value
problem and the value X; needs to be computed numerically. This can be done
by a suitable one-step method chosen in such a way that it provides X; up to
the desired asymptotical accuracy. The coefficients «;;, B;i, 7 depend on
the ratio k; = h;/h;—1. We emphasize that an explicit discretization is used
for the diffusion term. For §y; = 0 the method (3.2) is explicit, otherwise it is
drift-implicit.

We consider mean-square convergence of the method (3.2) in the sense discussed
in Milstein and others [2, 3, 13, 14, 15, 22]. The scheme (3.2) is called mean-
square convergent with order vy (v > 0) if the global error, X (t;) — X;, satisfies

max || X () — Xil[L, <C-h7,

1=0,...,

with a constant C' > 0 independent of h. Note that in the literature the term
strong convergence is sometimes used synonymously for this property.

As in Part I and following [3, 18], we define the local error as the defect that is
obtained when the exact solution values are inserted into the numerical scheme,
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e., it is given by

Zam hZﬁﬂf i X(tig)
_Z’YJ'LZQT l—ja )) Itl istiz ittt 4=2,...,N,

Li = X(ti)—Xi, ZZO,l

Note that L; is now a vector valued random variable as X (¢;) and X;. In order
to exploit the adaptivity and independence of the stochastic terms arising on
disjoint subintervals, we represent the local error in the form

(34) L,=R;+S; = Ri+Sl,i+32,i—17 1=2,...,N,

where each S;; is F;, measurable with E(S;;|F:, ,) = 0, cf. [3]. The represen-
tation (3.4) is not unique. One useful choice is provided by

R; =E(L;|Fs, ,), S2i-1=E(L; — Ri|F,_,), S1i=Li—Ri— S2,-1.

Here, in the hypothetical case that L; = colt " 4 ¢ 12" 4 ¢y holds, we

ti_ot; ti1ots
have R; = cg, So;—1 = c1I,'"" " and S1,; = ¢l 7"

Mean-square convergence is implied by local properties of the scheme (3.2) by
means of numerical stability in the mean-square sense. Numerical stability es-
timates the influence of any perturbations of the right-hand side of the discrete
scheme on the global solution of that discrete scheme. Taking the local errors
as special perturbations and applying the numerical stability estimate to them
results in the following convergence theorem, which is a special case of Theorem
3.2 in [18]:

THEOREM 3.1. Let the coefficients aj; = ozj(/@) = 0,1,2 of the stochastic
linear two-step scheme (3.2) be continuous in a nezghborhood of ki = 1 and
let the coefficients of the related constant step size scheme satisfy Dahlquist’s
root condition. Moreover, let us assume that the coefficient functions f and
gr, v = 1,...,m, are globally Lipschitz continuous with respect to their second
argument. Then there exists constants kK, K (k <1 < K), a >0, hpar >0
and a stability constant S > 0 such that the following statement holds for each
grid I' having the property h:=max;—1_.. N hi < hmaz, B-N < a-(T —ty) and
k< hi/hi—1 < K for alli:

For all representations (3.4) of the local error L; the following estimate of the
global error holds:

[RillL, 19l L,
(35) max [ X; ~X ()2, < S{mas Lo, + max (R 02 L

REMARK 3.1. The coefficients «;; of the stochastic analogues of the two-step
Adams-Bashforth formula and the trapezoidal rule do not depend on step-size ra-
tios and hence these schemes are stable for any step-size sequence. The stochastic
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variant of the two-step BDF is numerically stable (as in the deterministic case)
if and only if

(3.6) 0<r <K<1+V2 fori>2.
In the following we assume that the requirements specified in Theorem 3.1 are

satisfied. For the proof of the convergence of order ~, it is now sufficient to find
a representation (3.4) of the local error L; such that

(3.7) IR, <cr-h]™,
and
(3.8) 1], <cs-h; 2, i=1,...,N,

with constants cg > 0 and ¢g > 0 independent of h;. Together, (3.7) and (3.8)
imply the estimates

1
||E(L7:|Fti—2)||L2 = O(hZ—H)v ||LZ||L2 = O(h;'y_'_Q)v i=1,...,N,

see Lemma 2.8 in [3], known as consistency in the mean and consistency in the
mean-square sense, respectively. We observe that in case of the k-step schemes
the conditional mean has to be taken with respect to the o-algebra F;, , .

4 Analysis of the local error.

We shall now analyze the local error terms by means of appropriate It6-Taylor
expansions, where we take special care in separating the multiple stochastic
integrals over the different subintervals of integration. To this aim we introduce
the following operators Ag and A,, r = 1,...,m, defined on C'? and C%!,
respectively:

1 m n
(A1) Noy=wi+upf+5D Y Vlw,9rigris Ay =yigr, T=1,....m,
r=14,j=1

and refer the reader to the notation for multiple Wiener integrals introduced in
(2.6). Using these operators the It6 formula for a function y in C1? and the
solution X of (2.3) reads

(4.2)  y(t, X (1) = y(to, X (to)) + L™ (Roy) + DI (Avy), te .

r=1

Before exploiting the effect of the small parameter ¢ in the expansions of the
local error, we recall the notation g, = €g, and introduce operators Ag , Ao and
A, 7=1,...,m, defined on C*2 and C®!, respectively, by

. 1 m n X X N X
(43)  My=y+vhf. Royi=5d 0 D> v Gnibes A= v
r=1d,j=1
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In terms of the original definition (4.1) we have
(4.4) Aoy = Agy + Aoy, Ay = €My

After straightforward but lengthy computations one arrives at the following re-
sult, which we cite from [18, L.4.4 and C.4.5], using the same notation.

LEMMA 4.1. Let us assume that the coefficients f,g,.,v = 1,...,m, of the
small noise SDE (2.9), as well as Agf = fIf + f] belong to the class C1?
with Aof, Aodr, A, f, AQQT,AOAgf, [\,,Agf c CK for r,q =1,...,m. Let the

stochastic two-step scheme (3.2) satisfy the consistency conditions

(2

2 1 2
g aj; =0, 0,; + ;(Oéo,i +a;) = g Bii

(4.5)
Qo,i = V1,4, Qo+ Q15 = Y24,

for alli. Then the local error of the method (3.2) for the small noise SDE (2.9)
allows the representation

(4.6) Li=R{+Sy;+ 85,1, i=2,...,N,

where R<> S¢.

YR

j =1,2 are Fy,-measurable with E(S5;|Fy, ) =0, and

1 2 1 2 2 h?2
o P f
R; = [(/i_f + o + 1Dag,; + K_gal,i - (fi_i +2)Bo.i — K_iﬁl,z:| — A f(tiza, X(ti—2))

+ R + Re,

with

4.7) R = (ap,; — 2501) 131 2E-1(AGALf)
+(aos — Bo,i — ﬁli)hifog*W*(AoAff)—ﬁomifégfl’t%AOAéf)
(i + ar) o2 (MoAL f) + aoiloig " (MoAL £),

(4.8)  ||BS|lL, = O(h2),
(4.9)  [18%lle. = O(hi + eh??), 1S5 1llL. = O(h; + hl/?).

COROLLARY 4.2. Let the coefficients f, g., r = 1,...,m, of the SDE (2.9) sat-
isfy the assumptions of Lemma 4.1 and suppose that they are Lipschitz continu-
ous with respect to their first variable. Let us assume that the stochastic linear
two-step scheme with variable step-size (3.2) is stable, its coefficients satisfy the
consistency conditions (4.5) and

12 1 2 2
(4.10) (—2+—+1) Qo+ — i — <—+2) Boi—— Pri=0
K K Rq

ki Ki i
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holds. Then the global error of the scheme (3.2) applied to solve (2.9) shows the
following asymptotic behavior:

max || X (t;) — Xz, = O(h2 + eh + 62}11/2) + O(@%}i 1 X (t:) — Xillz,)-

i=0,...,

Consequently, starting from the deterministic linear two-step schemes of order
two or higher and choosing the parameters ~; ;,v2,; according to v1,; = g ; and
Y2,i = Qi + a1 = —a;, the global error of the resulting two-step Maruyama
scheme can be estimated as O(h?4-eh+¢?h'/2). More generally, stochastic linear
multi-step Maruyama schemes with deterministic order p > 2 have a global er-
ror O(h? +eh+€e?h'/?) provided that the coefficients f, g are sufficiently smooth.

ExXAMPLE 4.1. For illustration, we present stochastic variants of three well
known deterministic methods of order two. The stochastic trapezoidal rule, also
known as stochastic #-method with 6 = 2, is the one-step scheme with the

I
coefficients g =1, a1;=—1, Bo;i=P1,:=75, 11,:=1, agi=02:="72,; =0,

(411) XZ — Xi—l = hl

N —

(f(ti7 Xz) + f(ti—h Xi—l)) + Zgr(ti—laXi—l) Iﬁifl,ti'
r=1

The Adams-Bashforth-Maruyama scheme is given by

(4.12)
Kit2 - ti1,ts
Xi—Xi1 = hi| —5—f(ti-1, X )——f( i—2, Xi—2) +Zgr(ti—1aXi—1) L=
r=1

with ag; =1, an; = =1, Bo; = 22, By = —%, vy =1and B = gy =
V2,0 = 0.
The stochastic two-step backward differentiation formula, BDF5, takes the form
(413) X, — (i 1) + X,y St Flts, X;)

' ' 2mi+1 S PR I PR

2 m

+Zgr 1 z—)I“—l’“—i"‘Zg(tl_z,X ) Ttmtos,
2k; + 1 —

(kit+1)? A . Kitl ‘
2r;+1 0 Q24 = 2k 17 ﬁO,z — 2Rr;+10 ﬁl,z -

Here, one has ag; =1, a1, = —

a2
62,7; = O, and ’)/177: - 17 ’)/2,7: - _2,.%._’_1'

5 Local error estimates.

This section consists of two parts. In Section 5.1 we investigate the structure
of the local error to find out under which condition the deterministic terms still
dominate the behavior and therefore, order two can be observed. In Section 5.2
we attempt to apply techniques developed in Part I of this paper to find estimates
for the local error in case of small noise. It turns out that this is possible only
under further restrictions concerning the size of the noise in relation to the size
of the step-size.
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5.1 Structure of the local error.

A very crucial point in the numerics of SDEs is that the contribution of the
deterministic and stochastic parts of the local error to the global error is qual-
itatively different. We may and we have to use the fact, that the accumulated
stochastic parts of the local error contribute weaker to the global error than the
accumulated deterministic parts. The sum of N centered random values with

norm 1 has the norm v/ N, whereas the sum of N deterministic values with norm
1 may be equal to N. This is reflected in the stability estimate (3.5). Therefore,
a natural approach consists in controlling the local error contribution

(5.1) i = | RillLo/hi + Sl o /R,

where L; = R; + 5;. Recall that the representation L; = R; + S; of the local
error is not unique and therefore, an important issue is to find an adequate
representation that is on the one hand as simple as possible and requires only
low smoothness, and on the other hand gives satisfactory estimates. We will use
the representation (4.6),

Ll:R?—i_Sﬁ’L—i_Sgl—l’ 7;:2,...,N7
given in Lemma 4.1.

Let us consider a stochastic linear two-step scheme (3.2) with deterministic order
two and suppose that the smoothness assumptions of Corollary 4.2 are satisfied.
Then, using notation from Lemma 4.1, we have

Rozl:l?f—i-ezf%f,

1RSI, = O(h2), 1S+ 85 1llz. = O(hi + ehl'?).
This gives

|RS N/ = 1Bl /hi + O(Eha), ST |l2a /By = O(€h"* + ehy).
A more detailed investigation shows that
R?f =c- h?AgAgf(ti, X(t;)) + higher order terms,

where ¢; is the deterministic error constant. The Lo-norm of the higher order
terms can be estimated by h} - O(h; + ehi/2 + €2) provided that AJA/ f is suffi-
ciently smooth, or more precisely, belongs to the class C*? with derivatives in
CK . Also, changing the evaluation point from (¢;, X (t;)) to (t;_1, X (t;_1)) alters
only higher order terms. Consequently, the local error term ¢;-h3AJ AL f(t:, X (t;))
is responsible for the global error term of order O(h?). Note, that the expression

ALAS £t X (1)) = A (] + Fof) (i, X (t:))
= (L + [20)s + (FL+ FLI)L ) (b, X (8))

becomes z'’(t;) in the limit ¢ — 0.
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Now, we ask the question, for which choices of € and h the O(h?) term dominates
the term O(eh+€%h'/2), and so we can still observe the O(h?) behavior. Clearly,
both these terms depend on the actual coefficients f, g, = 1,...,m, of the SDE
(2.9) and their derivatives. Assuming moderate function values, the term O(h?)
dominates O(eh + €2h'/?), if h? > ¢2h'/?, ie., h > €*/3, and h? > ¢h, i.e.,
h > ¢. Obviously, the second condition is stronger, in general. Summarizing,
we can expect to observe the order two behavior of the global error if h > e.
An example illustrating this statement in context of constant step-sizes can be

found in [3].

In the following, we assume that the step-sizes used in the computation and the
noise are properly related, the noise being small enough with h > e.

5.2  FEstimation of the dominant error term via defect evaluation.

We are now able to adapt the techniques developed in Part I of this paper [19]
to small noise SDEs. Again, we consider two different multi-step schemes, the
basic one (3.2) which we identify with the solver scheme, and an auxiliary one
which is used to define the defect for the estimation of the local discretization
error (3.3) of the basic scheme. As in Section 3 we restrict the exposition here
to one or two-step methods as solver schemes and two-step methods as auxiliary
schemes. Two-step auxiliary schemes will turn out to be suitable to provide
error estimates for stochastic multi-step schemes with deterministic order two.
However, the principles presented in this section are applicable also to handle
more general multi-step schemes.

We consider an auxiliary scheme of the form

Biif(timj, Xi—j)

M N
£
B
|
|'|
M o

(5.2)

I
o
S,

I
=)

Mw

+ _J’ng'r‘ — jaXz j) ItZ irti- J—H i:2,...,N,

1 r=1

J

with given initial values Xg = Xg, X1 € Lo(£2,R™) such that X; is F;,-measurable
for ¢ = 0,1. Let the coefficients of the scheme be normalized in such a way that
&p,; = 1. The local truncation error of (5.2), L;, is again, defined as the defect
that results from inserting the exact solution values into the numerical scheme
(5.2).

As in Part I we consider the defect obtained by substituting the approximations
X; computed from (3.2) into the scheme (5.2),
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Let us denote the solutions of the schemes (3.2) and (5.2) obtained using exact
starting values by X* and X, respectively,

Zaﬂ tij) + hiBo.if (ti, X}) + by Zﬁﬂf i—g> X (ti-))

7j=1

2 m
3 750 S gty X (1)) Tt
Jj=1 r=1

Za]z z 7 +hﬁ01f t’L:X Zf i— J’ 'L J))

IIMN

2
+ Z Vi.i Z Jr (ti—j, X(ti_j)) [ﬁi*jvtiﬂ'H’
j=1 r=1

where i = 2,..., N. For explicit schemes (8 ; = 0 and By ; = 0) we immediately
have ~ ~
L =X(t;) — X[, L= X(t;) — X7,

but in general,

(5.6) Li=X(t;) — X} — hifo,;i (f(t:;, X (t:)) — f(t:, X7))
= (I = hifo.idi) (X (t:) — X}),

(5.7) Li=X ;) — X} — hiBoi (f(ti, X(:)) — f(t:, X]))
= (I — hifoidi) (X () — X7).

Here, J; = [o fi(ti,sX (t:)+ (1= 8)X7)ds, Ji = [ fo(ts,sX (t:) + (1— ) X7) ds,
and f is supposed to be differentiable with respect to its second variable x.

Fully analogously to Lemma 1.3.1, one can prove the following property of the
defect D} defined in (5.8) and obtained by substituting X/ into (5.2).

LEMMA 5.1. Let f(t,z) € C%! be continuous and continuously differentiable
with respect to x. Let the step-size h be sufficiently small to guarantee that the
matrix (I — hifo.iJi) is nonsingular. Then the defect D},

2
(58) : X*—FZO@Z i j hﬁOzf(t’mX* ZB ti— J7X(t’b J))

2 m
DT Dty Xltimy) i,
j=1  r=1

satisfies

(5.9) D} =L; — Li + hi(Bo,i — Bo,i)Ji (I — hifBo,iJ;) ' L.
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The structure of the defect allows a special representation of the local truncation
error.

COROLLARY 5.2. Let us assume that Lemma 5.1 holds. Moreover, let the local
errors of the schemes (3.2) and (5.2) allow representations

Li=Ri+S;, Ri=chl™ (ADPIf(t, X (8) + RS

with
RS ||z, = O(Y ™2 + eh?® + E2h2), |||z, = O(eh? + 2hy),
and ~ - - ~ ) ) B
L,=R;,+S;, R;= Ezhf_'_l(A(J;)[p]f(tz,X(tz)) + R,?
with

IR, = O(WT™2 4 ehl® + €2h2),  ||Si]|1, = O(eh’® + €2h,).

For the case p = p, we additionally assume that c¢; # ¢;. Then there exist Fy,-

measurable variables RSP" and stochastic parts SP” with |SP" |5, = O(eh?/2 +
€2h;) such that

(i) forp > p: Ly = DF+RP"+SP" with | RSP |1, = O(h?”—i—eh?/Q—l—th%),

(ii) forp < p: L; = —D*+RePY4SP" with ||ROP" ||, = O(hPT24eh>/*+e2h2),

(i) for p = p

L; = __(EC.D; + RBP4 8P with  ||RD7|| L, = O(WPH? + eh?/? + €2h2),

and ZE‘ '

Li = ——D; + R¢P'+SP" with R ||, = O(hY™ + ehd/® + 2h2).
C;, —C;

PROOF. We first rewrite (5.9) by using the structure of the representations of
L; and L; and obtain

D¥ =

7

L —L; + hi(Bo,i — Bo,i) i (I — hifo,iJi) ' L.
~~ =~ N Y
R,+S; —R;—S;

4

EUII

(i) Let p > p. The proof is analogous to case (ii).
(ii) Let p < p. Then we have

Df =—Li+ R+ R; + S,
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(iii) Let p = p. Then

D} = (G — ) WP AP f(ti, X (1)) + RS — RS + Ry + S5 — Si,

———D; = el ANt X (0) +——— (B = B} + Ri + 5 = S0).
L, — R} —S;
Li=—"—D; + R +8 — —— (R — R} + Ri + 5; - 5)
C; — C; C;, —C;
Ci * o Ci DO o ) Ci Q
= - D; + R — - (R — Ry + R;) +S; — = (S;—S;).
Ci —Cj Ci — C; i — ¢
RoD’ 0"
The assertion for L; results fully analogously. 0

Corollary 5.2 offers two options for designing an estimate R; for the error term
(5.10) R = e, (AP £ (2, X (1),

that is assumed to dominate. According to (i) we may choose a higher order
scheme (5.2) to evaluate D; given by (5.3) and set R; := —D,. According to
(737) we may choose a scheme (5.2) with the same order p = p to evaluate D; and
set R; :=

Ci

D;. In both cases we do not aim at estimating the stochastic

C;, — C;
parts of the local error, and R; can be considered as an asymptotically correct
estimate for R} only if D, — D} is asymptotically smaller than the dominant
term R itself. This means that the stochastic parts of D; — D have to be of

order O(eh?/ > 4+ €2h;), and the remaining (deterministic or not specified) parts
of D; — D¥ of order O(h** + ehf?/z +2h2).

Let us now restrict the exposition to stochastic schemes with deterministic or-
der p = 2. In Part I ([19]), the defect structured as a weighted sum of f-
values, proved advantageous. To obtain this structure again, we choose an aux-
iliary two-step scheme (5.2) with the same left-hand side as (3.2), i.e., &;; =
aji, 7 =0,1,2. Another very important effect of this choice is that the stochas-
tic Maruyama terms in the defect are cancelled. This yields

2
(5.11) Di=hi- > (B — Bia) f(timj, Xiej).

J=0

The freedom to choose the auxiliary scheme (5.2) now reduces to determine
the coefficients By ;, 31,i, B2,i, which additionally have to satisfy consistency con-
ditions ensuring that the scheme (5.2) has at least the deterministic order of
convergence p = 2. Now, only one degree of freedom remains. Specifying the
coefficients in such a way that the error constant of the resulting scheme satisfies
¢; —c¢; = 1, we obtain

2:‘% 2/@?
fti, Xi) — 2k, f(tic1, Xic1) + fti—e, Xi—2) |,

5.12) D; =h; -
( ) K; + 1 ki +1
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in analogy to the deterministic case. As already mentioned in Section I1.3.1,
this structure of D; is crucial for the property that the difference ||D; — D}|| is
asymptotically smaller than || R;|| itself. Therefore we can use R; as an estimate
for the dominating term in the local truncation error, which yields

(5.13) | Lillz, = |BitSill, = il Rill o + O+ >+ 1)+ O(eh* +€ha),
where R; is of order O(h3 + eh?/ >4 €2h;). Unless we know the conditional ex-
pectation E(L;|F;,_,), we are unfortunately not able to utilize the fact that the

stochastic parts of the local error contribute less to the global error than the
deterministic ones.

We now study the local behavior of (5.13) in relation of the small parameter e
and the actual step-size h;. We assume that the local error term of order O(h3?)

in R; dominates the critical stochastic error terms of order O(eh3/ 2y €2h;). This

7

is the case when A3 is much larger than eh?/ 2, which we express by

(5.14) O 5 T R

Therefore, the local truncation error L; behaves like an order three term. Note
that what we would like to control in praxis are the local errors

X(t)—X;=(I- hiﬂo,z‘Jz‘)_lLu

see (5.6). Aslong as the underlying deterministic problem is not stiff, the values
of h;J; are small compared to the identity matrix I. In this case L; as well
as R; are good approximations to X(¢;) — X*. However, for stiff problems
the values of h;J; can become considerably large and therefore R; should be

scaled by (I — hiﬁo,iJi)_l, or by a suitable approximation to this matrix. Since

(I— hiﬁoﬂ‘Ji) is the Jacobian of the discrete scheme (3.2), this matrix (or a good
approximation to it) and its factorization are usually available.

6 Discretization schemes for index 1 SDAEs with small noise.

We now extend the results from the previous section to SDAEs of the form

(6.1) AX(s)|g, + tf(s,X(s))ds -+ t G(s,X(s)dW(s) =0, teJ,

to

where A is a constant singular n X n matrix. Moreover, G = €, where € is
a parameter characterizing the size of the noise. The following discussion for
the SDAEs is similar to the respective considerations for DAEs presented in the
first part of the paper, cf. Section 1.4. This is due to the analogous problem
structure, especially to the crucial property that the matrix A is constant. For
readers convenience we will repeat the most important merits of the discussion
and stress the alterations resulting from the different nature of the SDAEs.
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6.1 Analysis of index 1 SDAEs.

The analytical properties of SDAEs (6.1) have been studied in [22]. Since the
matrix A is singular the system (6.1) contains constraints and the solution com-
ponents lying in ker A, we call them the algebraic components, are not subject
to differentiation. Following the definition given in [22], we say that the SDAE
(6.1) is of index 1 if the following properties hold:

e The constraints are free of noise.

e The constraints are globally uniquely solvable for the algebraic variables.

In order to analyze the qualitatively different solution components a theoretical
decoupling is used. For constant matrices A this decoupling is compatible with
the stochastic calculus and successfully carries over to SDAESs, see [22].

Again, we use constant projectors

Q onto ker A, P:=1—( along ker A, R alongim A
to decompose the solution X into differential and algebraic components,
X=PX+QX=U+V.

The solution X is a random vector with values in R™, U is a random vector
with values in im P and V is a random vector with values in im ). We first
decompose the original system (6.1) into a set of stochastic differential equations
and stochastic constraints,

t

(6.2) A(PX)(s)

—(I—R)/t f(s,X(s))ds—(I—R)[ G(s,X(s))dW (s) =0,

to to

(6.3) R| f(s,X(s))ds — R| G(s,X(s))dW(s) =0.

to to

Since we deal with an index 1 system, the constraints are free of noise, i.e.,

RG = 0. Hence, the integral ft?; Rf(s,X(s))ds vanishes for all ¢t € J and we

can conclude that Rf(¢t,U + V) = 0 for all t € J. Therefore, we can solve the
constraints (6.3) for the algebraic components QX =V,

(6.4) Rft,U+V)=0, AV =0V =0(t,U).

Finally, we insert V' = 9(¢,U) into (6.2) and scale the equation by a reflexive
generalized inverse A~ with AA=™ = 1 — R, and A~ A = P. This yields the
so-called inherent reqular SDFE for the differential components U,

C o [ A (s, a(s, Us))ds + [ ATG(s (s, U(s)) AW (s),

to to to

(6.5)  U(s)

where x(s,u) = u + 0(s,u), and the initial condition is given by U(tg) = PXo.
We refer to [22] for the discussion of the existence and uniqueness of solutions
of (6.1) based on the above theoretical decoupling.
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6.2 Linear two-step Maruyama schemes.

A natural generalization of the linear two-step Maruyama schemes, cf. (3.2), for
the numerical solution of SDAEs (6.1) is given by

(6.6)
Itz j»tz j+1

—AZO@Z i—j = Zﬁjzf =7 X J +Z’VJ’LZQ”‘ i—Js Xi- ]) - h.;

(3

However, one has to pay special attention to the discrete constraints that are
implicitly included in the above scheme,

I,;El 3 7t1 Jj+1

(6.7) O—Zﬁ“Rf i—j» Xij +Z%12Rgr i Xiej) =

The definition of index 1 SDAESs contains the assumption that the constraints

are free of noise, i.e., Rg, = 0, r = 1,...,m, holds. Given this, the discrete
constraints,
2
(6.8) 0= BiiRf(tij Xiry),
§=0

formally coincide with those for the deterministic case, and again, we obtain a
recursion in Rf(¢;, X;). For exact initial values Rf(tg, Xo) = Rf(t1,X1) = 0,
the exact solution of this recursion is trivial, Rf(t;, X;) = 0. Clearly, this prop-
erty can be recovered during the numerical simulations only if the recursion is
stable. In Section 1.4 we addressed several possibilities to realize stable recur-
sions. Not all of the options discussed there carry over to SDAEs. Here, the
situation is more complicated in general, since the discretization of the drift and
the diffusion coefficient needs to be carried out differently due to their qualita-
tively different behavior. An implicit discretization has to be used for the drift
term, whereas the diffusion term may be discretized explicitly.

The most favorable behavior can be observed for the BDF-Maruyama scheme.
In fact, no recursion in Rf(t;, X;) is carried out there. Applied to the SDAE
(6.1) the BDF-Maruyama scheme takes the form

L ())?
(6.9) AN T e Xt

K2
S FT N2 K+ 1

- Xia %

If,iflati 2 m Iﬁif2,ti71

m
K
+ g gr(Xim1,tio1) - - E :9r(Xi—27t’i—2)
r=1 hZ 2Ki +1 r=1 hl

Other linear multi-step schemes, like the stochastic trapezoidal rule, need to
be modified to guarantee a numerically stable formulation. To this end, more
structural information has to be exploited. The first approach presented in
Section 1.4.1, formula (I1.4.9), was to utilize knowledge about the constraints and
to use different discretizations of the differential and algebraic components. This
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approach turns out to be successful also in context of SDAEs. Using a projector
R along im A, a related stable scheme can be formulated as follows,

2 2
1
h—A E Ozj,Z‘XZ‘_j = E ﬁj@([ — R)f(Xi_j,tz‘_j) + Rf(XZ,tZ)
3 j:O ‘_

Itz 7 7tz Jj+1

+Z'Y]zzgr i—J i ] - h

The second possibility considered in Section 1.4.1, formulas (1.4.10), (1.4.11),
does not work correctly in case of SDAEs. When using this approach, one cannot
account for the qualitatively different discretization of drift and diffusion.

In case of SDAEs with noisy constraints, also called SDAEs with direct noise,
we face even more severe difficulties. Except for the case of the BDF method,
the noise in the constraints accumulates to

(6.10)
7 m Itifj,ti7j+1
Rf(Xi,t;) = aiRf(X1,t1) +b:Rf(Xo, o)+ Y ¢ > Rge(Ximj tij) =,
j=2 r=1 hi—j1
where ¢ = k,...,N. The constants a;, b;,c; depend on the coefficients «;, (;
and v;, i = 1,...,1, of the scheme (6.6) and do not vanish in general. A more

detailed discussion of the difficulties caused by noisy constraints can be found
in [21].
6.3 Local error estimate.

We define the local truncation error L;, as before, by substituting the values of
the exact solution into the scheme (6.6),

(6.11) Z;_Azaﬂ — I Zﬁmf i—i» X (tij))

- Zm Zgr<ti_j,X<ti_j)) [li-stiit G =k, ... N.
71=1 r=1

Again, L; satisfies the relation

Li= A(X(t;) — X)) — hiBo,i (f(ts, X (t:)) — f(t:, X7))
(6.12) = (A —hifo,iJi) (X (t:) — X[),

where, X/ is the result of a step with exact starting values X (¢;,—;), j =1,...,k,
and J; = fol fo(ti,sX?F + (1 — s)X(t;)) ds. This representation has exactly the
same form as in the deterministic case, due to the explicit discretization of the
diffusion part. Also, the constraint part of L; vanishes, i.e., RL; = 0, and L; is
related to the local truncation error L™ of the discretized inherent SDE (6.5),
by Li"" = A= L; and AL = L.
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As before in context of SDEs, we introduce an auxiliary linear multi-step method
with coefficients @;;, 3;,; and 7;;, and analyze the defect D; of the numerical
solution with respect to this second scheme.

LEMMA 6.1. Let the SDAFE (6.1) be of index 1 and let f(t,z) be continuous and
continuously differentiable with respect to x. Let the step-size h be sufficiently

small to guarantee that the matrix (A—hiﬁ()’iJi) 1s nonsingular. Then the defect
Dy,

2
D (X*+Za]1 z j) hﬁOzf(t’L:X* Z Zf i—7) (’L J))
2 m :
> Sl Xl T,

j=1  r=1
satisfies
(6.13) D} = Li — Li + hi(Bo.i — Bo.i)Ji (A — hifBo,iJi) " L.

The proof is fully analogous to that of Lemma 5.1.

Since the SDAE (6.1) is of index 1, (A — Bh;J;)"1(I — R) = O(1) holds and
hence, an analogue version of Corollary 5.2 applies.

Note that here L; approximates the local error in AX;. Depending on the
available information we will monitor different quantities to satisfy accuracy
requirements,

i) control €, = CZH(A — h¢ﬁ07iJi)_1Di||L2 ~ H(A — hiﬂo,iJi)_lLZ‘HLQ to match
a given tolerance for Xj,

ii) control e; := ¢;||D;||, = ||L:||, to match a given tolerance for AX;, or

iii) control e; := ¢||A™D;||r, =~ ||A~L;||r, to match a given tolerance for
PX;.

7 Step-size control.

In this section we discuss algorithmic details of a step-size control which is based
on the mean square of a local error estimate. In this context, we approximate
the Lo-norm || Z]|L, of a vector valued, square integrable, random variable Z €
Ly(Q,R™) by using M samples 2%, ..., zM of Z,

LM 1/2
- 02
(7.1) 1]z, ~ (M;_lnz | ) .

Applying this formula to the mean square of the defect by using M simulta-
neously computed solution paths leads to adaptive step-size sequences that are
uniform for all paths. The structure of the step-size control algorithm is almost
the same as in the deterministic case, see Section 1.5.2. Here, we merely com-
ment on what modifications are necessary due to nature of stochastic differential
equations.



LOCAL ERROR ESTIMATES FOR MODERATELY SMOOTH NOISY PROBLEMS 21

7.1 Step-size control algorithm.

We refer to [19] for a discussion of the initialization of the algorithm, especially
for the case when the initial value problem itself does not supply enough infor-
mation to start a multi-step scheme.

In the following, let us assume that two initial values X, X1 € L2(€2,R™) at time
points tg and t; = to + h1, an absolute and a relative tolerance, ATOL, RTOL,
and an initial guess for the step-size hy are glven We consider an ensemble

of M paths starting from M samples z}, ...z}’ of the initial value X, and
xl ... 2} of the initial value X;. Let i := 2 and start the step-size control
algorithm.

1) Cf. Section 1.5.2; the next elements z},...,2M of M paths are computed

simultaneously by solving the nonlinear equations (3.2) and (6.6).
2) Cf. Section 1.5.2; the Lo-norm || D;||1, of the defect is estimated by using the

M values Df, {=1,...,M, corresponding to the M sampled paths,
2) 1/2

Z <
< 1D/l

Depending on the problem setting, different scaling of the defect is used for the
derivation of the error estimate e;. The tolerances TOL, are computed compo-
nentwise with respect to the mean over all paths,

M

2 : V4
'Iz‘,r/

=1

3) Cf. Section 1.5.2; we apply a control strategy predicting the new step-size
hpew to match the tolerance TOL multiplied by a safety factor 6, say 8 = 0.7,
and finally,

4) Cf. Section 1.5.2; we accept the step, if |e; | < TOL, for all components
v=1,...,n. In this case we set i := i+ 1, h; := hpep and go to 1. Otherwise we
reject the step and repeat the calculations with a smaller step-size. This means
that we set h;:=h,, and go to 1.

2/@;
K; -|— 1

2K;
( flts,af) =2k f(ti1, xi1)+

ot 1 f(ti—2axf—2))

TOL, := ATOL + RTOL -

7.2 Remark on step rejections.

In case of step rejections, the available information is stored and used to com-
pute intermediate values according to the strategy presented in [12]. For a
scheme (3.2), including only Wiener increments, Iy bi-nt W.(t;) — We(ti—1),
the computation of the intermediate values of the Wiener process is done as
follows: Given increments of a Wiener process AW" := W(t + h) — W(t) for
some t € RT, h >0, and h = hy + ha, hy > 0, hy > 0. Then the intermediate
Wiener increments

AWM =W (t+hi) = W(t), AW" = W(t+hy +hy) — W(t+ hy),

are simulated according to the formulas

hy hihs A = B2 A, [lale

hi _ . .
(7.2) AWM = n Pl . Y
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respectively, where v ~ N (0, I,,,).

8 Numerical experiments.

In this paragraph, we illustrate the performance of the step-size control strategy
by means of numerical experiments for the stochastic BDF, applied to three test
problems. We begin with a model SDE, with known exact solution, which allows
to access exact errors of the approximation. We plot accuracy as a function of
step-length to show that the classical deterministic convergence order two is
retained in case of a small noise. Our second example is a MOSFET inverter
circuit under the influence of thermal noise, which is modelled as a SDE. Finally,
we present simulation results for a MOSFET ring oscillator.

ExXAMPLE 8.1. We first deal with a nonlinear scalar SDE,

8.1) X(t)= /0 —(a+ %X (s))(1 — X(s)?)ds —|—/0 B(1 — X(s)?)dW (s),

where t € [0,T] and W denotes a scalar Wiener process. The drift and diffusion
coefficients,

ft,x) == —(a+ B%2)(1 — 2?), G(t,x):=p(1 - 2?),

can be tuned by two real parameters o, 3. The solution to the problem is given
by (cf. [10, (4.46)])

exp(—2at + 26W (t)) — 1

8.2 X(t) = .

(82) (t) exp(—2at + 26W (t)) + 1
We restrict our attention to two sets of parameters, a = —10 and g = 0.1, and
a = —10 and 3 = 0.01. The tolerances are ATOL = RTOL = 1072,

X h X

: : error

numerical solution in path 1——

exact solution in path 1- - -
global error -+~

n —
numerical solution in path 1 ——
stepsize + N

M
1t 1F -4
102 i

- 0.016

-40.014

0.8 f 08}i
{015

-4 0.012

i 40,01
0.6l : 061 :

i - 0.008
401

;
0.4} , 0.4 4 0.006

1005 4 0.004

.
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- 0.002
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+++++*+++++
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Figure 8.1: Example 1: Numerical solution provided by BDF32 in one path, and step—
sizes (left). Exact solution, numerical solution, and its global error (right).

In the left graph of Figure 8.1 we depicted the numerical solution in the first
computed path (solid line) together with the adaptively chosen step-sizes from
over 100 simultaneously computed solution paths (marked by +). In the right
graph the numerical solution, the exact solution (dashed line), and the observed
global error (dashed dotted line) are given. The solution shows a transient be-
havior at the beginning of the time interval. One can observe a step-size increase
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Figure 8.2: Example 1: Tolerance and accuracy vs. steps, « = —10, 8 = 0.1 (top);

a = —10, 8 = 0.01 (bottom).

towards the interval end, due to a considerable smoothness of the solution in this
region.

In Figure 8.2 we present the related work precision diagrams. We plotted the
tolerances ATOL = RTOL (marked as /) and the mean square norm of the errors
for adaptively chosen (marked by +) and constant (marked by x) step-sizes
for 100 computed paths vs. number of steps, both in logarithmic scale. The
accuracy is measured using the maximum of the approximated Lo-norm of the
global errors in the time interval,

1/2

M
1 aps
83) o g7 LI w) —olP )~ e 1X(6) - Xl

where N denotes the number of steps and M the number of computed paths.
Throughout, we used M = 100. Additional lines with slopes —2 and —1/2 are
provided, to enable comparisons with convergence orders 2 and 1/2, respectively.
In case of small parameter values, cf. lower graph, we observe classical conver-
gence order p = 2 up to accuracies 3 - 107°. Afterwards, there is a very small
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region of linear convergence and thereafter the convergence order drops to only
1/2. In the upper graph this threshold is reached at accuracies 2-10~%. Further-
more, the use of adaptive step-sizes provides considerably more accurate results
than the computation with the same number of constant steps.

The results indicate that the proposed step-size control performs well for step-
sizes above the threshold and still quite reasonable for step-sizes slightly below
the threshold.

ExaMPLE 8.2. Now, we consider a model of an inverter circuit with a MOSFET
transistor, under the influence of thermal noise. The related circuit diagram is
given in Figure 8.3. The MOSFET is modelled as a current source from source to

oll

Figure 8.3: Thermal noise sources in a MOSFET inverter circuit.

drain. The current through the MOSFET, jp, depends on the nodal potentials at
gate, ey, drain, e4, and source, €5, jp = fmosfet(€g, €d, €s). In the model of MOS-
FET inverter circuit considered here, the current is controlled by the input volt-
age U;p, and the nodal potential e; at node 1, jp(Uin,€1) = fimosfet(Uin,€1,0).
We refer the reader to [17] for a detailed investigation of the MOSFET model.

The thermal noise of the resistor and of the MOSFET is modelled by additional
white noise current sources that are shunt in parallel to the original, noise-
free elements. The noise intensity is given by Nyquist’s rule, and hence, the
associated current is modelled by additive noise,

(8.4) ith = oR&(t) = %5@):

where £(t) is a standard Gaussian white noise process, k = 1.38066-10~23[J K ~!]
is Boltzmann’s constant, 1" is the absolute temperature, and R is the resistance.
For the thermal noise source of the MOSFET this formula is modified by con-
sidering a solution dependent resistance, see [17].

Combining Kirchhoff’s current law and the element characteristics yields the
following model for the output voltage e; at node 1:

(8.5) Cé1 — (Uop —e1)/R~+ jp(Uin,e1) — or&1 + 0p(Uin, e1)&2 = 0,

where &1, &5 are independent standard Gaussian white noise processes. We treat
this system as an Ito6 SDE with n =1, m = 2,

ft,2)=((Uop = 2)/R+jp(Uin, x))/C, g1(t, ) =0r/C, g2(t, x) =0 (Uin, ) /C.
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Figure 8.4: Example 2: Simulation results for the noisy inverter circuit using BDF5.
Results for 1 path (top), and for 100 paths (bottom).

In Figure 8.4 we present simulation results for the parameter values C = 2 -
10713[F], R=5-10%[Q], U,, = 5[V], T = 300[K], and the time interval [0,2.5 -
1078][s]. The tolerances were chosen as RTOL = 1072 and ATOL = C - RTOL. To
highlight the effect of the noise, we scaled the diffusion coefficients by a factor of
1000. The input voltage U, and values of the output voltage e; are plotted vs.
time. Moreover, the applied step-sizes, suitably scaled, are depicted using single
crosses. We compare the results for the computation of a single path (upper
graph) with those for the computation of 100 simultaneously computed solution
paths (lower graph), where the thick lines additionally show the values of two
different solution paths, the dashed line gives the mean of 100 paths and the
thin lines the 30 wide confidence interval for the output voltage e;.

In Table 8.1, we compare the number of accepted and rejected steps for different
numerical methods. The implicit Euler-Maruyama scheme has deterministic
order p = 1, whereas the stochastic variants of the trapezoidal rule and the BDF,
have deterministic order p = 2. The ITR requires generally less steps than the
BDF5, due to the larger error constant of the latter method. Moreover, we can
observe that using the information of an ensemble of simultaneously computed
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Table 8.1: Number of steps for one path and 100 paths: accepted + rejected

RTOL = 1072 RTOL = 1073

1 path 100 paths 1 path 100 paths
iEul 185436 = 221 19945 = 204 | 889+193 = 1082 91242 =914
BDFy | 139425 = 164 157+6 = 163 | 5924149 = 741  680+8 = 688
ITR 86+14 =100  97+5 =102 | 330+ 68 =398 37147 = 378

solution paths smoothes the step-size sequence and considerably reduces the
number of rejected steps, when compared to the simulation of a single path.
Also, the number of computed (accepted + rejected) steps to reach the tolerance
is reduced.

ExAMPLE 8.3. The final model we are dealing with is a MOSFET ring oscillator
built of three coupled inverter steps with simple MOSFET models. Such an
oscillator was also used for test runs in [16]. We used second order schemes for
its simulation. Thermal noise in the MOSFETSs and in the resistors are modelled
by multiplicative and additive white noise sources. The circuit diagram is given
in Figure 8.5. The corresponding noise-free circuit is a free running oscillator.

L

Figure 8.5: Thermal noise sources in a MOSFET ring oscillator model.

Cp2

The unknowns in the above charge oriented system are the charges for the six
capacities, the four nodal potentials and the current through the voltage source.
The system is of index 1, but, formally, has direct noise, because the three
thermal resistance noise sources directly affect the current through the voltage
source.

In Figure 8.6 we present numerical results obtained applying the stochastic trape-
zoidal rule ITR (upper graph) and the stochastic BDF5 (lower graph), where 100
solution paths were computed simultaneously. We record the nodal potential at
node 1. All quantities directly correspond to those computed in Example 8.2.
The paths exhibit a highly visible phase noise and hence, can hardly be consid-
ered as small perturbations of the deterministic potential. The mean function
appears damped and differs considerably from the noise free potential.

Using a method of second order results in a smaller number of steps compared
to the drift-implicit Euler scheme. For the ITR, 766 (44 rejected) steps were
necessary, the BDFy preformed with 1497 (4+3) steps and the implicit Euler-
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Figure 8.6: Example 3: Two sample paths of the voltage in node 1 (el), the mean over
100 sample paths (Eel) and the 30 range (+30) for the ITR (top) and for the BDF2
(bottom).

Maruyama scheme took 2008 (+8) steps for the simultaneous approximation of
100 solution paths.

9 Conclusions.

The theory presented in the present second part of the paper relies heavily on the
techniques developed in the first part [19]. There, Defect Correction principle
has been used to derive error estimation formulas for the discretization error of
the numerical solution of ODEs and DAEs. Most importantly, we were interested
to construct reliable error estimates in such a way that they require only very
moderate smoothness properties of the analytical solution. It turned out that
a properly scaled defect may serve as an asymptotically correct estimate of the
local error. In the present investigation we were able to extend the technique
and prove analogous results for SDE and SDAE with small noise.
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