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Abstract. We are motivated by simulating a three-dimensional wave equation for an anisotropic
material with stress-free boundary conditions. The applications are suited in the earthquake simula-
tion that is based on seismic model problems. In this paper we discuss the efficiency of a higher-order
time-discretization method, that is based on an iterative operator-splitting method. The main con-
tribution is deriving the initial starting conditions for the iterative method; we propose different
ideas and results for a pre-stepping method. The operator-splitting methods are well-know to solve
such complex multi-dimensional and multi-physical problems. By decoupling the complex systems
of differential equations into simpler equations, we save memory and computational resources. The
iterative splitting method is discussed with its stability and consistency analysis. We verify our
numerical methods with computational results based on our software tool OPERA− SPLITT . We
present 2D and 3D wave equations with different higher-order splitting ideas. Finally we discuss the
next works.
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1. Introduction. Based on the motivation of simulating wave equations, we
contribute iterative splitting methods as accurate solver methods with respect to de-
couple complicated differential equations. The splitting methods deal with simpler
differential equations, with respecting time and space scales of the physical opera-
tors, and can be designed to save memory and computational resources. While using
multi-steps or more iterations, the additional amount of work for the operator-splitting
methods can be reduced by optimizing the balance between time partitions and num-
ber of iteration steps. In our case, the classical splitting methods for hyperbolic
equations are the alternating direction implicit (ADI) methods [6], [14], as well as the
locally one-dimensional (LOD) methods [4], [13]. The methods are based on locally
reduced equations, e.g. explicitly parts, and sweep implicitly over all equation parts.
These methods are often not stable and accurate enough, while neglecting the phys-
ical coupling of each operator, and delicate for designing higher-order methods, see
[6]. We contribute new iterative methods based on fixed-point iterations, which gain
higher-order results and can be easily implemented, see [8]. The first iterative splitting
methods were designed for parabolic differential equations, see [8] and [12]. We gen-
eralize the methods to be used also for hyperbolic differential equations, see also [10].
The delicate initialization process, which is important to obtain higher-order meth-
ods, is presented with pre-stepping and boot-strapping methods. We prove stability
and consistency of the methods with the transformation on an abstract first-order
Cauchy problem. The numerical experiments show the application to wave equations
and the benefit of the splitting methods.

The paper is organized as follows. A mathematical model based on the wave equations
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is introduced in Section 2. The iterative operator-splitting methods are discussed in
Section 3. The improvements of the starting solutions, i.e. initialization process, is
done in Section 4. The underlying discretization is presented in Section 5. The con-
sistency and stability analysis is considered in Section 6. We introduce the numerical
results in Section 7. Finally, in Section 8, we discuss our future works in the area of
splitting and decomposition methods.

2. Mathematical model. The motivation for the study presented below is com-
ing from a computational simulation of earthquakes [3] and the examination of seismic
waves [1] and [2].

We concentrate on the scalar wave equation, see [13], for which the mathematical
equations are given by

∂tt c = D1(x1, . . . , xd) ∂x1x1
c + D2(x1, . . . , xd) ∂x2x2

c

+ . . . + Dd(x1, . . . , xd) ∂xdxd
c, in Ω × [0, T ], (2.1)

c(x1, . . . , xd) = c0(x1, . . . , xd), ct(x1, . . . , xd, 0) = c1(x1, . . . , xd), in Ω. (2.2)

The unknown function c = c(x1, . . . , xd, t) is considered to be in Ω× (0, T ) ⊂ IRd × IR
where the spatial dimension is given by d .
The function D(x1, . . . , xd) = (D1(x1, . . . , xd), D2(x1, . . . , xd), . . . , Dd(x1, . . . , xd))

t ∈
IRd,+ describes the wave propagation in x1, . . . , xd. The functions x0(x1, . . . , xd) and
c1(x1, . . . , xd) are the initial conditions for the wave equation.
We deal with the following boundary conditions:

c(x1, . . . , xd, t) = c3, on ∂Ω × T : Dirichlet boundary condition, (2.3)

∂c(x1, . . . , xd, t)

∂n
= 0, on ∂Ω × T : Neumann boundary condition, (2.4)

D∇c(x1, . . . , xd, t) = cout, on ∂Ω × T : outflow boundary condition, (2.5)

where c3, cout : ∂Ω × [0, T ] → IR are know and sufficient smooth functions.
For simpler model equations we can derive the following analytical solution:

u(x1, . . . , xd, t) = sin(
1√
D1

πx1) · . . . · sin(
1√
Dd

πxd) · cos(
√

dπt), (2.6)

where D1, D2, . . . , Dd ∈ IR+ are given, and the initial functions c0(x1, . . . , xd) and
c1(x1, . . . , xd) as well as the function for the Dirichlet boundary condition c3(x1, . . . , xd, t)
are given analytically.

3. Operator-splitting methods for wave equations. In the next subsections
we describe the classical and iterative operator-splitting methods for wave equations.

3.1. Classical operator-splitting methods for wave equations. We de-
scribe the ADI and the LOD methods, which are both locally one-dimensional meth-
ods with explicit operators and implicit coupling steps.

ADI methods
Our classical method is based on the splitting method of [6] and [14].
The classical splitting methods ADI (alternating direction methods) are based on the
idea of computing the different directions of the given operators. Each direction is
computed independently by solving more basic equations. The result combines all the
solutions of the elementary equations. Thus we obtain more effectivity by decoupling
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the operators.
The classical splitting method for the wave equation starts from

∂ttc(t) = (A + B + C)c(t) + f(t), t ∈ (tn, tn+1), c(tn) = c0, c′(tn) = c1, (3.1)

where the initial functions c0 and c1 are given. We could also apply for c1 that

c′(tn) = c(tn)−c(tn−1)
∆t

+O(∆t) = c1. Consequently, we have c(tn−1) ≈ c0 −∆tc1. The
right-hand side f(t) is given as a force term.
We could decouple the equation into three simpler equations obtaining a method of
second order.

˜̃c − 2c(tn) + c(tn−1)= ∆t2A(η˜̃c + (1 − 2η)c(tn) + ηc(tn−1)) (3.2)

+∆t2Bc(tn) + ∆t2Cc(tn)

+∆t2(ηf(tn+1) + (1 − 2η)f(tn) + ηf(tn−1)),

c̃ − 2c(tn) + c(tn−1)= ∆t2A(η˜̃c + (1 − 2η)c(tn) + ηc(tn−1)) (3.3)

+∆t2B(ηc̃ + (1 − 2η)c(tn) + ηc(tn−1)) + ∆t2Cc(tn)

+∆t2(ηf(tn+1) + (1 − 2η)f(tn) + ηf(tn−1)),

c(tn+1) − 2c(tn) + c(tn−1)= ∆t2A(η˜̃c + (1 − 2η)c(tn) + ηc(tn−1)) (3.4)

+∆t2B(ηc̃ + (1 − 2η)c(tn) + ηc(tn−1))

+∆t2C(ηc(tn+1) + (1 − 2η)c(tn) + ηc(tn−1))

+∆t2(ηf(tn+1) + (1 − 2η)f(tn) + ηf(tn−1)),

where the result is given as c(tn+1) with the initial conditions c(tn) = c0 and c(tn−1) =
c0 − ∆tc1 and η ∈ (0, 0.5). A fully coupled method is given for η = 0 and for
0 < η ≤ 0.5 the decoupled method consists of a composition of explicit and implicit
Euler methods.
The spatial discretization is given by A = ∂2

∂2x
, B = ∂2

∂2y
, C = ∂2

∂2z
,

where the approximated discretization is derived with the finite difference method as
follows.

Ac(x, y, z) ≈ c(x+∆x,y,z)−2c(x,y,z)+c(x−∆x,y,z)
∆x2 ,

Bc(x, y, z) ≈ c(x,y+∆y,z)−2c(x,y,z)+c(x,y−∆y,z)
∆y2 ,

Cc(x, y, z) ≈ c(x,y,z+∆z)−2c(x,y,z)+c(x,y,z−∆z)
∆z2 .

We have to compute the first equation (3.2) to get the result ˜̃c, which is a further
initial condition for the second equation (3.3), and after whose computation we obtain
c̃. In the third equation (3.4) we have to put c̃ as a further initial condition and get
the result c(tn+1).

The underlying idea consists of the approximation of the pairwise operators:

∆t2Aη(˜̃c − 2c(tn) + c(tn−1)) ≈ 0,

∆t2Bη(c̃ − 2c(tn) + c(tn−1)) ≈ 0,

which we can raise to second order.

LOD method
In the following we introduce the LOD (locally one-dimensional) method as an im-
proved splitting method while using pre-stepping techniques.
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The method was discussed in [13] and is given by:

cn+1,0 − 2cn + cn−1 = dt2(A + B)cn, (3.5)

cn+1,1 − cn+1,0 = dt2ηA(cn+1 − 2cn + cn−1), (3.6)

cn+1 − cn+1,1 = dt2ηB(cn+1 − 2cn + cn−1), (3.7)

where η ∈ (0.0, 0.5) and A, B are the spatial discretized operators.
If we eliminate the intermediate values in (3.5)- (3.7) we obtain

cn+1 − 2cn + cn−1= ∆t2(A + B)(ηcn+1 − (1 − 2η)cn + ηcn−1

+Bη(cn+1 − 2cn + cn−1), (3.8)

where Bη = η2∆t2(AB) and thus Bη(cn+1 − 2cn + cn−1) = O(∆t4).
Therefore we obtain a higher-order method.

Remark 3.1. For η ∈ (0.25, 0.5) we have unconditionally stable methods and for
getting a higher-order method we use η = 1

12 . Then for sufficiently small time steps
we get a conditionally stable splitting method.

3.2. Iterative operator-splitting methods for wave equations. In the fol-
lowing we present the iterative operator-splitting method as an extension to the tra-
ditional splitting methods for wave equations.

The idea is to repeat the splitting steps with the improved computed solutions.
At least one fixed-point iteration has to be solved and we obtain higher-order results.
We iterate for i = 1, 4, 7, . . . , 3m + 1:

ci − 2c(tn) + c(tn−1)= ∆t2A(ηci + (1 − 2η)c(tn) + ηc(tn−1)) (3.9)

+∆t2B(ηci−1 + (1 − 2η)c(tn) + ηc(tn−1))

+∆t2C(ηci−2 + (1 − 2η)c(tn) + ηc(tn−1))

+∆t2(ηf(tn+1) + (1 − 2η)f(tn) + ηf(tn−1)) ,

ci+1 − 2c(tn) + c(tn−1)= ∆t2A(ηci + (1 − 2η)c(tn) + ηc(tn−1)) (3.10)

+∆t2B(ηci+1 + (1 − 2η)c(tn) + ηc(tn−1))

+∆t2C(ηci−2 + (1 − 2η)c(tn) + ηc(tn−1))

+∆t2(ηf(tn+1) + (1 − 2η)f(tn) + ηf(tn−1)) ,

ci+2 − 2c(tn) + c(tn−1)= ∆t2A(ηci + (1 − 2η)c(tn) + ηc(tn−1)) (3.11)

+∆t2B(ηci+1 + (1 − 2η)c(tn) + ηc(tn−1))

+∆t2C(ηci+2 + (1 − 2η)c(tn) + ηc(tn−1))

+∆t2(ηf(tn+1) + (1 − 2η)f(tn) + ηf(tn−1)) ,

where the result is given as c(tn+1) with the initial conditions c(tn) = c0 and c(tn−1) =
c0−∆c1 with η ∈ (0, 0.5). We have the fully coupled method for η = 0 and the decou-
pled method for 0 < η ≤ 1, which is a mixing of explicit and implicit Euler methods.
For the initial conditions of the starting vector we use c1(t

n+1) = 0 and c0(t
n+1) = 0.

The stop criterion is given as
|cĩ+3 − cĩ| ≤ ε,

where ĩ ∈ 1, 4, 7, . . . , 3m + 1 ε ∈ IR+.
Therefore the solution is given as c(tn+1) = cĩ+3.
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Remark 3.2. The initializing process can be done with c1(t
n+1) = 0 and c0(t

n+1) =
0, but one can also improve the accuracy by dealing with approximated solutions to the
starting vector. Further the amount of iteration steps has to be discussed in relation to
the time step, such that a smaller time step can save iterations steps and vice versa.

4. Strategies for improved approximations of the starting vector c0(t
n+1).

For the stability of the method, it is important to start the iterative method with a
good initial value c0,n+1 = c0(tn+1), e.g. c0,n+1 − c0,n+1

sp = O(τ3m+1). For the strate-
gies we contribute four cases, using

I.1) zero vector, c0,n+1 ≡ 0,
I.2) last time step, c0,n+1 = cn,
I.3) average growth, for example c0,n+1 = cn + t−tn

∆t
· (cn − cn−1),

and t ∈ (tn, tn+1], or

I.4) prestepping method, for example c0,n+1 − 2cn + cn−1 = τ2(D1
∂2cn

∂x2 + D2 ∂2cn

∂y2 ).

For the last case, we have an improved initialization process.

Lemma 4.1. We have the wave equation given as in (2.1). For sufficient small
time and space steps, we can assume the following,

cn+1 = cn +
cn − cn−1

τ
, (4.1)

where τ is the equidistant time step and we assume ∂tc
n+1 = ∂tc

n−1, (reversibility of
the hyperbolic equations).

Proof. Using the Taylor expansion for cn+1 we have

c(t) = cn + (t − tn)∂tc(t) + O(τ2), (4.2)

c(t) ≈ cn + (t − tn)
c(t) − c(tn)

τ
+ O(τ2), (4.3)

where t ∈ [tn, tn+1].
We follow t = tn+1 and use the reversibility of the hyperbolic equations.

c(tn+1) ≈ cn + (t − tn)
c(tn) − c(tn−1)

τ
+ O(τ2), (4.4)

for all t ∈ (tn, tn+1].

Remark 4.1. In the 2D and 3D test examples there were no significant differences
between the results using one of the last three initial values. For the first possibility,
one more iteration step is needed until the same results as with the third and fourth
initial value are achieved, for the second one this depends on the PDE. Thus for 2D
and 3D problems the third initial value (by average growth) is the best choose. This
might be different for higher-dimensional PDEs, where more iterations are needed for
the fixed-point iteration. There the last initial value should yield the best results and
save some iteration steps.

5. Discretization methods. For the time- and space-discretization method we
first consider finite difference schemes for the discretization.
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For a classical wave equation this is the well-known discretization in time and space.
Based on this discretization the time is discretized as:

ctt,i =
cn+1
i − 2cn

i + cn−1
i

∆t2
, (5.1)

c(0) = c0, ct(0) = c1, (5.2)

where i denotes the space point xi and ∆t = tn+1 − tn is the time step. The space is
discretized with

cxx,n =
cn
i+1 − 2cn

i + cn
i−1

∆x2
, (5.3)

c(0) = c0, ct(0) = c1, (5.4)

where n denotes the time point tn and ∆x = xi+1 − xi is the grid width.
The underlying equation,

ctt = D1cxx + D2cyy in Ω, (5.5)

u(x, y, 0) = c0(x, y), ct(x, y, 0) = c1(x, y), (5.6)

u(x, y, t) = c2 on ∂Ω, (5.7)

is discretized with the unconditional stable implicit η-method, see [6].

cn+1
i,j − 2cn

i,j + cn−1
i,j

∆t2
(5.8)

=
D1

∆x2

(

η
(

cn+1
i+1,j − 2cn+1

i,j + cn+1
i−1,j

)

+(1 − 2η)
(

cn
i+1,j − 2cn

i,j + cn
i−1,j

)

+ η
(

cn−1
i+1,j − 2cn−1

i,j + cn−1
i−1,j

))

+
D2

∆y2

(

η
(

cn
i,j+1 − 2cn

i,j + cn
i,j−1

)

+(1 − 2η)
(

cn
i,j+1 − 2cn

i,j + cn
i,j−1

)

+ η
(

cn−1
i,j+1 − 2cn−1

i,j + cn−1
i,j−1

))

,

where ∆x and ∆y are the grid width in x and y and 0 ≤ η ≤ 0.5. The initial conditions
are given as c(x, y, tn) = c0(x, y) and c(x, y, tn−1) = c0(x, y) − ∆tc1(x, y).

These discretization schemes are applied to our operator-splitting schemes.
We discretize on a finite difference grid, where k denotes the time step, and hx,

hy and hz are the grid sizes in the different spatial directions of the grid. The time
nk is denoted by tn, and i, j, l is the grid point with spatial coordinates ihx, jhy, khz.
Let un be a the grid function on time level n, and un

i,j,l the specific value of un at the
point i, j, l. The value of the grid function during the iteration is denoted by an extra
super script as un,m

i,j,l .
In the next section we apply our theoretical results to first test examples and in

the next step to real-life models.

6. Consistency and stability analysis. For the stability and consistency we
can rewrite the equations (3.9)-(3.10) in the continuous form in the operator equation
as

∂ttCi = ACi + Fi, (6.1)

where Ci = (ci, ci+1)
t and the operators are given as

A =

[

A 0
A B

]

, Fi =

[

Bci−1

0

]

. (6.2)
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Remark 6.1. The stability and consistency results can be done as for the parabolic
case. The operator equation with second-order time derivatives can be reformulated
as a system of first-order time derivatives.

6.1. Consistency for the iterative operator-splitting method for wave
equations. In the following we analyze the consistency and the order of the local
splitting error for the linear bounded operators A, B : X → X, where X is a Banach
space, see [17].

We assume our Cauchy problem for two linear operators with the second-order time
derivative,

ctt − Ac − Bc = 0, t ∈ (0, T ), (6.3)

c(0) = c0 , ct = c1, (6.4)

where c0 and c1 are given.
We rewrite the probem to a system of first-order time derivatives as

∂tc1 − c2 = 0 in (0, T ), (6.5)

∂tc2 − Ac1 − Bc1 = 0 in (0, T ), (6.6)

with c1(0) = c1, c2(0) = c2,

where c1 = c and c2 = ct.
The iterative operator-splitting method (3.9)–(3.11), with respect to two oper-

ators and in the semi-discretized form, can be rewritten to a system of splitting
methods.

The method is given as

∂tc1,i = c2,i, (6.7)

∂tc2,i = Ac1,i + Bc1,i−1, (6.8)

with c1,i(t
n) = c1(t

n),

∂tc1,i+1 = c2,i+1, (6.9)

∂tc2,i+1 = Ac1,i + Bc1,i+1, (6.10)

with c2,i+1(t
n) = c2(t

n).

We start with i = 1, 3, 5, . . . , 2m + 1.
We can obtain the consistency with the underlying fundamental solution of the equa-
tion system.

Theorem 6.1. Let A, B ∈ L(X ) be given linear bounded operators. Then the
abstract Cauchy problem (6.3)–(6.4) has a unique solution and the iterative splitting
method (6.7)–(6.10) for i = 1, 3, . . . , 2m + 1 is consistent with the order of the con-
sistency O(τ2m

n ).
The error estimates are given as:

‖ei‖ = K‖B‖τn‖ei−1‖ + O(τ2
n), (6.11)

where ei = max{|e1,i|, |ei,2|}.
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Proof. In the following we derive the underlying consistency of the operator-
splitting method.

Let us consider the iteration (3.9)–(3.10) on the subinterval [tn, tn+1]. For the local
error function ei(t) = c(t) − ci(t) we have the relations

∂te1,i(t) = e2,i(t), t ∈ (tn, tn+1],
∂te2,i(t) = Ae1,i(t) + Be1,i−1(t), t ∈ (tn, tn+1],
∂te1,i+1(t) = e2,i+1(t), t ∈ (tn, tn+1],
∂te2,i+1(t) = Ae1,i(t) + Be1,i+1(t), t ∈ (tn, tn+1],

(6.12)

for m = 1, 3, 5, . . . , with e1(0) = 0 and e0(t) = c(t). We use the notations X4

for the product space X × X × X × X enabled with the norm ||(u1, u2, u3, u4)|| =
max{||u1||, ||u2||, ||u3||, ||u4||}(u1, u2, u3, u4 ∈ X).
The elements Ei(t), Fi(t) ∈ X4 and the linear operator A : X4 → X4 are defined as
follows:

Ei(t) =









e1,i(t)
e2,i(t)

e1,i+1(t)
e2,i+1(t)









,Fi(t) =









0
Be1,i−1(t)

0
0









,A =









0 I 0 0
A 0 0 0
0 I 0 I
A 0 B 0









. (6.13)

Then, using the notations (6.13), the relations (6.12) can be written in the form:

∂ttEi(t) = AEi(t) + Fi(t), t ∈ (tn, tn+1],

Ei(t
n) = 0.

(6.14)

Due to our assumptions, A is a generator of the one-parameter C0-semigroup
(expAt)t≥0, hence using the variations of constants formula, the solution for the
abstract Cauchy problem (6.14) with homogeneous initial conditions can be written
as:

Ei(t) = c0

∫ t

tn

exp(A(t − s))Fi(s)ds, (6.15)

with t ∈ [tn, tn+1].
Hence, using the denotation

‖Ei‖∞ = supt∈[tn,tn+1] ‖Ei(t)‖ , (6.16)

we have

‖Ei‖(t) ≤ ‖Fi‖∞
∫ t

tn

‖exp(A(t − s))‖ds

= ‖B‖‖e1,i−1‖
∫ t

tn

‖ exp(A(t − s))‖ds, t ∈ [tn, tn+1].

(6.17)

Since (A(t))t≥0 is a semigroup, therefore the so-called growth estimation

‖ exp(At)‖ ≤ K exp(ωt), t ≥ 0, (6.18)

holds with some numbers K ≥ 0 and ω ∈ IR, cf. [5].
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The estimations (6.17) and (6.18) result in

‖Ei‖∞ = K‖B‖τn‖ei−1‖ + O(τ2
n). (6.19)

where ||ei−1|| = max{||e1,i−1||, ||e2,i−1||}.
Taking into account the definition of Ei and the norm ‖ · ‖∞, we obtain

‖ei‖ = K‖B‖τn‖ei−1‖ + O(τ2
n), (6.20)

and hence

‖ei+1‖ = K1τ
2
n‖ei−1‖ + O(τ3

n), (6.21)

which proves our statement.

Remark 6.2. The proof is aligned to scalar temporal first-order derivatives, see
[8]. The generalization can also be done for higher-order hyperbolic equations, that
are reformulated in first-order systems.

6.2. Stability for the iterative operator-splitting method for wave equa-
tions. The following stability theorem is given for the wave equation performed with
the iterative splitting method, see (6.7) - (6.10).

The convergence is examined in a general Banach space setting and we can prove
the following stability theorem.

Theorem 6.2. Let us consider the system of linear differential equations used
for the spatial discretized wave equation

dc1

dt
= c2, (6.22)

dc2

dt
= Ac1 + Bc1, (6.23)

with c1(t
n) = c(tn), c2(t

n) =
dc(tn)

dt
,

where the operators A, B : X → X are linear and densely defined in the real Banach
space X, see [17]. We can define a norm on the product space X×X with ||(u, v)T || =
max{||u||, ||v||}.

We rewrite the equations (6.22)–(6.23) and obtain

dc̃(t)

dt
= Ãc̃(t) + B̃c̃(t),

c̃(tn) = c̃n,

(6.24)

where c̃n = (c(tn), dc(tn)
dt

)T , Ã =

(

0 1/2I
A 0

)

and B̃ =

(

0 1/2I
B 0

)

.

We assume that Ã, B̃ :X2 → X2 are given linear bounded operators that generate the
C0-semigroup, and c̃, c̃n ∈ X2 are given elements.
We also assume λÃ is an eigenvalue of Ã and λB̃ is an eigenvalue of B̃.
Then the linear iterative operator-splitting method for wave equations (6.7) - (6.10) is
stable with the following result:

‖c̃i+1(t
n+1)‖ ≤ K̃

∑i+1
j=0 ‖c̃n‖τ jλj

max, (6.25)
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where K̃ > 0 is a constant and c̃n = (c(tn), dc(tn)
dt

)T is the initial condition, τ =
(tn+1 − tn) is the time step and λmax is the maximal eigenvalue of the linear and
bounded operators Ã and B̃.

Proof. The proof can be found in [10].

7. Numerical examples. The numerical examples can support the theoretical
results of the iterative operator-splitting methods.

7.1. Test example 1: 2D wave equation. We apply our methods on the
following test example:

∂ttc = D1∂x1x1
c + . . . + Dd∂xdxd

c on Ω,

u(x, 0) = sin(
1√
D1

πx1) · · · sin(
1√
Dd

πxd),

∂tu(x, 0) = 0, (7.1)

u(x, t) = uanaly(x, t), or

∂u(x, t)

∂n
=

∂uanaly(x, t)

∂n
on ∂Ω×]0, T [.

The analytical solution is given as

uanaly(x, t) = sin(
1√
D1

πx1) · · · sin(
1√
Dd

πxd) cos(
√

dπt). (7.2)

We implement the methods by using the program MATLAB. The error will be
calculated by

errL1
:=

m
∑

i1...id=1

∆x1 · . . . · ∆xd|c(x1, . . . , xd, t
n) − canaly(x1, . . . , xd, t

n)|.

We now see the simulation of a two-dimensional wave in the time interval [0, 1/
√

(2)]
with using the iterative operator-splitting method with two iterations per step, η =
0.1, ∆x = 1

16 , ∆y = 1
32 , ∆t = 1

16 and the initial value for the iterations c0,n+1 =
cn + 1

∆t
· (cn − cn−1).

Figure 7.1 shows some typical error functions for the wave equation for the Dirich-
let and Neumann boundary condition.
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Fig. 7.1. Left: Dirichlet boundary, right: Neumann boundary.
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η errL1
errL1

errL1
errL1

errL1

tsteps 50 65 80 100 1000
0.0 1.3378e+024 2.9930e+013 3.1712e-006 7.0626e-006 1.7881e-005
0.01 4.3434e+019 8.6263e+010 4.2870e-006 8.0847e-006 1.7897e-005
0.1 0.0037 2.4075e-005 2.1859e-005 2.0379e-005 1.8040e-005
0.5 0.0011 4.9551e-004 2.6220e-004 1.4201e-004 1.8682e-005

Table 7.1

Iterative OSM; Dirichlet boundary, D1 = 1, D2 = 1, ∆x = 1

16
, ∆y = 1

32
, 2 iterations

per step, initial condition I.3), and Ω = [0, 1]2 × [0, 3 · (1/
√

2)].

Table 7.1 shows the result of the 2D non-stiff problem computed with the iterative
operator-splitting method.

Table 7.2 shows the result of the 2D non-stiff problem computed with the classical
operator-splitting method (ADI method).

η errL1
errL1

errL1
errL1

errL1

tsteps 50 65 80 100 1000
0.0 1.6495e+024 6.2708e+013 3.2525e-006 7.2068e-006 1.7917e-005
0.01 5.0807e+021 2.4727e+011 4.3970e-006 8.2497e-006 1.7933e-005
0.1 0.0038 2.4863e-005 2.2429e-005 2.0799e-005 1.8076e-005
0.5 0.0012 5.1386e-004 2.6976e-004 1.4515e-004 1.8719e-005

Table 7.2

Classical operator-splitting method.

Figure 7.2 shows the dependence of the error, i.e. of the convergence, on the
η-value.
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Fig. 7.2. Left: η=0.0, right: η=0.1 .

Table 7.3 shows the result of the 2D stiff problem computed with the iterative
operator-splitting method.

In the following we have the 2D stiff problem done with the classical operator-
splitting method (ADI), see Table 7.4.

Figure 7.3 shows the numerical and analytical results for the 2D wave equation.

Remark 7.1. The results show the accuracy of the iterative methods, which are
as good as the classical methods. With respect to more iteration steps we could achieve
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η errL1
errL1

errL1
errL1

tsteps 3 4 5 6
0 2.2799 0.3089 0.4845 0.5424

0.2000 0.5299 0.6056 0.6284 0.6334
0.4000 0.1610 0.3716 0.5047 0.5743
0.5000 0.0730 0.2671 0.4259 0.5237

Table 7.3

Iterative OSM; Dirichlet boundary, D1 = 1, D2 = 1

1000
, ∆x = 1

16
, ∆y = 1

32
, 2 iterations

per step, initial condition I.4), and Ω = [0, 1]2 × [0, 3 · (1/
√

2)].

η errL1
errL1

errL1
errL1

tsteps 3 4 5 6
0 16.9876 0.4420 0.5144 0.5955

0.2000 0.5801 0.6469 0.6903 0.6474
0.4000 0.1697 0.3826 0.5886 0.6486
0.5000 0.0839 0.2950 0.4806 0.6142

Table 7.4

Classical operator-splitting method.
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Fig. 7.3. Left: analytical solution, right: numerical solution.

more accurate solutions. The best initialization is given with the average method.

7.2. Test Example 2: 3D wave equation. In the following, we apply our
iterative algorithm on the 3d wave equation.

∂2c

∂t2
= D1

∂2c

∂x2
+ D2

∂2c

∂y2
+ D3

∂2c

∂z2
. (7.3)

The analytical solution is given by (2.6) and for the error function we apply the
L1-norm.

Choosing the optimal starting condition is important for the 3D model. For the
initial conditions (ci−1, ci−2), we apply the conditions (case 1 - case 4), see Section 4.

A first result for optimal starting conditions with non-stiff operators is presented
in Table 7.5.

In comparison to the stiff case, the optimal starting condition is presented in Table
7.6. Here, we saw the higher amount of iteration steps and a finer time partition to
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errL1
errL1

tsteps η = 0.01 η tsteps= 45
30 7.1499e+006 0 3.4227e-005
40 2.0628 0.009 4.9271e-007
44 4.4076e-006 0.01 8.1189e-009
45 8.1189e-009 0.011 1.3792e-007
46 2.8080e-006 0.05 5.0199e-004
50 6.2946e-005 0.1 0.0025
60 3.3983e-004 0.5 0.0541

Table 7.5

Iterative operator-splitting method; D1 = D2 = D3 = 1, ∆x = ∆y = ∆z = 1

8
, 2 iterations per

step, initial condition I.3), and Ω = [0, 1]3 × [0 , 6 · (1/
√

3)].

obtain acceptable results. If we choose η = 1/12, we obtain the best result, because
of the fourth-order time-discretization.

η errL1
errL1

errL1
errL1

tsteps 5 10 30 100
0.0 1394.2 67.7059 0.2921 0.3493
0.01 766.0236 30.0415 0.2980 0.3498
0.1 11.5627 0.3325 0.3486 0.3541
0.2 0.1143 0.4863 0.3963 0.3588
0.3 0.4160 0.2573 0.4340 0.3633
0.4 0.2633 0.1430 0.4622 0.3677
0.5 0.2225 0.1738 0.4824 0.3719

Table 7.6

Iterative operator-splitting method; D1 = 1

10
, D2 = 1

10
and D3 = 1

10
, ∆x = ∆y = ∆z = 1

8
, 2

iterations per step, initial condition I.3), and Ω = [0, 1]3 × [0 , 6 · (1/
√

3)].

If we choose a better initialization process, for example the pre-stepping method,
we obtain also for the stiff case much more better results. In Table 7.7 the balancing
between time and number of iterations is given, good results were already achieved
for 9 time steps while using 3 iterations per step. If we choose η = 1/12, we also
obtain higher-order results.

η errL1
errL1

errL1
errL1

errL1

tsteps 8 9 10 11 12
0 169.4361 8.4256 0.5055 0.2807 0.3530

0.2000 0.0875 0.1315 0.1750 0.2232 0.2631
0.3000 0.1151 0.0431 0.0473 0.0745 0.1084
0.4000 0.3501 0.2055 0.0988 0.0438 0.0454
0.4500 0.4308 0.3002 0.1719 0.0844 0.0402
0.5000 0.4758 0.3792 0.2510 0.1402 0.0704

Table 7.7

Iterative operator-splitting method; D1 = 1, D2 = 1

10
and D3 = 1

100
, ∆x = ∆y = ∆z = 1

8
, 3

iterations per step, initial condition I.4), and Ω = [0, 1]3 × [0 , 6 · (1/
√

3)].

In Table 7.8, we compare all 4 different initialization cases. The most effective
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results are given in the cases 3 and 4. Therefore higher accuracy results are related
with improved approximated starting solutions. The pre-stepping method can be
proposed for more iteration steps, where the averaging method also fits with less
iterations and more time partitions.

iterations per step I.1) I.2) I.3) I.4)
1 5.5271e-006 5.6045e-006 7.5923e-005 8.5346e-008
2 2.0669e-008 2.0650e-008 7.3888e-009 2.2775e-008
3 2.2794e-008 2.2793e-008 2.2810e-008 2.2792e-008
4 2.2792e-008 2.2792e-008 2.2792e-008 2.2792e-008

Table 7.8

Comparison of the initial values for the iterative operator-splitting method; D1 = 1, D2 = 1
and D3 = 1, ∆x = ∆y = ∆z = 1

8
, tsteps=45, η=0.01, and Ω = [0, 1]3 × [0 , 6 · (1/

√
3)].

Remark 7.2. The results show the delicate choice of the initialization meth-
ods, and also the balancing of the iterations and time partitions. Higher accuracy is
achieved with the pre-stepping method, that can calculate the solution approximatively
and explicitly. With respect to more iteration steps we can achieve more accurate
solutions, but we have also taken into account the additional computational time. So
a balancing might be usefull, where very less iteration steps, e.g. 2 or 3, and fine time
partitions are used to obtain the same accurate results.

8. Conclusions and discussions. We present an iterative operator-splitting
method to solve hyperbolic partial differential equations. The smoothing process for
more accurate solutions is done with more iterations. The theoretical results stated
the higher-order method to be dependent of the iterations. Consistency and stability is
fulfilled for the method. For applications to numerical examples the delicate control
of the initialization process can be done with a pre-stepping method. Further the
balance of the iteration steps and steps is discussed. The simple implementation and
the stable results are advantages of the iterative methods. The additional splitting
error, that can be controlled by the iteration steps, has also to be taken into account.
All in all the iterative splitting method is an attractive method and has as accurate
results as the classical splitting methods. In future an automatization between the
iterations and time partitions has to be done as well as the error control of the splitting
method.
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