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Abstract. We introduce an improved second-order discretization method
for the convection-reaction equation by combining analytical and nu-
merical solutions. The method is derived from Godunov’s scheme, see
[15] and [21], and uses analytical solutions to solve the one-dimensional
convection-reaction equation. We can also generalize the second-order
methods for discontinuous solutions, because of the analytical test func-
tions. One-dimensional solutions are used in the higher-dimensional so-
lution of the numerical method.
The method is based on the flux-based characteristic methods and is
an attractive alternative to the classical higher-order TVD-methods, see
[16]. In this article we will focus on the derivation of analytical solutions
embedded into a finite volume method, for general and special solutions
of the characteristic methods.
For the analytical solution, we use the Laplace transformation to reduce
the equation to an ordinary differential equation. With general initial
conditions, e.g. spline functions, the Laplace transformation is accom-
plished with the help of numerical methods. The proposed discretization
method skips the classical error between the convection and reaction
equation by using the operator-splitting method.
At the end of the article, we illustrate the higher-order method for dif-
ferent benchmark problems. Finally, the method is shown to produce
realistic results.
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1 Introduction

We are motivated to study real-life problems concerning the transport and reac-
tion of radionuclide contaminants in flowing groundwater. Our modeling is based
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on homogenization of the underlying porous media, see [3] and [4]. The applica-
tion of the model to numerical simulations are extensively analyzed and results
are presented, for example in [18], [22], and [8]. Because of the delicate problem
of simulating large time periods in the real-life simulations, we concentrate on
the design of discretization methods to obtain large time steps. We therefore fo-
cus on large systems of linearized hyperbolic equations, in our example systems
of convection-reaction equations, see [11], [18]. The equations are coupled with
the reaction terms and are presented as follows:

∂tRiui + ∇ · v ui = −λi Ri ui + λi−1 Ri−1 ui−1 in Ω × (0, T ) , (1)

ui,0(x) = ui(x, 0) on Ω , (2)

i = 1, . . . ,m , (3)

where m is the number of equations and i is the index of each component. The
unknowns ui = ui(x, t) are considered in Ω × (0, T ) ⊂ IRn × IR+, where n is
the spatial dimension. The retardation factors Ri are constant and Ri ≥ 0. The
reaction part is given with the decay factors λi. They are constant and λi ≥ 0.
For the initialization of the decay chain, we set λ0 = 0. The decay chain is
linear and irreversible, so the successors have only one predecessor. The initial
conditions are given for each component i as constants or linear impulses. For the
boundary conditions we have trivial inflow and outflow conditions, with ui = 0 at
the inflow boundary. The transport part of the equation is given by the velocity
v ∈ IRn and is piecewise constant, see [11] and [12].

Here we have a delicate model problem due to the contrasting variation intro-
duced by the very slow flow field and the rapid reaction. Based on this variation,
an intensive study of discretization methods is important. The classical methods
for pure convection equations are higher-order discretization methods, based
on TVD (Total Variation Diminishing) or ENO (Essentially Non-Oscillatory)
schemes, see [24] and [25]. Here, the benefit arise from the construction of accu-
rate finite difference and finite volume methods. This is possible due to an ap-
proximation that is chosen automatically for the locally smoothest stencil. The
reconstruction of these stencils needs flux limiters to obtain the non-oscillatory
behavior at the discontinuities, see [25]. Our investigation will focus more on
the convection and reaction equations, i.e. the combination of higher-order dis-
cretization methods for both the convection and the reaction parts. Towards
this end, we contribute a mixed method for the higher-order reconstruction of a
finite volume method for the convection portion and analytical solutions of the
reaction portion. These concepts were first contributed as Godunov’s schemes,
see [15], for the pure convection equations. We therefore focus on the analytical
solutions of a system of convection-reaction equations and embed these solutions
as test functions in our finite volume method, see [9]. The main advantage of such
a method is in the treatment of discontinuities, which can be accomplished by
piecewise analytical solutions in each finite cell. The keys to the methods for the
derivation of analytical solutions, are presented in the paper. For the general case
of different parameters and also for the special case of equal pairwise parame-
ters, we introduce analytical solutions. Applications to the spatial discretization,
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for example the finite volume scheme, are performed by deriving the analytical
solution of the locally mass on a normalized cell. Using the analytical solution
of the mass we will detect a new discretization method based on vertex-centered
finite volume methods and therefore obtain a multi-dimensional higher-order
discretization methods. For the finite volume method, we describe higher-order
resolutions that are constructed using Godunov’s scheme, see [11]. The higher-
order method is limited by the assumptions of the local minimum and maximum
principle. For discretization in time, we use an explicit method. The modified
method has no time-splitting error and we can confirm the higher convergence
order in our numerical results. Based on a triangle impulse we present the im-
proved results. We are not restricted to any shock front in the local cell and a
generalization is described in [12]. Another generalization can be accomplished
for nonlinear convection-reaction equations, see [18]. We propose a lineariza-
tion and apply our linear theory of the analytical solutions for one-dimensional
convection-reaction equations.

The paper is organized as follows. One of the main contributions is the one-
dimensional analytical solution presented in Section 2. The application for gen-
eral discontinuous solutions with different equation parameters is described in
Section 3. In Section 3.3, we construct analytical solutions for the special ap-
plications, with pairwise equal parameters presented. The second contribution
to the paper is the application of the analytical solutions to the discretization,
presented in Section 4. Verification of the new discretization method in vari-
ous numerical examples is shown in Section 5. We conclude the paper with a
discussion of future work.

2 Analytical solutions

In this section, we deal with a system with piecewise constant velocities for cou-
pled transport of contaminants in ground water in one dimension. The equation
is given as

∂tui + vi∂xui = −λiui + λi−1ui−1 , (4)

for i = 1, . . . ,m, whereas m denotes the number of equations. The unknowns
ui = ui(x, t) denote the contaminant concentrations. They are transported with
constant (and in general different) velocities vi and decay with constant reaction
rates λi. The spatiotemporal domain is given by (0,∞) × (0, T ).

We assume a simple (irreversible) form of a decay chain, e.g. λ0 = 0, and given
single source terms λi−1ui−1 for each contaminant. For simplification, we assume
that vi > 0 for i = 1, . . . ,m. The case vi < 0 can be treated analogously. Due
to (4), all velocities vi must have the same sign and must be piecewise constant
for each cell i. Furthermore, we do not allow piecewise equal parameters for the
cases vi = vi−1 and λi = λi−1, for i = 2, . . . ,m . In the special solutions we will
allow these cases.

The analytical solutions for equal retardation factors can be found in [27].
We enlarge the solutions for different retardation factors and for special initial
conditions.
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We will derive the analytical solutions with piecewise linear initial conditions,
although all other piecewise polynomial functions could be derived as shown in
the following.

For the boundary conditions we use concentrations of zero at the inflow
boundary x = 0. The initial conditions are defined for x ∈ (0, 1),

u1(x, 0) =

{

ax+ b , x ∈ (0, 1)
0 , otherwise

,

ui(x, 0) = 0 , i = 2, . . . ,m ,

(5)

where a and b are arbitrary constants.
We use the Laplace transformation to translate the partial differential equa-

tion to the ordinary differential equation. The transformations for these cases
are given in [6], [14] and [17].

In equation (4), we apply the Laplace transformation given in [1] and [5]. For
this, we must define the transformed function û = û(s, t):

ûi(s, t) :=

∞
∫

0

ui(x, t) e
−sx dx . (6)

Using (4), the functions ûi satisfy the transformed equations

∂tû1 = − (λ1 + sv1) û1 , (7)

∂tûi = − (λi + svi) ûi + λi−1ûi−1 , (8)

and the transformed initial conditions for s ∈ (0,∞),

û1(s, 0) =

(

a

s2
+
b

s

)

(1 − e−s) +
a

s
e−s , (9)

ûi(s, 0) = 0 , i = 2, . . . ,m . (10)

We denote for further solutions:

Λi =
i−1
∏

j=1

λj . (11)

Equation (8) is solved with the methods for solving ordinary differential
equations described in [14]. A more general case is presented in [6].

Thus, we find the exact solution of (7) and (8):

û1 = û1(s, 0) e−(λ1+sv1) t , (12)

for i = 2, . . . ,m ,

ûi = û1(s, 0) Λi

i
∑

j=1

e−(λj+svj )t
i
∏

k=1
k 6=j

(s(vk − vj) + λk − λj)
−1

. (13)
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The analytical solution in (13) can have a singular point for a single value of s,
but this causes no difficulties when applying the inverse Laplace transformation.

To obtain the exact solution of (4), we must apply the inverse Laplace trans-
formation to (7), which requires some algebraic manipulations.

For the first case, let us assume that vj 6= vk and λj 6= λk for j 6= k and
∀j, k = 1, . . . ,m. Then we can denote

λkj = λjk :=
λj − λk

vj − vk

. (14)

Furthermore, for the next transformation, we must demand that the values λjk

are different for each pair of indices j and k.

The factors Λj,i with λj 6= λk for j 6= k and the factor Λjk,i with λjk 6= λjl

for k 6= l are given by

Λj,i =







i
∏

k=1
k 6=j

1

λk − λj






, Λjk,i =









i
∏

l=1
l6=j

l6=k

λjl

λjl − λjk









, (15)

where we have the following assumptions:

1. vj 6= vk ∀j, k = 1, . . . ,m, for j 6= k , (16)

2. λj 6= λk ∀j, k = 1, . . . ,m, for j 6= k , (17)

3. λjk 6= λjl ∀j, k, l = 1, . . . ,m, for j 6= k ∧ j 6= l ∧ k 6= l, (18)

4. vj 6= vk and λj 6= λk ∀j, k = 1, . . . ,m, for j 6= k . (19)

Using (15), the last term in (13) for a given index j can be rewritten in the
following form,

i
∏

k=1
k 6=j

(s(vk − vj) + λk − λj)
−1

= Λj,i

i
∑

k=1
k 6=j

λjk

s+ λjk

Λjk,i . (20)

Adopting (9) into (12) and (13), the standard inverse Laplace transformation
can be used, and the solution ui for (4) is given by

u1(x, t) = exp(−λ1t)







0 , 0 ≤ x < v1t
a(x− v1t) + b , v1t ≤ x < v1t+ 1
0 , v1t+ 1 ≤ x

, (21)

ui(x, t) = Λi







i
∑

j=1

exp(−λjt)Λj,i

i
∑

k=1
k 6=j

Λjk,iAjk






, (22)
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Ajk =











































0 , 0 ≤ x < vjt

a(x− vjt)
+(b− a

λjk
)(1 − exp(−λjk(x − vjt))) , vjt ≤ x < vjt+ 1

(b− a
λjk

+ a) exp(−λjk(x− vjt− 1))

−(b− a
λjk

) exp(−λjk(x− vjt)) , vjt+ 1 ≤ x

. (23)

Because of the numerical computation required for the analytical solution, we
have derived an improved notation for equations (21) and (22) to avoid numerical
instabilities.

The improved solutions, cf. [11], with the new notation are given as

ui(x, t) = Λi

i
∑

j=1

(

Lj,i +

i
∑

k>j







Mjk,i , vj < vk

Mkj,i , vk < vj

0 , otherwise

)

, (24)

with i = 2, . . . ,m ,

where the factors Lj,i and Mjk,i are defined as:

Lj,i :=























exp(−λj t) Λj,i

(

a(x − vjt) + b

−a
∑i

k=1
k 6=j

1
λjk

)

, vjt ≤ x ≤ vjt+ 1

0 , otherwise

, (25)

Mjk,i :=







Λj,i Λjk,i gjk , vjt ≤ x ≤ vkt
Λj,i Λjk,i hjk , vjt+ 1 ≤ x ≤ vkt+ 1
0 , otherwise

, (26)

and the factors gjk and hjk are given as

gjk := −(b−
a

λjk

) exp(−λj t) exp(−λjk(x − vjt)) , (27)

hjk := (b−
a

λjk

+ a) exp(−λjt) exp(−λjk(x− vj t− 1)) . (28)

In the next section, we apply solution (24) to the first and second component.

3 General solution

3.1 The first component

The first component u1 of the solution for (4) is trivial and well-known; we repeat
it here to give a complete presentation:

u1(x, t) =

{

(a(x− v1t) + b) e−λ1t , v1t ≤ x ≤ v1t+ 1

0 , otherwise
. (29)



7

3.2 The second component

For the second component, we use the equation (24) with the improved notation
and obtain the result as follows.

The second component u2 of the solution for (4) is given as

u2(x, t) = λ1

(

L1,2 + L2,2 +







M12,2 , v1 < v2
M21,2 , v2 < v1
0 , sonst

)

, (30)

where λ1 6= λ2 and v1 6= v2 are given.
The factors of equation (30) are given by

L1,2 =

{

exp(−λ1t)
1

λ2−λ1
(a(x − v1t) + b− a 1

λ12
) , v1t ≤ x ≤ v1t+ 1

0 , otherwise
,

L2,2 =

{

exp(−λ2t)
1

λ1−λ2
(a(x − v2t) + b− a 1

λ12
) , v2t ≤ x ≤ v2t+ 1

0 , otherwise
,

M12,2 =







































exp(−λ1t)
1

λ2−λ1
(−b+ a 1

λ12
)

· exp(−λ12(x− v1t)) , v1t ≤ x ≤ v2t

exp(−λ1t)
1

λ2−λ1
(b− a 1

λ12
+ a)

· exp(−λ12(x− v1t− 1)) , v1t+ 1 ≤ x ≤ v2t+ 1

0 , otherwise

,

M21,2 =







































exp(−λ2t)
1

λ1−λ2
(−b+ a 1

λ12
)

· exp(−λ12(x− v2t)) , v2t ≤ x ≤ v1t

exp(−λ2t)
1

λ1−λ2
(b− a 1

λ12
+ a)

· exp(−λ12(x− v2t− 1)) , v2t+ 1 ≤ x ≤ v1t+ 1

0 , otherwise

.

For more than two components, we could use equation (24) and compute the
factors numerically. The additive behavior of the equations can be used for the
efficient numerical computation of the solutions.

3.3 Special solutions

We now introduce the special solutions and focus on equal, pairwise parameters.
For a more general case, we can derive the special solutions as presented below.

For the analytical solution, we focus on the case λl = λa(l) with l 6= a(l).
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Special solution for the case λl = λa(l) For the equal, pairwise parame-
ters λl = λa(l), we derive the solution with the transformed equation (13) and
eliminate the zero terms λl − λa(l), see also the derivations in [17].

We get the following equations for the special case in which λl = λa(l).

ûi(s, t) = û1(s, 0) Λi (31)

·

(

exp(−(λl + svl)t)
1

s(va(l) − vl)

i
∏

k=1
k 6=l

k 6=a(l)

1

s(vk − vl) + (λk − λl)

+ exp(−(λa(l) + sva(l))t)
1

s(vl − va(l))

i
∏

k=1
k 6=a(l)

k 6=l

1

s(vk − va(l)) + (λk − λa(l))

+

i
∑

j=1
j 6=l

j 6=a(l)

exp(−(λj + svj)t)

i
∏

k=1
k 6=j

1

s(vk − vj) + (λk − λj)

)

.

For the retransformation into the original space of the solution, we rearrange
equation (31) with the help of equation (20). We rewrite equation (31) and get
the following different cases.

Case 1: i = 2 and (l, a(l)) = (1, 2)

û2 = û1(s, 0) λ1 (32)

·

(

exp(−(λ1 + v1s)t)
1

v2 − v1

1

s
+ exp(−(λ2 + v2s)t)

1

v1 − v2

1

s

)

.

Case 2: i = 3, . . . ,m

ûi = û1(s, 0) Λi (33)

·

(

exp(−(λl + vls)t)
1

va(l) − vl

Λl,a(l),i
1

s

i
∑

k=1
k 6=l

k 6=a(l)

Λlk,a(l),i
λlk

s+ λlk

+ exp(−(λa(l) + va(l)s)t)
1

vl − va(l)
Λa(l),l,i

1

s

i
∑

k=1
k 6=a(l)

k 6=l

Λa(l)k,l,i

λa(l)k

s+ λa(l)k

+

i
∑

j=1
j 6=l

j 6=a(l)

exp(−(λj + vjs)t) Λj,i

i
∑

k=1
k 6=j

Λjk,i

λjk

s+ λjk

)

,
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where the factors Λi, Λj,i and Λjk,i are defined in equations (11) and (15). The
new factors Λl,a(l),i, Λa(l),l,i, Λlk,a(l),i and Λa(l)k,l,i are denoted as

Λl,a(l),i =

i
∏

k=1
k 6=l

k 6=a(l)

1

λk − λl

, Λa(l),l,i =

i
∏

k=1
k 6=a(l)

k 6=l

1

λk − λa(l)
, (34)

Λlk,a(l),i =
i
∏

n=1
n6=k
n6=l

n6=a(l)

λln

λln − λlk

, Λa(l)k,l,i =
i
∏

n=1
n6=k

n6=a(l)
n6=l

λa(l)n

λa(l)n − λa(l)k
. (35)

The retransformation is accomplished with the help of retransformable ana-
lytical solutions, cf. [19].
For equation (33), we get the following results.
Case 2: i = 3, . . . ,m

ui = Λi

·

(

1

va(l) − vl

exp(−λlt) Λl,a(l),i

i
∑

k=1
k 6=l

k 6=a(l)

Λlk,a(l),i (αl −
Alk

λlk

)

+
1

vl − va(l)
exp(−λa(l)t) Λa(l),l,i

i
∑

k=1
k 6=a(l)

k 6=l

Λa(l)k,l,i (αa(l) −
Aa(l)k

λa(l)k
)

+

i
∑

j=1
j 6=l

j 6=a(l)

exp(−λjt) Λj,i

i
∑

k=1
k 6=j

Λjk,i Ajk

)

. (36)

where the terms Ajk are given in equation (23). The factor αl is defined as

αl =







0 0 ≤ x < vlt

a (x−vlt)
2

2 + b(x− vlt) vlt ≤ x < vlt+ 1
a 1

2 + b vlt+ 1 ≤ x

. (37)

We analogously define αa(l) by changing l by a(l).
A further simplification is made possible by rearranging the factor αl in

equation (36), and we get the following equations for the two cases.
Case 1: i = 2 and (l, a(l)) = (1, 2)

u2 = λ1 exp(−λ1t)

(

1

v2 − v1
α1 +

1

v1 − v2
α2

)

. (38)

Case 2: i = 3, . . . ,m

ui = Λi (39)
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·

(

1

va(l) − vl

exp(−λlt) Λl,a(l),i

(

αl −

i
∑

k=1
k 6=l

k 6=a(l)

Λlk,a(l),i
Alk

λlk

)

+
1

vl − va(l)
exp(−λa(l)t) Λa(l),l,i

(

αa(l) −

i
∑

k=1
k 6=a(l)

k 6=l

Λa(l)k,l,i

Aa(l)k

λa(l)k

)

+

i
∑

j=1
j 6=l

j 6=a(l)

exp(−λjt) Λj,i

i
∑

k=1
k 6=j

Λjk,i Ajk

)

,

where equation (40) (below) is used for the rearrangement

i
∑

k=1
k 6=l

k 6=a(l)

Λlk,a(l),i = 1 . (40)

This can be performed with complete induction; for comparison see [11].
For the numerical computation, we reformulate solution (39) with a notation

that skips numerical instabilities for the interval boundaries maxl=1,...,i{vl+1} ≤
x.

The reformulations of solutions (38) and (39) are given below for both cases.
Case 1: i = 2 and (l, a(l)) = (1, 2)

u2(x, t) = λ1







N1,2,2 v1 < v2
N2,1,2 v2 < v1
0 sonst

. (41)

Case 2: i = 3, . . . ,m

ui(x, t) =

i−1
∏

j=1

λj

(

i
∑

j=1
j 6=l

j 6=a(l)

Lj,i +

i
∑

j=1

i
∑

k>j

(j,k)6=(l,a(l))







Mjk,i vj < vk

Mkj,i vk < vj

0 sonst
(42)

+ Pl,i + Pa(l),i +







Nl,a(l),i vl < va(l)

Na(l),l,i va(l) < vl

0 otherwise

)

,

where the factors Lj,i, Mjk,i and Mkj,i are given in equations (25) and (26).
The factors Pl,i , Pa(l),i , Nl,a(l),i and Na(l),l,i are denoted as follows:

Pl,i = − exp(−λlt)
1

va(l) − vl

Λl,i

{

cl,i vlt ≤ x ≤ vlt+ 1
0 sonst

, (43)

where the factor cl,i is given as:

cl,i = (a(x − vlt) + b)

i
∑

k=1
k 6=l

k 6=a(l)

1

λlk

− a

i
∑

k=1
k 6=l

k 6=a(l)

( 1

λlk

i
∑

n≥k

n6=l

n6=a(l)

1

λln

)

. (44)
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The factor ca(l) is given analogously.
The factor Nl,a(l),i is given by the following equation:

Nl,a(l),i =
1

va(l) − vl

exp(−λlt) Λl,i (45)

(







dl vlt ≤ x ≤ vlt+ 1
e vlt+ 1 ≤ x ≤ va(l)t+ 1
0 sonst

−

{

da(l) va(l)t ≤ x ≤ va(l)t+ 1
0 sonst

)

,

where the equality of Λl,i = Λa(l),i is used.
The factors dl, e are denoted by:

dl = a
(x− vlt)

2

2
+ b (x− vlt) , (46)

e = a
1

2
+ b , (47)

where the factor da(l) can be derived by resetting l with a(l).
The derivation of the new notation is performed in [11]. For multiple reactions

in the irreversible case, we can enlarge the cases using the methods found in [6].

3.4 Mass reconstruction

In this section, the solution of the mass is described. We present the integration
over different intervals and obtain the analytical mass with further simplifica-
tions. For the analytical solution of the mass, which is used in the new discretiza-
tion method, we use the following assumption. The mass is derived in the norm
interval (0, 1) and the total mass is given by

mi,sum(t) = mi,rest(t) +mi,out(t) . (48)

We derive the mass mi,rest(t), which is found in the interval (0, 1). Because of

the piecewise independent solution, given with ui =
∑i

j=1 uij , we can compute
mi,rest(t) piecewise in the underlying intervals:

mi,rest(t) =

∫ 1

mini
j=1

(vjt)

ui(x, t)dx (49)

=

i
∑

j=1

∫ 1

vjt

uij(x, t)dx .

The mass is integrated over the subintervals:

mi,rest(t) =
R1

Ri

Λi







i
∑

j=1

Λj,i

i
∑

k=1
k 6=j

Λjk,i exp(−λjt)






(50)
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·

∫ 1

vjt

(

a(x− vjt) + (b−
a

λjk

)(1 − exp(−λjk(x− vjt)))

)

dx ,

with i = 2, . . . ,m ,

where the factors Λi , Λj,i and Λjk,i are given in (11) and (15).
We could derive a simpler and more compressed form of equation 50 with

the following assumptions:
a) The polynomials with constant factors can be reduced to:

i
∑

k=1
k 6=j

(
i
∏

l=1
l6=k
l6=j

λjl

λjl − λjk

)1 = 1 . (51)

b) The polynomials with linear factors can be reduced to:

i
∑

k=1
k 6=j

(

i
∏

l=1
l6=k

l6=j

λjl

λjl − λjk

)
1

λjk

=

i
∑

k=1
k 6=j

1

λjk

. (52)

c) The polynomials with quadratic factors can be reduced to:

i
∑

k=1
k 6=j

(

i
∏

l=1
l6=k

l6=j

λjl

λjl − λjk

)
1

(λjk)2
=

i
∑

k=1
k 6=j

(
1

λjk

i
∑

l≥k

l6=j

1

λjl

) . (53)

d) The symmetry of the exponential terms is given by:

exp(−λjt) exp(λjk(1 − vj t)) = exp(−λkt) exp(−λkj(1 − vkt)) . (54)

By using assumptions (51) - (54), we can reduce equation (50) to obtain an
applicable form:

mi,rest(t) = Λi

i
∑

j=1

Λj,i (55)

· exp(−λjt)






a
(1 − vjt)

2

2
+ b(1 − vjt−

i
∑

k=1
k 6=j

1

λjk

)

−a(1 − vjt)(

i
∑

k=1
k 6=j

1

λjk

) + a

( i
∑

k=1
k 6=j

1

λjk

(

i
∑

l≥k

l6=j

1

λjl

)

)






,

where the factors Λi and Λj,i are given in (11) and (15).
The out-flowing massmi,out(t), that leaves the norm interval (0, 1), is denoted

mi,out(t) = mi,sum(t) −mi,rest(t) . (56)
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Thus, we derive the total mass, which is the mass of the initial impulse
ui(x, 0) multiplied by the decay of component i.

The proof is given as follows:
We order the velocities with the notation of the permutation vk(1) < . . . < vk(i),
and, without a restriction, we use the order v1 < v2 < . . . < vi. We can then
compute the mass

mi,sum(t) =

∫ 1+maxi
j=1(vjt)

mini
j=1(vjt)

ui(x, t)dx (57)

=

i
∑

j=1

∫ 1+vjt

vjt

uij(x, t)dx +

i−1
∑

j=1

∫ 1+vit

1+vj t

uij(x, t)dx.

The integration satisfies the equation

mi,sum(t) =
R1

Ri

Λi

(

i
∑

j=1

Λj,i

i
∑

k=1
k 6=j

Λjk,i exp(−λjt) (58)

·

(

a
1

2
+ (b−

a

λjk

)(1 +
1

λjk

( exp(−λjk1) − 1) )

)

)

+
R1

Ri

Λi

(

i−1
∑

j=1

Λj,i

i
∑

k=1
k 6=j

Λjk,i exp(−λjt)

·

(

(b−
a

λjk

+ a)(−
1

λjk

(exp(−λjk(vi − vj)t) − 1))

−(b−
a

λjk

)(−
1

λjk

(exp(−λjk((vi − vj)t+ 1)) − exp(−λjk1)))

)

)

,

where the factors Λi, Λj,i and Λjk,i are given in (11) and (15).

We use assumptions (51) - (54) and can reduce equation (58) into a simpler
form:

mi,sum(t) = fn
i (a

1

2
+ b) , (59)

fn
i (t) =

R1

Ri

Λi

i
∑

j=1

Λj,i exp(−λj t) . (60)

For further calculations we define the following masses with parameters:

mi,out(τ
n) = mi,out(a, b, τ

n, v1, . . . , vi, R1, . . . , Ri, λ1, . . . , λi) , (61)

mi,sum(τn) = mi,sum(a, b, τn, v1, . . . , vi, R1, . . . , Ri, λ1, . . . , λi) , (62)

fn
i (τn) = f(τn, v1, . . . , vi, R1, . . . , Ri, λ1, . . . , λi) . (63)
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4 Discretization

For the standard method, we use a finite volume method with a higher-order
reconstruction for the convection equation. For the reaction term in the standard
method, we use the analytical solution for the ordinary differential equation. The
results are coupled with the operator-splitting method. In the modified method,
we use the discretization of the convection equation and embed the analytical
solution of the one-dimensional convection-reaction equation to skip the splitting
error.

We introduce all of these methods in this section.

4.1 Notation for discretization methods

The notation of the finite volume method is given below:
For the time steps we use the interval (tn, tn+1) ⊂ (0, T ) , for n = 0, 1, . . . , N .

N is the number of time intervals. The computational cells are denoted with
Ωj ⊂ Ω, for j = 1, . . . , I . I is the number of nodes on the dual mesh and is
unknown.

To use the finite volumes, we construct the dual mesh for the triangulation
T of the domain Ω, cf. [11]. The finite elements for the domain Ω are T e, e =
1, . . . , E, where E denotes the number of elements. The polygonal computational
cells Ωj are related to the vertices xj of the triangulation.

The volume of each cell and the relation between neighboring cells is intro-
duced in the following notation.
Vj = |Ωj | is the volume of cell j. The set Λk denotes the neighboring points xk

of the point xj . The boundary segments Γjk , with j 6= k, are given with Ωj ∩Ωk .
We define the flux over the boundary Γjk as

vjk =

∫

Γjk

n · v ds . (64)

The inflow flux is given as vjk < 0 and the outflow flux is vjk > 0. The antisym-
metric behavior of the fluxes is given by vjk = −vkj . The total outflow flux is
given by

νj =
∑

k∈out(j)

vjk . (65)

The finite volume discretization constructs an algebraic system of equations
to express the unknown un

j ≈ u(xj , t
n). The initial values are given with u0

i . The
expression of the interpolation schemes may be given naturally in two ways. The
first is given with the primary mesh of the finite elements,

un =
I
∑

j=1

un
j φj(x) , (66)
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with φj being the standard globally finite element basis functions [9]. The second
possibility for the finite volumes is given by

ûn =

I
∑

j=1

un
j ϕj(x) , (67)

where ϕj are constant, piecewise, and discontinuous functions defined by ϕj(x) =
1 for x ∈ Ωj and ϕj(x) = 0 otherwise.

4.2 First-order finite volume discretization

We introduce the finite volume discretization for the convection equation. The
equation is given by

∂tRu− v · ∇u = 0 in Ω × [0, T ] , (68)

u0(x) = u(x, 0) on Ω , (69)

where R is constant and v is the piecewise constant velocity. We use the simple
boundary condition u = 0 for the inflow and outflow boundary. We use the
upwind discretization done in [9] and get

R Vj u
n+1
j = un

j (R Vj − τnνj) + τn
∑

l∈in(j)

R un
l vlj . (70)

To satisfy the discrete minimum-maximum property, cf. [9], we have to restrict
the time step, if we have the following case:

τn
j =

R Vj

νj

, (71)

τn ≤ min
j=1,...,I

τn
j . (72)

The second-order discretization is introduced in the following subsection with
a reconstruction by linear polynomials.

4.3 Second-order finite volume discretization

Now we reconstruct a second-order discretization scheme, where the linear in-
terpolation scheme is used for the numerical solutions.

The reconstruction is performed in paper [9]. We explain the method in the
following steps. We use the following definitions for the element-wise gradient to
define the linear construction:

cn(xj) = un
j , (73)

∇cn|Vj
=

1

Vj

E
∑

e=1

∫

T e∩Ωj

∇undx , (74)

with j = 1, . . . , I .
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The piecewise linear function is given by

cnjk = un
j + ψj∇c

n|Vj
(xjk − xj) , (75)

with j = 1, . . . , I ,

where ψj ∈ (0, 1) is the limiter, which must satisfy the discrete minimum-
maximum property. For the outflow boundary of the finite cell, with cn

jk , k ∈
out(j), the next condition that must satisfied is:

min{un
j , u

n
l , l ∈ in(j)} ≤ cnjk ≤ max{un

j , u
n
l , l ∈ in(j)} . (76)

For the inflow boundary of the finite cell, with cnjk′ , k′ ∈ in(j), the following
condition must be satisfied:

min{un
j , u

n
l , l ∈ in(j)} ≤ cnjk′ ≤ max{un

j , u
n
l , l ∈ in(j)} . (77)

The time step is restricted with the following expression

τn

R Vj

≤ ν−1
j min

k∈out(j)
αn

jk , (78)

where the parameter αn
jk is defined as

αn
jk =

un
j − cnjk′

cnjk − cnjk′

. (79)

To enable a maximal time step τn for the method, we replace cnjk by the time-
step-dependent value,

cnjk(τn) := cnjk +
τn

τj
(un

j − cnjk) . (80)

The proof for the local min-max property is given in [9].
Using all the previous schemes, the second-order discretization can be written

in the form

R Vj u
n+1
j = R Vj u

n
j − τn

∑

k∈out(j)

cnjk(τn) vjk + τn
∑

l∈in(j)

cnlj(τ
n) vlj . (81)

4.4 Operator-splitting method and standard discretization

In this subsection, the higher-order discretization we derived for the convection
equation is used for the standard and modified method.

The operator-splitting methods we used are based on the first-order methods,
cf. [29]. For the operator A we use the reaction equation and solve it exactly (we
have already shown this in [10]). For the operator B we use the discretization of
the convection term as described in the previous sections.
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The standard discretization uses the following operator-splitting method,

∂tc = A c+B c ,

where the initial conditions are c(tn) = cn. The first-order splitting method is
accomplished with

∂tc
∗ = Ac∗ with c∗(tn) = cn ,

∂tc
∗∗ = Bc∗∗ with c∗∗(tn) = c∗(tn+1) ,

where the result of the methods are c(tn+1) = c∗∗(tn+1). The operators A and B
do not commute because of their different retardation factors, cf. [29]. Therefore
we have a splitting error of first-order O(τn). We could improve our results with
a second-order splitting method, the so-called Strang splitting method, described
in [26], where the error is O((τn)2).

4.5 Modified discretization with finite volume methods of
higher-order and embedded analytical solutions

We now apply a Godunov’s method for the discretization. We reduce the equa-
tion to a one-dimensional problem, solve the equation exactly, and transform the
one-dimensional mass to the multi-dimensional equation. Therefore, we only get
an error in the spatial approximation, as given for the higher-order discretization
in Subsection 4.3, and hence we can skip the time splitting error.

The equation for the discretization is given by

∂tui + ∇ · vi ui = −λiui + λi−1ui−1,

i = 1, . . . ,m .

The velocity vector v is divided by Ri, and m is the number of concentrations.
The initial conditions are given by u0

1 = u1(x, 0) , u0
i = 0 for i = 2, . . . ,m. The

boundary conditions are trivial conditions, i.e. ui = 0 for i = 1, . . . ,m.
We first calculate the maximal time step for cell j and for concentration i

using the total outflow fluxes

τi,j =
Vj Ri

νj

, νj =
∑

j∈out(i)

vi,j .

We get the restricted time step with the local time steps of cells and their
components

τn ≤ min
i=1,...,m

j=1,...,I

τi,j .

The velocity of the discrete equation is given by

vi,j =
1

τi,j
.
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We calculate the analytical solution of the mass with equation (61) and (63)
with

mn
i,jk,out = mi,out(a, b, τ

n, v1,j , . . . , vi,j , R1, . . . , Ri, λ1, . . . , λi) ,

mn
i,j,rest = mn

i,j f(τn, v1,j , . . . , vi,j , R1, . . . , Ri, λ1, . . . , λi) ,

where the parameters are a = VjRi(c
n
i,jk − cni,jk′ ) , b = VjRic

n
i,jk′ , and mn

i,j =
VjRiu

n
i . The linear impulse in the finite volume cell is cni,jk′ for the concentration

at the inflow and cni,jk for the concentration at the outflow boundary of cell j.
The discretization with the embedded analytical mass is calculated by

mn+1
i,j −mn

i,rest = −
∑

k∈out(j)

vjk

νj

mn
i,jk,out +

∑

l∈in(j)

vlj

νl

mn
i,lj,out ,

where
vjk

νj
is the retransformation of the total mass mi,jk,out into the partial

mass mi,jk. The mass in the next time step is mn+1
i,j = Vj c

n+1
i , in the old time

step it is the rest mass for the concentration i. The proof can be found in [11].
In the next section, we derive an analytical solution for the benchmark problem.

4.6 Analytical solutions of equilateral triangular initial conditions
(the benchmark problem)

For our benchmark problem, we derive an exact solution for a triangular initial
condition.

We could reset the initial condition for our equation (4) with a triangular
impulse.

u1(x, 0) = c0
2
ε







x , x ∈ (0, ε
2 )

ε− x , x ∈ ( ε
2 , ε)

0 otherwise
,

ui(x, 0) = 0 , i = 2, . . . ,m ,

(82)

where c0 and ε are arbitrary positive constants. The initial conditions are trans-
ferred as follows:

û1(s, 0) = c0
2

ε

(1 − exp(− ε
2s))

2

s2
. (83)

We reset this transformed initial condition for the initial condition in equation
(9). We could retransform equation (13) for the transformed problem with the
new initial condition and therefore get the following solution:

u1(x, t) = c0
2

ε
exp(−λ1t)















0 0 ≤ x < v1t
x− v1t+ b v1t ≤ x < v1t+ ε

2
v1t+ ε− x v1t ≤ x < v1t+ ε
0 v1t+ ε < x

, (84)

ui(x, t) = Λi

i
∑

j=1

exp(−λj t) Λj,i

i
∑

k=1
k 6=j

Ajk Λjk,i , (85)



19

with i = 2, . . . ,m ,

Ajk =











































0 0 ≤ x < vj t
x− vjt+

1
λjk

(−1 + exp(−λjk(x− vjt))) vjt ≤ x < vjt+ ε
2

vjt+ ε− x+ 1
λjk

(exp(−λjk(x− vj t))

−2 exp(−λjk(x− (vjt+ ε
2 ))) + 1) vjt+ ε

2 < x < vjt+ ε
1

λjk
(exp(−λjk(x − vjt))

−2 exp(−λjk(x− (vjt+ ε
2 )))

+ exp(−λjk(x− (vj t+ ε)))) vjt+ ε
2 < x < vjt+ ε

.

This analytical solution is used in the next section for the benchmark problem.

5 Numerical experiments

The numerical and analytical methods are programmed in our software package
R3T , described in [13], based on the software tool ug described in [2]. In this
paper we will focus on the experiments; a description of the tools is presented
in [11].

The numerical experiments are based on the comparison between the ana-
lytical and the numerical solutions. The results for the numerical solutions are
achieved with the standard as well as with the modified method.

The standard method is based on an operator-splitting method using the
higher-order finite volume discretization for the convection term and the ana-
lytical solution for the reaction term, cf. subsection 4.4. The modified method
is achieved with higher-order finite volume methods for the convection and re-
action term with respect to embedding the analytical solution, cf. subsection
4.5.

For the experiments we use the benchmark problem with triangular initial
conditions. We calculate the solutions on a two-dimensional domain, for which
we use a constant velocity field in the x-direction, given as v = (1.0, 0.0)T . The
computation uses the convection-reaction equation and four components, given
in the form

Ri ∂tui + v · ∇ui = −Ri λi ui +Ri−1 λi−1 ui−1 , (86)

i = 1, . . . , 4 ,

with the inflow and outflow boundary condition with n · v ui = 0 . The initial
conditions are given for the first component as

u1(x, 0) =







x 0 ≤ x ≤ 1
2 − x 1 ≤ x ≤ 2
0 otherwise

, (87)

ui(x, 0) = 0 , i = 2, . . . , 4 .

The numerical solutions are compared with the analytical solutions by using
the L1-norm.
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The L1-norm is given as

Ei
L1,l :=

∑

j=1,...,Nl

Vj,l |ui,num(xj,l, yj,l, t
n) − ui(xj,l, yj,l, t

n)|. (88)

where Nl is the number of the nodes on grid level l, and Vj,l is the volume
of the j node on grid level l. The numerical solution is ui,num(xj,l, yj,l, t

n) and
ui(xj,l, yj,l, t

n) is the analytical solution of component i on the grid point j with
the coordinates (xj,l, yj,l) and with time tn.

The model domain is given by a rectangle of 8 × 1 units. The initial coarse
grid is framed with quadratic unit elements. The computations are done with
uniform refinements until the level 7 (131072 elements) is achieved.

The model time is given by t = 0, . . . , 6. We compare the results at the ending
time point t = 6. We apply the L1-norm for the errors of the analytical and nu-
merical solutions, but we can also use the L∞-norm. The numerical convergence
rate is computed as

ρi
L1,l+1 = (log(Ei

L1,l+1) − log(Ei
L1,l))/ log(0.5) , (89)

where the levels are l = 4, . . . , 7 and we assume the grid-width is divided in half
on the next grid level, see [20].

We have selected different parameters for the reaction and retardation factors
to present complex examples with different transport and reaction processes.

5.1 First experiment: ascending retardation factors

We use ascending parameters for the retardation factors. The retardation factors
are given as R1 = 1, R2 = 2, R3 = 4, R4 = 8. The reaction factors are given as
λ1 = 0.4, λ2 = 0.3, λ3 = 0.2, λ4 = 0.

The results for the standard method are presented in Table 1 .

l E1

L1,l ρ1

L1,l E2

L1,l ρ2

L1,l E3

L1,l ρ3

L1,l E4

L1,l ρ4

L1,l

4 0.0 1.71 10−3 1.04 10−3 2.407 10−4

5 0.0 ∞ 8.61 10−4 0.989 5.28 10−4 0.978 1.22 10−4 0.98
6 0.0 ∞ 4.29 10−4 1.005 2.65 10−4 0.995 6.13 10−5 0.993
7 0.0 ∞ 2.14 10−4 1.003 1.31 10−4 1.016 3.07 10−5 0.997

Table 1. The L1-error for ascending retardation factors computed with the standard
method.

The results computed with the modified method are presented in Table 2.
The first component in both methods has the same convergence rate. The com-
putation is solved exactly and there are no differences between the methods, but
for the next components we see differences in the convergence rates. The stan-
dard method tends to first-order because of the splitting error O(τn), whereas
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l E1

L1,l ρ1

L1,l E2

L1,l ρ2

L1,l E3

L1,l ρ3

L1,l E4

L1,l ρ4

L1,l

4 0.0 3.06 10−4 3.91 10−5 7.79 10−6

5 0.0 ∞ 8.03 10−5 1.95 9.87 10−6 1.986 2.15 10−6 1.89
6 0.0 ∞ 2.007 10−5 2.00 2.60 10−6 1.93 5.81 10−7 1.89
7 0.0 ∞ 4.36 10−6 2.21 6.66 10−7 1.96 1.51 10−7 1.94

Table 2. The L1-error for ascending retardation factors computed with the modified
method.

the modified method is a higher-order method because the convergence rates are
> 1.

The results are visualized for the ending time point t = 6 in Figure 1. We see
the first component, is weakly retarded and flows toward end of the interval. The
next components are more retarded and also flow until the end of the interval,
because of coupling with the other components. The last component is the most
spread out because it has the strongest retardation.

Fig. 1. Concentration for the four components with ascending retardation factors at
time t = 6.

The next experiment is done with reciprocal parameters.

5.2 Second experiment: descending retardation factors

For the second example we use descending retardation factors to get another
combination for different component-wise velocities.
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The retardation factors are given as R1 = 8, R2 = 4, R3 = 2, R4 = 1. The
reaction factors are given as λ1 = 0.3, λ2 = 0.4, λ3 = 0.5, λ4 = 0.

The results for the standard method are presented in Table 3.

l E1

L1,l ρ1

L1,l E2

L1,l ρ2

L1,l E3

L1,l ρ3

L1,l E4

L1,l ρ4

L1,l

4 7.30 10−3 5.55 10−3 1.069 10−2 2.502 10−2

5 2.57 10−3 1.58 2.27 10−3 1.25 5.16 10−3 1.051 1.225 10−2 1.02
6 9.36 10−4 1.53 1.01 10−3 1.16 2.52 10−3 1.033 6.056 10−3 1.01
7 3.52 10−4 1.45 4.73 10−4 1.09 1.24 10−3 1.023 3.00 10−3 1.01

Table 3. The L1-error for descending retardation factors computed with the standard
method.

We also compute the results with the modified method. The results are pre-
sented in Table 4. We obtain only higher-order convergence for the first com-

l E1

L1,l ρ1

L1,l E2

L1,l ρ2

L1,l E3

L1,l ρ3

L1,l E3

L1,l ρ4

L1,l

4 7.30 10−3 4.23 10−3 1.43 10−3 1.255 10−3

5 2.57 10−3 1.58 1.14 10−3 1.89 3.07 10−4 2.22 2.82 10−4 2.15
6 9.36 10−4 1.53 2.49 10−4 2.24 7.94 10−5 1.95 6.81 10−5 2.05
7 3.52 10−4 1.45 5.82 10−5 2.11 2.04 10−5 1.96 1.68 10−5 2.02

Table 4. The L1-error for descending retardation factors computed with the modified
method.

ponents, while the scalar equations do not have a splitting error, cf. [29]. But
for the latter components, we obtain first-order convergence rates with the stan-
dard method, because of the splitting error in time. For the modified method we
receive again the higher-order method with convergence rates > 1.

The results for this experiment are visualized in the ending time point t = 6
in Figure 2. The first component is strongly retarded and flows only in the
first part of the interval. The next components are more weakly retarded and
flow further. Because of coupling between components, the next components are
spread out and overlap with the previous components. The last component flows
until the end of the interval and is the most spread out.

The experiments demonstrate the improvement of the modified methods for
the higher components of the decay chain. The convergence rates are of higher-
order and we receive these improved results in the same computing time.

We also get equal results for applications in higher dimensions and for com-
plex problems. More applications are presented in paper [12].
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Fig. 2. Concentration for the four components with descending retardation factors at
time t = 6.

6 Conclusions

We present a new discretization method based on the finite volume method with
embedded analytical solutions. The modified method skips the splitting error in
time and improves the order of the discretization. The analytical methods for the
one-dimensional equations for a general case with different parameters are de-
scribed and a generalization is proposed for enlargement for a reversible reaction
and for equal parameters. The modified method with the embedded analytical
solutions is presented. The advantages of this new method are considered in the
applications. In future works, we will focus on special cases, e.g. nonlinearity,
reversible reactions and diffusion terms.
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