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Abstract.

We prove existence, local uniqueness and asymptotic estimates for boundary layer
solutions to singularly perturbed problems of the type ε2u′′ = f(x, u, εu′, ε), 0 < x < 1,
with Dirichlet and Neumann boundary conditions. For that we assume that there is
given a family of approximate solutions which satisfy the differential equation and
the boundary conditions with certain low accuracy. Moreover, we show that, if this
accuracy is high, then the closeness of the approximate solution to the exact solution
is correspondingly high. The main tool of the proofs is a modification of an Implicit
Function Theorem of R. Magnus. Finally we show how to construct approximate
solutions under certain natural conditions.

Keywords: singular perturbation, asymptotic approximation, boundary layer, im-
plicit function theorem.

1 Introduction

This paper is concerned with boundary value problems for second order semilinear
ODEs of the type

ε2u′′(x) = f(x, u(x), εu′(x), ε), 0 < x < 1,

u(0) = β0, u′(1) = β1,

}
(1.1)

where the function f : [0, 1] × R2 × [0,∞) → R is of class C2, the boundary data
β0, β1 ∈ R are fixed numbers, and ε is a small positive parameter. We suppose that

f(x, 0, 0, 0) = 0 and ∂2f(x, 0, 0, 0) > 0 for all x ∈ [0, 1], (1.2)

and that there exist C2-functions w0, w1 : [0,∞) → R such that

w′′
0(y) = f(0, w0(y), w′

0(y), 0), y > 0,

w0(0) = β0, w0(∞) = 0, w′
0(0) 6= 0,

}
(1.3)

and
w′′

1(y) = f(1, w1(y),−w′
1(y), 0), y > 0,

w′
1(0) = 0, w1(∞) = 0.

}
(1.4)
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Here ∂2f denotes the partial derivative of the function f with respect to its second
variable. Similar notation will be used later on.

Our goal here is to describe existence, local uniqueness and asymptotic behavior
for ε → 0 of boundary layer solutions to (1.1), i.e. of solutions u with

u(x) ≈ Wε(x) := w0

(x

ε

)
+ w1

(
1− x

ε

)
. (1.5)

In particular, we consider approximate solutions of the general form

Uε(x) := Wε(x) + rε(x) = w0

(x

ε

)
+ w1

(
1− x

ε

)
+ rε(x), (1.6)

where rε ∈ W 2,2(0, 1) is small in a certain sense, and derive an explicit estimate for the
distance between Uε(x) and the exact solution to (1.1). This distance will be measured
by the norms ‖u‖∞ := max {|u(x)| : x ∈ [0, 1]} and ‖u‖2,ε, where

‖u‖2
n,ε :=

1

ε

∫ 1

0

(
n∑

k=0

|εku(k)(x)|2
)

dx. (1.7)

Our main result is the following

Theorem 1.1 Let f ∈ C2([0, 1]×R2×[0,∞)) satisfy (1.2)–(1.4) and let rε ∈ W 2,2(0, 1)
obey

‖rε‖2,ε → 0 for ε → +0. (1.8)

Then there exist ε0 > 0 and δ > 0 such that for all ε ∈ (0, ε0) there exists exactly
one solution u = uε to (1.1) such that ‖u − Uε‖2,ε < δ. Moreover, there exists c > 0
such that

‖uε − Uε‖2,ε ≤ cω(ε), (1.9)

where

ω(ε) :=

√√√√√1

ε

1∫

0

(
ε2U ′′ε (x)− f(x,Uε(x), εU ′ε(x), ε)

)2

dx +

+ |Uε(0)− β0|+ |εU ′ε(1)− εβ1. (1.10)

Remark 1.2 It is easy to see that ‖u‖L∞(0,1/ε) ≤ const · ‖u‖W 2,2(0,1/ε) uniformly with
respect to ε ∈ (0, 1]. Hence, there exists a constant c0 > 0 such that

‖u‖∞ ≤ c0‖u‖2,ε and ‖εu′‖∞ ≤ c0‖u‖2,ε

for all ε ∈ (0, 1] and all u ∈ W 2,2(0, 1). Therefore, the conclusion of Theorem 1.1
implies that

‖uε − Uε‖∞ ≤ const · ω(ε) and ‖εu′ε − εU ′ε‖∞ ≤ const · ω(ε).
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Remark 1.3 Assumption (1.2) implies that the origin of the phase plane (w, w′) is a
hyperbolic saddle point for each of the two-dimensional autonomous systems

w′′(y) = f(i, w(y), w′(y), 0), i = 0, 1. (1.11)

Indeed, the corresponding linearized equations have two nonzero eigenvalues with oppo-
site signs

λ±i =
1

2

(
∂3f(i, 0, 0, 0)±

√
[∂3f(i, 0, 0, 0)]2 + 4∂2f(i, 0, 0, 0)

)
. (1.12)

Therefore, on the phase plane (w, w′) there exist one-dimensional stable manifolds cor-
responding to the systems (1.11)0 and (1.11)1, which contain solutions of the bound-
ary value problems (1.3) and (1.4), respectively [1]. Moreover, every solution to (1.3)
or (1.4) satisfies exponential estimates

|wi(y)|, |w′
i(y)| ≤ bie

λ−i y for all y ≥ 0, i = 0, 1, (1.13)

where bi > 0 are some fixed constants (cf. Lemma 5.1). Note, we do not impose any re-
strictions on the form of functions w0 and w1. In particular, they may be non-monotone
and even partly oscillating.

Remark 1.4 Using Theorem 1.1 one can justify formal solution asymptotics to prob-
lem (1.1) provided they are close to Wε in the ‖ · ‖2,ε norm. In particular, due to this
theorem one obtain different accuracy estimates depending on the structure of func-
tion f and boundary data of problem (1.1) (compare, for example, Remark 3.3 and
Theorem 4.2).

Remark 1.5 If the function f doesn’t depend neither on u′(x) nor on ε, then (1.1)
reads as

ε2u′′(x) = f(x, u(x)), 0 < x < 1,

u(0) = β0, u′(1) = β1.

}
(1.14)

For those problems J. Hale and D. Salazar showed in [2] existence and asymptotic
behavior for ε → 0 of solutions with boundary and interior layers. Their existence
proofs were based on a combination of the Liapunov-Schmidt procedure and the implicit
function theorem. For that they needed eigenvalue estimates for the differential operator

ε2 d2

dx2
+ ∂2f(x,U(x, ε))

with corresponding homogeneous boundary conditions, where U(x, ε) is a family of ap-
proximate solutions to (1.14).

The proof of our Theorem 1.1 is also based on the implicit function theorem, but
we need neither the Liapunov-Schmidt procedure nor eigenvalue estimates. Instead we
use a lemma of R. Magnus [8, Lemma 1.3] which helps to verify the assumptions of a
quite general implicit function theorem (see our Section 2). Moreover, our results work
already in the case when just leading terms describing the behavior of the boundary
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layers are known (Remark 3.2), while the Hale and Salazar’s approach requires an
approximation of a higher order.

Remark that existence and asymptotic behavior for ε → 0 of solutions to (1.14)
with monotone Dirichlet boundary layers and with trivial Neumann boundary layers is
proved also by upper and lower solution techniques, see, for example, [3, 4].

Remark 1.6 We deal here with a special choice of boundary conditions. But our results
and the technique of proof remains valid with slight changes for the case of general linear
boundary conditions:

α0u(0)− (1− α0)u
′(0) = β0, α1u(1) + (1− α1)u

′(1) = β1,

where 0 ≤ αi ≤ 1, i = 0, 1.

2 Modified Implicit Function Theorem

In this section we formulate and prove an implicit function theorem with minimal
assumptions concerning continuity with respect to the control parameter. This is just
what we need for the proof of our Theorem 1.1.

Our implicit function theorem is very close to that of R. Magnus [8, Theorem 1.2].
The difference is that we work in bundles of Banach spaces, while Magnus works with
a fixed pair of Banach spaces. For other implicit function theorems with weak assump-
tions concerning continuity with respect to the control parameter see [5, Theorem 7],
[6, Theorem 3.4] and [7, Theorem 4.1].

Theorem 2.1 Let for any ε ∈ (0, ε0) be given Banach spaces Uε and Vε and maps
Fε ∈ C1(Uε, Vε) such that

‖Fε(0)‖ → 0 for ε → +0, (2.1)

‖F ′
ε(u)− F ′

ε(0)‖ → 0 for |ε|+ ‖u‖ → 0 (2.2)

and
there exist ε1 ∈ (0, ε0] and c > 0 such that for all ε ∈ (0, ε1)
the operators F ′

ε(0) are invertible and ‖F ′
ε(0)−1‖ ≤ c.

}
(2.3)

Then there exist ε2 ∈ (0, ε1) and δ > 0 such that for all ε ∈ (0, ε2) there exists exactly
one u = uε with ‖u‖ < δ and Fε(u) = 0. Moreover,

‖uε‖ ≤ 2c ‖Fε(0)‖. (2.4)

Proof For ε ∈ (0, ε1) we have Fε(u) = 0 if and only if

Gε(u) := u− F ′
ε(0)−1Fε(u) = u. (2.5)

Moreover, for such ε and all u, v ∈ Uε we have

Gε(u)−Gε(v) =

∫ 1

0

G′
ε(su + (1− s)v)(u− v)ds =

= F ′
ε(0)−1

∫ 1

0

(F ′
ε(su + (1− s)v)− F ′

ε(0)) (u− v)ds.
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Hence, assumptions (2.2) and (2.3) imply that there exist ε2 ∈ (0, ε1) and δ > 0 such
that for all ε ∈ (0, ε2)

‖Gε(u)−Gε(v)‖ ≤ 1

2
‖u− v‖ for all u, v ∈ Kδ

ε := {w ∈ Uε : ‖w‖ ≤ δ}.
Using this and (2.3) again, for all ε ∈ (0, ε2) we get

‖Gε(u)‖ ≤ ‖Gε(u)−Gε(0)‖+ ‖Gε(0)‖ ≤ 1

2
‖u‖+ c‖Fε(0)‖. (2.6)

Hence, assumption (2.1) yields that Gε maps Kδ
ε into Kδ

ε for all ε ∈ (0, ε2), if ε2 is cho-
sen sufficiently small. Now, Banach’s fixed point theorem gives a unique in Kδ

ε solution
u = uε to (2.5) for all ε ∈ (0, ε2). Moreover, (2.6) yields ‖uε‖ ≤ 1/2‖uε‖ + c‖Fε(0)‖,
i.e. (2.4).

The following lemma is [8, Lemma 1.3], translated to our setting. It gives a criterion
how to verify the key assumption (2.3) of Theorem 2.1:

Lemma 2.2 Let F ′
ε(0) be Fredholm of index zero for all ε ∈ (0, ε0). Suppose that there

do not exist sequences ε1, ε2 . . . ∈ (0, ε0) and u1 ∈ Uε1 , u2 ∈ Uε2 . . . with ‖un‖ = 1 for
all n ∈ N and |εn|+ ‖F ′

εn
(0)un‖ → 0 for n → 0. Then (2.3) is satisfied.

Proof Suppose that (2.3) is not true. Then there exist a sequence ε1, ε2 . . . ∈ (0, ε0)
with |εn| → 0 for n → 0 such that either F ′

εn
(0) is not invertible or it is but ‖F ′

εn
(0)−1‖ ≥

n for all n ∈ N. In the first case there exist un ∈ Uεn with ‖un‖ = 1 and F ′
εn

(0)un = 0
(because F ′

εn
(0) is Fredholm of index zero). In the second case there exist vn ∈ Vεn with

‖vn‖ = 1 and ‖|F ′
εn

(0)−1vn‖ ≥ n, i.e.

‖|F ′
εn

(0)un‖ ≤ 1

n
with un :=

F ′
εn

(0)−1vn

‖F ′
εn

(0)−1vn‖ .

But this contradicts to the assumptions of the lemma.

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. Hence, we always suppose the assumptions of
Theorem 1.1 to be satisfied. In particular, we use the functions w0 and w1, which are
introduced in (1.3) and (1.4), respectively.

We are going to apply Theorem 2.1. Thus, from the beginning we introduce the
necessary setting. First, for every ε ∈ (0, 1] we set

Uε := W 2,2(0, 1) with norm ‖ · ‖2,ε,

Vε := L2(0, 1)× R2 with norm ‖ · ‖0,ε + | · |+ | · |.
Then we define Fε ∈ C1(Uε, Vε) as follows

Fε(v) :=




ε2v′′(x) + ε2U ′′ε (x)− f(x, v(x) + Uε(x), εv′(x) + εU ′ε(x), ε)

v(0) + Uε(0)− β0

εv′(1) + εU ′ε(1)− εβ1


 .
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Obviously, we have Fε(v) = 0 if and only if v + Uε is a solution to boundary value
problem (1.1). Besides, we remark that ω(ε) = ‖Fε(0)‖Vε .

In what follows we often use a change of variables x → x/ε and x → (1 − x)/ε.
Expressions obtained in result of this transformation can be estimated with a help of
the next

Remark 3.1 Let g : [0, 1]× [0,∞)× [0, 1] → R have uniformly bounded partial deriva-
tives ∂1g(x, y, ε) and ∂3g(x, y, ε). Then there exists a constant C > 0 such that

|g(εy, y, ε)− g(0, y, 0)|+ |g(1− εy, y, ε)− g(1, y, 0)| ≤ ε · C(1 + y)

for all y ∈ [0, 1/ε] and ε ∈ (0, 1].

Now we start to verify assumptions of Theorem 2.1. In a first step we consider
condition (2.1). Taking into account assumptions (1.3), (1.4) and def intion (1.5) we
find that the first component of Fε(0) equals

Fε(x) := ε2r′′ε (x) + f
(
0, w0

(x

ε

)
, w′

0

(x

ε

)
, 0

)
+

+ f

(
1, w1

(
1− x

ε

)
,−w′

1

(
1− x

ε

)
, 0

)
− f (x,Uε(x), εU ′ε(x), ε) . (3.1)

Obviously, the latter term in (3.1) can be rewritten as follows

f (x,Uε(x), εU ′ε(x), ε) = f (x,Wε(x), εW ′
ε(x), ε) +

+

1∫

0

∂2f (x,Uε(x)− srε(x), εU ′ε(x)− εsr′ε(x), ε) rε(x)ds +

+

1∫

0

∂3f (x,Uε(x)− srε(x), εU ′ε(x)− εsr′ε(x), ε) εr′ε(x)ds. (3.2)

Next, we transform the first term in the right hand side of (3.2) and obtain

f (x,Wε(x), εW ′
ε(x), ε) = f(x, 0, 0, ε)+

+
[
f

(
x,w0

(x

ε

)
, w′

0

(x

ε

)
, ε

)
− f(x, 0, 0, ε)

]
+

+

[
f

(
x,w1

(
1− x

ε

)
,−w′

1

(
1− x

ε

)
, ε

)
− f(x, 0, 0, ε)

]
+

+

1∫

0

1∫

0

∂2
2f

(
x, sw0

(x

ε

)
+ tw1

(
1− x

ε

)
, sw′

0

(x

ε

)
− tw′

1

(
1− x

ε

)
, ε

)
×

× w0

(x

ε

)
w1

(
1− x

ε

)
dsdt +
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+

1∫

0

1∫

0

∂2∂3f

(
x, sw0

(x

ε

)
+ tw1

(
1− x

ε

)
, sw′

0

(x

ε

)
− tw′

1

(
1− x

ε

)
, ε

)
×

×
[
w′

0

(x

ε

)
w1

(
1− x

ε

)
+ w0

(x

ε

)
w′

1

(
1− x

ε

)]
dsdt +

+

1∫

0

1∫

0

∂2
3f

(
x, sw0

(x

ε

)
+ tw1

(
1− x

ε

)
, sw′

0

(x

ε

)
− tw′

1

(
1− x

ε

)
, ε

)
×

× w′
0

(x

ε

)
w′

1

(
1− x

ε

)
dsdt. (3.3)

Inequalities (1.13) imply that the absolute values of the three last integrals in (3.3) can

be estimated with const · eλ−0 x/ε · eλ−1 (1−x)/ε = const · eλm/ε, where λm := max{λ−0 , λ−1 }.
Thus, substituting (3.3) into (3.2) and the latter one into (3.1), we obtain

‖Fε‖0,ε ≤ ‖f(x, 0, 0, ε)‖0,ε +
∥∥∥f

(
x,w0

(x

ε

)
, w′

0

(x

ε

)
, ε

)
− f(x, 0, 0, ε)−

−f
(
0, w0

(x

ε

)
, w′

0

(x

ε

)
, 0

)∥∥∥
0,ε

+

+

∥∥∥∥f

(
x,w1

(
1− x

ε

)
,−w′

1

(
1− x

ε

)
, ε

)
− f(x, 0, 0, ε)−

−f

(
1, w1

(
1− x

ε

)
,−w′

1

(
1− x

ε

)
, 0

)∥∥∥∥
0,ε

+ O
(‖rε‖2,ε + eλm/ε

)
.(3.4)

Now assumption (1.2) and Remark 3.1 imply that ‖f(x, 0, 0, ε)‖0,ε ≤ const · √ε,
∥∥∥f

(
x,w0

(x

ε

)
, w′

0

(x

ε

)
, ε

)
− f(x, 0, 0, ε)− f

(
0, w0

(x

ε

)
, w′

0

(x

ε

)
, 0

)∥∥∥
2

0,ε
=

=

1/ε∫

0

|f(εy, w0(y), w′
0(y), ε)− f(εy, 0, 0, ε)− f(0, w0(y), w′

0(y), 0)|2 dy =

=

1/ε∫

0




1∫

0

[∂2f(εy, sw0(y), w′
0(y), ε)ds− ∂2f(0, sw0(y), sw′

0(y), 0)] w0(y)ds +

+

1∫

0

[∂3f(εy, sw0(y), w′
0(y), ε)ds− ∂3f(0, sw0(y), sw′

0(y), 0)] w′
0(y)ds




2

dy ≤

≤ const · ε2

1/ε∫

0

(1 + y)2w0(y)2dy ≤ const · ε2

∞∫

0

(1 + y)2w0(y)2dy

and analogous estimate for the third term in (3.4). Thus, taking into account inequal-
ities (1.13) we finally obtain ‖Fε‖0,ε = O(

√
ε + ‖rε‖2,ε).
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The second and the third components of Fε(0) equal w1(1/ε)+rε(0) and w′
0(1/ε)+

εr′ε(1) − εβ1, respectively, and they can be estimated due to inequalities (1.13) as
O(ε + ‖rε‖2,ε). Consequently,

‖Fε(0)‖Vε = O(
√

ε + ‖rε‖2,ε), (3.5)

i.e. (2.1) is satisfied. Remark that, if the (2.2) and (2.3) are also satisfied and, hence,
Theorem 2.1 works, then its assertion (2.4) together with (3.5) imply the claimed
asymptotic estimate (1.9), (1.10).

In a second step we verify assumption (2.2) of Theorem 2.1. Obviously, the second
and the third components of F ′

ε(v) − F ′
ε(0) vanish. The square of the ‖ · ‖0,ε norm of

the first component of (F ′
ε(v)− F ′

ε(0)) v is

1

ε

1∫

0

|[∂2f(x, v + Uε, εv
′ + εU ′ε, ε)− ∂2f(x,Uε, εU ′ε, ε)]v(x)+

+[∂3f(x, v + Uε, εv
′ + εU ′ε, ε)− ∂3f(x,Uε, εU ′ε, ε)]εv′(x)|2 dx =

=
1

ε

1∫

0

∣∣∣∣∣∣

1∫

0

∂2
2f(x, sv + Uε, sεv

′ + εU ′ε, ε)ds · v(x)v(x)+

+

1∫

0

∂2∂3f(x, sv + Uε, sεv
′ + εU ′ε, ε)ds · εv(x)v′(x) +

+

1∫

0

∂3∂2f(x, sv + Uε, sεv
′ + εU ′ε, ε)ds · εv′(x)v(x) +

+

1∫

0

∂2
3f(x, sv + Uε, sεv

′ + εU ′ε, ε)ds · ε2v′(x)v′(x)

∣∣∣∣∣∣

2

dx ≤

≤ const · max
0≤x≤1

{|v(x)|2 + |εv′(x)|2} · 1

ε

1∫

0

(v(x)2 + ε2v′(x)2)dx ≤ const ‖v‖2
Uε
‖v‖2

Uε
,

i.e. (2.2) is also satisfied.
In the third and last step we verify assumption (2.3) of Theorem 2.1. For that we

use Lemma 2.2. It is well-known that linear differential operators of the type

v ∈ W 2,2(a, b) 7→ (v′′ + c(y)v′ + d(y)v, v(a), v′(b)) ∈ L2(a, b)× R2

with continuous coefficients c and d are Fredholm of index zero. Hence, it remains to
verify the second assumption of Lemma 2.2.

Let εn ∈ (0, 1) and vn ∈ W 2,2(0, 1) be sequences with

1

εn

1∫

0

(
vn(x)2 + ε2

nv
′
n(x)2 + ε4

nv
′′
n(x)2

)
dx = 1 (3.6)
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and

ε2
n + |vn(0)|2 + |εnv

′
n(1)|2+

+
1

εn

1∫

0

[
ε2

nv′′n(x)− ∂2f(x,Uεn(x), εnU ′εn
(x), εn)vn(x)−

−∂3f(x,Uεn(x), εnU ′εn
(x), εn)εnv′n(x)

]2
dx → 0. (3.7)

We introduce auxiliary functions ṽn in the next way:

ṽn(y) :=





vn(εny) for 0 ≤ y ≤ 1/(2εn),

vn

(
1
2

)
exp

[
λ−0

(
y − 1

2εn

)]
for y ≥ 1/(2εn),

where λ−0 is defined in (1.12). Then it follows from (3.6) that ṽn is a bounded sequence
in the Hilbert space W 1,2(0,∞) with its usual norm. Hence, without loss of generality
we can assume that there exists v∗ ∈ W 1,2(0,∞) such that

ṽn ⇀ v∗ in W 1,2(0,∞) for n →∞. (3.8)

Remark that, because of the continuous embedding W 1,2(0,∞) ↪→ L∞(0,∞), ṽn is a
bounded sequence also in L∞(0,∞). Moreover, assumption (3.6) and the continuous
embedding W 2,2(0, 1) ↪→ C1([0, 1]) imply that the sequence ṽ′n(0) = εnv

′
n(0) is bounded

too. These two facts will be used in the following.
We are going to show that v∗ = 0. For that reason we derive a variational equation

for v∗. Let us take a test function η ∈ W 1,2(0,∞) with η(0) = 0 and consider an integral

∞∫

0

[ṽ′n(y)η′(y) + ∂2f(0, w0(y), w′
0(y), 0)ṽn(y)η(y)+

+∂3f(0, w0(y), w′
0(y), 0)ṽ′n(y)η(y)] dy =

1/(2εn)∫

0

[. . .] dy +

∞∫

1/(2εn)

[. . .] dy. (3.9)

Under the above formulated assumptions, both terms in the right hand side of (3.9)
vanish for n →∞. Indeed, the latter term of (3.9) can be rewritten as a sum of tending
to zero sequences

∞∫

1/(2εn)

[ṽ′n(y)η′(y) + ∂2f(0, w0(y), w′
0(y), 0)ṽn(y)η(y)+

+∂3f(0, w0(y), w′
0(y), 0)ṽ′n(y)η(y)] dy =

=

∞∫

1/(2εn)

[−ṽ′′n(y) + ∂2f(0, 0, 0, 0)ṽn(y) + ∂3f(0, 0, 0, 0)ṽ′n(y)] η(y)dy +
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+ ṽ′n

(
1

2εn

+ 0

)
η

(
1

2εn

)
+

+

∞∫

1/(2εn)

[∂2f(0, w0(y), w′
0(y), 0)− ∂2f(0, 0, 0, 0)] ṽn(y)η(y) dy +

+

∞∫

1/(2εn)

[∂3f(0, w0(y), w′
0(y), 0)− ∂3f(0, 0, 0, 0)] ṽ′n(y)η(y) dy. (3.10)

The first term in the right hand side of (3.10) tends to zero by definition of function ṽn.
The second one vanishes since the sequence ṽ′n(1/(2εn) + 0) = λ−0 vn(1/2) is bounded
and the sequence η(1/(2εn)) tends to zero. Finally, the rest two terms of (3.10) tend
to zero because of inequalities (1.13).

In a similar way we treat the first term in the right hand side of (3.9). Namely, we
rewrite it as follows:

1/(2εn)∫

0

[ṽ′n(y)η′(y) + ∂2f(0, w0(y), w′
0(y), 0)ṽn(y)η(y)+

+∂3f(0, w0(y), w′
0(y), 0)ṽ′n(y)η(y)] dy =

=

1/(2εn)∫

0

[−ṽ′′n(y) + ∂2f(εny,Uεn(εny), εnU ′εn
(εny), εn)ṽn(y)+

+∂3f(εny,Uεn(εny), εnU ′εn
(εny), εn)ṽ′n(y)

]
η(y)dy +

+ṽ′n

(
1

2εn

− 0

)
η

(
1

2εn

)
+

+

1/(2εn)∫

0

[∂2f(0, w0(y), w′
0(y), 0)−

−∂2f(εny,Uεn(εny), εnU ′εn
(εny), εn)

]
ṽn(y)η(y) dy +

+

1/(2εn)∫

0

[∂3f(0, w0(y), w′
0(y), 0)−

−∂3f(εny,Uεn(εny), εnU ′εn
(εny), εn)

]
ṽ′n(y)η(y) dy. (3.11)

Then the first term in (3.11) tends to zero due to (3.7), and the second one vanishes as
a product of bounded sequence ṽ′n(1/(2εn)−0) = εnv′n(1) (see again (3.7)) and tending
to zero sequence η(1/(2εn)). To prove that the rest two terms in (3.11) vanish too, we
need a more sophisticated analysis. Since the arguments which we use below are the
same for both terms, we consider only one of them, namely, the last term of (3.11). For
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that we rewrite it as follows

1/(2εn)∫

0

[
∂3f(0, w0(y), w′

0(y), 0)− ∂3f(εny,Uεn(εny), εnU ′εn
(εny), εn)

]
ṽ′n(y)η(y) dy =

=

1/(2εn)∫

0

[∂3f(0, w0(y), w′
0(y), 0)− ∂3f(εny, w0(y), w′

0(y), εn)] ṽ′n(y)η(y) dy +

+

1/(2εn)∫

0

[∂3f(εny, w0(y), w′
0(y), εn)−

−∂3f
(
εny,Wεn(εny), εnW ′

εn
(εny), εn

)]
ṽ′n(y)η(y) dy +

+

1/(2εn)∫

0

[
∂3f

(
εny,Wεn(εny), εnW ′

εn
(εny), εn

)−

−∂3f(εny,Uεn(εny), εnU ′εn
(εny), εn)

]
ṽ′n(y)η(y) dy. (3.12)

The absolute value of the second term in the right hand side of (3.12) is bounded by a
constant times

max
0≤y≤1/(2εn)

{∣∣∣∣w1

(
1

εn

− y

)∣∣∣∣ +

∣∣∣∣w′
1

(
1

εn

− y

)∣∣∣∣
} 1/(2εn)∫

0

|ṽ′n(y)| · |η(y)| dy,

and this tends to zero due to inequalities (1.13), Cauchy inequality and assump-
tion (3.6). Analogously, an absolute value of the last term of (3.12) is bounded by
a constant times

‖η‖L∞(0,∞)

1/(2εn)∫

0

{|rεn(εny)|+ |εnr′εn
(εny)|} · |ṽ′n(y)| dy,

and this tends to zero due to Cauchy inequality and assumptions (1.8), (3.6). Finally,
given arbitrary R ∈ (0, 1/(2εn)), the first term in the right hand side of (3.12) can be
estimated by

∣∣∣∣∣∣

R∫

0

[∂3f(0, w0(y), w′
0(y), 0)− ∂3f(εny, w0(y), w′

0(y), εn)] ṽ′n(y)η(y) dy

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣

1/(2εn)∫

R

[∂3f(0, w0(y), w′
0(y), 0)− ∂3f(εny, w0(y), w′

0(y), εn)] ṽ′n(y)η(y) dy

∣∣∣∣∣∣
≤

≤ const ·

εnR(1 + R) +

∞∫

R

η(y)2dy


 ,
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where we used Remark 3.1, Cauchy inequality and assumption (3.6) to write the right

hand side of this inequality. Now taking first R sufficiently large such that
∞∫
R

η(y)2dy is

small, and then, fixing such R, take n sufficiently large such that εnR(1 + R) is small,
we see that the first term in the right hand side of (3.12) also tends to zero for n →∞.

Thus, using (3.8) and taking the limit n →∞ in (3.9), we finally get

∞∫

0

[v′∗(y)η′(y) + ∂2f(0, w0(y), w′
0(y), 0)v∗(y)η(y)+

+∂3f(0, w0(y), w′
0(y), 0)v′∗(y)η(y)] dy = 0

for all η ∈ W 1,2(0,∞) with η(0) = 0. Therefore v∗ is C2–smooth and satisfies

v′′∗(y) = ∂2f(0, w0(y), w′
0(y), 0)v∗(y) + ∂3f(0, w0(y), w′

0(y), 0)v′∗(y)

for all y > 0. The function w′
0 together with an exponentially growing function con-

stitutes a fundamental system for this linear homogeneous ODE (see Lemma 5.1),
hence v∗ = const ·w′

0. Moreover, (3.7), (3.8) and the compact embedding W 1,2(0, 1) ↪→
C([0, 1]) yield v∗(0) = 0, hence v∗ = 0.

In a similar way one can consider another auxiliary sequence of functions:

v̂n(y) :=





vn(1− εny) for 0 ≤ y ≤ 1/(2εn),

vn

(
1
2

)
exp

[
λ−1

(
y − 1

2εn

)]
for y ≥ 1/(2εn),

and demonstrate that it converges weakly in W 1,2(0,∞) to zero too. Remark, that for
this consideration one should take test functions η ∈ W 1,2(0,∞) with arbitrary values
at zero, since the initial problem (1.1) has Neumann boundary condition at x = 1.

It is well-known that the compact embedding W 1,2(0, R) ↪→ C([0, R]) holds for
any fixed R > 0. Thus, the above obtained week limits for ṽn and v̂n imply

max {|ṽn(y)| : y ∈ [0, R]} → 0 for n →∞,

max {|v̂n(y)| : y ∈ [0, R]} → 0 for n →∞.
(3.13)

Now we are going to show that

1

εn

1∫

0

(
vn(x)2 + ε2

nv
′
n(x)2 + ε4

nv′′n(x)2
)
dx → 0 for n →∞, (3.14)

which is the needed contradiction to (3.6). Obviously, assumption (1.2) implies that
there exists a constant c > 0 such that

c

εn

1∫

0

[
vn(x)2 + ε2

nv′n(x)2
]
dx ≤ 1

εn

1∫

0

[
ε2

nv
′
n(x)2 + ∂2f(x, 0, 0, 0)vn(x)2

]
dx =

12



=
1

εn

1∫

0

[
ε2

nv
′
n(x)2 + ∂2f(x, 0, 0, 0)vn(x)2 + ∂3f(x, 0, 0, 0)εnv′n(x)vn(x)

]
dx−

− 1

εn

1∫

0

∂3f(x, 0, 0, 0)εnv
′
n(x)vn(x)dx. (3.15)

Therefore, we shall obtain the needed contradiction, if we prove that both terms in the
right hand side of (3.15) tends to zero for n →∞. Integrating the latter term of (3.15)
by parts and taking into account assumption (3.6) and relations 3.13 we see

1
εn

1∫
0

∂3f(x, 0, 0, 0)εnv
′
n(x)vn(x)dx = ∂3f(x, 0, 0, 0)

vn(x)2

2

∣∣∣∣
x=1

x=0

−

−
1∫
0

∂1∂3f(x, 0, 0, 0)vn(x)2dx → 0 for n →∞.

Thus, it remains just to consider the first term in the right hand side of (3.15). For
that, we rewrite it as follows

1

εn

1∫

0

[
ε2

nv
′
n(x)2 + ∂2f(x, 0, 0, 0)vn(x)2 + ∂3f(x, 0, 0, 0)εnv′n(x)vn(x)

]
dx =

=
1

εn

1∫

0

[−ε2
nv
′′
n(x) + ∂2f(x,Uεn(x), εnU ′εn

(x), εn)vn(x)+

+∂3f(x,Uεn(x), εnU ′εn
(x), εn)εnv

′
n(x)

]
vn(x)dx +

+ εnv
′
n(1)vn(1)− εnv

′
n(0)vn(0) +

+
1

εn

1∫

0

[
∂2f(x, 0, 0, 0)− ∂2f(x,Uεn(x), εnU ′εn

(x), εn)
]
vn(x)2dx +

+
1

εn

1∫

0

[
∂3f(x, 0, 0, 0)− ∂3f(x,Uεn(x), εnU ′εn

(x), εn)
]
εnv

′
n(x)vn(x)dx. (3.16)

Then, the first three terms in the right hand side of (3.16) vanish because of (3.7)
(recall, that sequences εnv

′
n(0) and vn(1) were shown to be bounded). Concerning the

rest two terms, we remark that they have a similar structure and therefore it is enough
to consider one of them only, the another one can be estimated analogously. For that
reason, below we continue with analysis of the latter term of (3.16). First, we rewrite
it in the next way

1

εn

1∫

0

[
∂3f(x, 0, 0, 0)− ∂3f

(
x,Uεn(x), εnU ′εn

(x), εn

)]
εnv

′
n(x)vn(x)dx =

13



=
1

εn

1∫

0

[
∂3f(x, 0, 0, 0)− ∂3f

(
x,Wεn(x), εnW ′

εn
(x), 0

)]
εnv

′
n(x)vn(x)dx +

+
1

εn

1∫

0

[
∂3f

(
x,Wεn(x), εnW ′

εn
(x), 0

)−

−∂3f
(
x,Uεn(x), εnU ′εn

(x), 0
)]

εnv
′
n(x)vn(x)dx +

+
1

εn

1∫

0

[
∂3f

(
x,Uεn(x), εnU ′εn

(x), 0
)−

−∂3f
(
x,Uεn(x), εnU ′εn

(x), εn

)]
εnv

′
n(x)vn(x)dx. (3.17)

Absolute values of the last two terms in the right hand side of (3.17) can be estimated
by a constant times

1

εn

1∫

0

{|rε(x)|+ |εnr
′
ε(x)|} · |εnv

′
n(x)vn(x)| dx and

1∫

0

|εnv
′
n(x)vn(x)| dx,

respectively. Hence, Cauchy inequality and assumptions (1.8), (3.6), (3.7) imply that
these terms tend to zero. The first term in the right hand side of (3.17) we first rewrite
as a sum of two integrals

1

εn

1∫

0

[
∂3f(x, 0, 0, 0)− ∂3f

(
x,Wεn(x), εnW ′

εn
(x), 0

)]
εnv′n(x)vn(x)dx =

=
1

εn

1/2∫

0

[. . .] dx +
1

εn

1∫

1/2

[. . .] dx (3.18)

and then consider each of them independently. So the first integral in the right hand
side of (3.18) can be rewritten as follows

1

εn

1/2∫

0

[
∂3f(x, 0, 0, 0)− ∂3f

(
x,Wεn(x), εnW ′

εn
(x), 0

)]
εnv′n(x)vn(x)dx =

=
1

εn

1/2∫

0

[
∂3f(x, 0, 0, 0)− ∂3f

(
x,w0

(
x

εn

)
, w′

0

(
x

εn

)
, 0

)]
εnv

′
n(x)vn(x)dx +

+
1

εn

1/2∫

0

[
∂3f

(
x, w0

(
x

εn

)
, w′

0

(
x

εn

)
, 0

)
−

−∂3f
(
x,Wεn(x), εnW ′

εn
(x), 0

)]
εnv

′
n(x)vn(x)dx. (3.19)
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Now, the latter term of (3.19) can be estimated by a constant times

1

εn

1/2∫

0

{∣∣∣∣w1

(
1− x

εn

)∣∣∣∣ +

∣∣∣∣w′
1

(
1− x

εn

)∣∣∣∣
}
|εnv′n(x)vn(x)|dx.

Hence, inequalities (1.13) and assumption (3.6) imply that this tends to zero for n →∞.
Analogously, one can estimate the first term in the right hand side of (3.19) with a
constant times

1

εn

1/2∫

0

{∣∣∣∣w0

(
x

εn

)∣∣∣∣ +

∣∣∣∣w′
0

(
x

εn

)∣∣∣∣
}
|εnv

′
n(x)vn(x)|dx,

and prove that the latter expression vanishes too. Indeed, using the Cauchy inequality,
assumption (3.6) and inequalities (1.13) we obtain

1

εn

1/2∫

0

{∣∣∣∣w0

(
x

εn

)∣∣∣∣ +

∣∣∣∣w′
0

(
x

εn

)∣∣∣∣
}
|εnv

′
n(x)vn(x)|dx ≤

≤

√√√√√ 1

εn

1/2∫

0

{∣∣∣∣w0

(
x

εn

)∣∣∣∣ +

∣∣∣∣w′
0

(
x

εn

)∣∣∣∣
}2

vn(x)2dx ·

√√√√√ 1

εn

1/2∫

0

ε2
nv′n(x)2dx ≤

≤

√√√√√ 1

εn

1/2∫

0

{∣∣∣∣w0

(
x

εn

)∣∣∣∣ +

∣∣∣∣w′
0

(
x

εn

)∣∣∣∣
}2

vn(x)2dx =

=

√√√√√
1/(2εn)∫

0

{|w0(y)|+ |w′
0(y)|}2 ṽn(y)2dy ≤

≤ const ·

√√√√√
R∫

0

ṽ2
n(y)dy +

∞∫

R

{|w0(y)|+ |w′
0(y)|}2 dy, (3.20)

where R > 0 is arbitrary. Now we proceed as above. First take R sufficiently large such

that the integral
∞∫
R

{|w0(y)|+ |w′
0(y)|}2 dy is small. Then fix this R, use relations 3.13

and take n sufficiently large, such that the integral
R∫
0

ṽ2
n(y)dy is small. Thus, we have

verified that the first integral in the right hand side of (3.18) vanishes. In the similar
way as above one can consider the second integral from (3.18) and verify that it tends
to zero too. The only difference of this consideration consists of that one should use
functions v̂n(y) instead of ṽn(y) in a final estimate analogous to (3.20).
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So, for (3.14) it remains to show that 1
εn

1∫
0

ε4
nv′′n(x)2dx → 0 for n → ∞. But this

follows from
∥∥ε2

nv′′n(x)
∥∥

0,εn
≤

∥∥ε2
nv′′n(x)− ∂2f(x,Uεn(x), εnU ′εn

(x), εn)vn(x)−
−∂3f(x,Uεn(x), εnU ′εn

(x), εn)εnv
′
n(x)

∥∥
0,εn

+

+
∥∥∂2f(x,Uεn(x), εnU ′εn

(x), εn)vn(x)+

+∂3f(x,Uεn(x), εnU ′εn
(x), εn)εnv′n(x)

∥∥
0,εn

.

The first term in the right hand side tends to zero because of (3.7), and the second one

because of 1
εn

1∫
0

[ε2
nv′n(x)2 + vn(x)2] dx → 0 (which was shown above).

Remark 3.2 If rε = 0, then Theorem 1.1 and estimate (3.5) imply that for suf-
ficiently small ε problem (1.1) has a locally unique solution uε satisfying estimate
‖uε − Wε‖2,ε = O(

√
ε). Note, the proof of this fact does not require constructing of

other asymptotic approximations which are more accurate than Wε(x). From the other
side, under assumptions of Theorem 1.1 one can always construct a first order formal
solution asymptotics to problem (1.1) (see Theorem 4.2 with n = 1), therefore Re-
mark 4.3 implies that the above O(

√
ε)-estimate could be replaced with a more accurate

one ‖uε −Wε‖2,ε = O(ε).

Remark 3.3 Suppose that the function f depends neither on x nor on ε and, moreover,
that β1 = 0, then Theorem 1.1 provides us a significantly better estimate than that
mentioned in Remark 3.2. Indeed, taking into account estimate (3.4) with rε = 0 and

corresponding estimates for boundary conditions, Wε(0)−β0 = O(eλ−1 /ε) and εW ′
ε(1) =

O(eλ−0 /ε), we obtain that the difference between the exact solution uε to problem (1.1)
and asymptotic approximation Wε(x) satisfies ‖uε −Wε‖2,ε = O(eλm/ε), where λm :=
max{λ−0 , λ−1 }.

4 Asymptotics of the higher orders

If the function f satisfies additional smoothness properties, then based on the leading
term asymptotics Wε(x), one can construct a more precise formal asymptotic approx-
imations of the boundary layer solution to problem (1.1). For this purpose one can
use, for example, the boundary function method (see [9, 10]). In present section we
demonstrate that the above-proved results (cf. Theorem 1.1) justify any such formal
approximation without involving any additional assumptions.

Recall, that the ansatz of the boundary function method usually reads

u(x, ε) = U ε(x) + Pε

(x

ε

)
+Rε

(
1− x

ε

)
, (4.1)

where

U ε(x) =
∞∑

k=0

εkuk(x), Pε(y) =
∞∑

k=0

εkPk(y), Rε(y) =
∞∑

k=0

εkRk(y).
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Substituting first the regular part U ε(x) into the differential equation of problem (1.1)
and equating formally powers of ε, we obtain a sequence of algebraic equations

f(x, u0(x), 0, 0) = 0,

∂2f(x, u0(x), 0, 0) · u1(x) + ∂3f(x, u0(x), 0, 0) · u′0(x) + ∂4f(x, u0(x), 0, 0) = 0,

· · ·
∂2f(x, u0(x), 0, 0) · uk(x) + {terms depending on u0(x), . . . , uk−1(x) only} = 0.

Now, if we take u0(x) = 0, then assumption (1.2) allows us to define uniquely from the
above equations all terms uk(x) in a recurrent way.

When the terms of the regular part are known, we can continue with definition of
the boundary functions Pε(y) and Rε(y). For that we write boundary value problems

P ′′ε (y) = f(εy,U ε(εy) + Pε(y), εU ′ε(εy) + P ′ε(y), ε)−
− f(εy,U ε(εy), εU ′ε(εy), ε), y > 0,

Pε(0) + U ε(0) = β0, Pε(∞) = 0,

(4.2)

and
R′′

ε(y) = f(1− εy,U ε(1− εy) +Rε(y), εU ′ε(1− εy)−R′
ε(y), ε)−

− f(1− εy,U ε(1− εy), εU ′ε(1− εy), ε), y > 0,

R′
ε(0) + εU ′ε(1) = εβ1, Rε(∞) = 0,

(4.3)

and equate formally powers of ε in equations and boundary conditions. In result we
obtain a sequence of ε-independent problems for definition of all terms in series Pε(y)
and Rε(y). In particular, the zeroth order terms give problems (1.3) and (1.4). Conse-
quently, we may assume that P0(y) = w0(y) and R0(y) = w1(y). Further, the problems
involving higher order terms are linear and read

P ′′
k (y) = ∂2f(0, P0(y), P ′

0(y), 0) · Pk(y)+

+ ∂3f(0, P0(y), P ′
0(y), 0) · P ′

k(y) + Fk(y), y > 0,

Pk(0) + uk(0) = 0, Pk(∞) = 0

(4.4)

and
R′′

k(y) = ∂2f(1, R0(y),−R′
0(y), 0) ·Rk(y)−

− ∂3f(1, R0(y),−R′
0(y), 0) ·R′

k(y) + Gk(y), y > 0,

R′
k(0) + u′k−1(1) = β1 · δk1, Rk(∞) = 0,

(4.5)

respectively. Here the function Fk(y) is expressed recursively through the Pi(y) with
i < k. In particular,

F1(y) = [∂1f(0, P0(y), P ′
0(y), 0)− ∂1f(0, 0, 0, 0)] y +

+ [∂2f(0, P0(y), P ′
0(y), 0)− ∂2f(0, 0, 0, 0)] u1(0) +

+ [∂4f(0, P0(y), P ′
0(y), 0)− ∂4f(0, 0, 0, 0)] .
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Analogously, the function Gk(y) is expressed recursively through the Ri(y) with i < k.
Function w′

0(y) and the linearly independent solution w0(y) of equation (5.2) with
w0(0) = 0 and w′

0(0) = 1 constitute a fundamental system of the linear homogeneous
equation corresponding to the equation of problem (4.4) (see Lemma 5.1). Thus, there
exists a Green’s function of the problem (4.4)

G(y, z) :=





w0(y)w′
0(z)

w′
0(0)

exp

[
−

z∫
0

∂2f(0, P0(s), P
′
0(s), 0)ds

]
for 0 ≤ y ≤ z,

w′
0(y)w0(z)
w′

0(0)
exp

[
−

z∫
0

∂2f(0, P0(s), P
′
0(s), 0)ds

]
for z < y,

such that, given a bounded function Fk(y), this problem has a unique solution which
can be written in the integral form

Pk(y) = −uk(0)
w′

0(y)

w′
0(0)

+

∞∫

0

G(y, z)Fk(z)dz. (4.6)

Suppose that |Fk(y)| ≤ ce−αy for all y ≥ 0, where c, α > 0 are some constants, then
using the formula (4.6) it is easy to verify that there exists a constant c̃ > 0 such that a
solution to problem (4.4) satisfies an exponential estimate |Pk(y)| ≤ c̃e−αy for all y ≥ 0.
From the other side, if all functions Pi(y) with i < k satisfy exponential estimates
similar to (1.13) then due to the construction of function Fk(y) it obeys analogous
exponential estimate at infinity. Therefore solving step by step problems (4.4) one can
define any number of terms Pk(y). Obviously, the same statement is valid concerning
problems (4.5) too. Thus, following the above describe algorithm one can easily verify
the next

Lemma 4.1 Let f ∈ C(n+1)([0, 1]× R2 × [0,∞)), n ≥ 1, satisfy (1.2)–(1.4).
Then there exists a unique n-th order formal asymptotics

Uε,n(x) = w0

(x

ε

)
+ w1

(
1− x

ε

)
+

+
n∑

k=1

εk

[
uk(x) + Pk

(x

ε

)
+ Rk

(
1− x

ε

)]
(4.7)

defined by boundary function method. Moreover, there exist constants cn > 0 and ε0 > 0
such that for all ε ∈ (0, ε0] hold

∥∥ε2U ′′ε,n(x)− f(x,Uε,n(x), εU ′ε,n(x), ε)
∥∥

C[0,1]
≤ cnε

n+1,

|Uε,n(0)− β0| ≤ cnε
n+1, |εU ′ε,n(1)− εβ1| ≤ cnε

n+1. (4.8)

Since asymptotics (4.7) satisfies by construction assumptions of Theorem 1.1, the
latter implies
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Theorem 4.2 Let f ∈ C(n+1)([0, 1]× R2 × [0,∞)), n ≥ 1, satisfy (1.2)–(1.4).
Then there exist ε0 > 0 and δ > 0 such that for all ε ∈ (0, ε0) there exists exactly one
solution u = uε to (1.1) such that ‖u−Uε,n‖2,ε < δ. Moreover, there exists cn > 0 such
that

‖uε − Uε,n‖2,ε ≤ cnεn+1/2.

Remark 4.3 Suppose that function f is of class Ck, k ≥ 2. Then one can apply
Theorem 4.2 with n = 1, n = 2, . . ., and n = k and obtain an array of solutions uε,n to
problem (1.1), each of which is unique in the corresponding ball

Bn := {u ∈ W 2,2(0, 1) : ‖u− Uε,n‖2,ε < δn}.

Since min{δn : n ≤ k} > 0 and the centers of these balls converge to each other as
ε → +0, one can choose ε0 > 0 such that for ε ∈ (0, ε0) all solution uε,n should coincide.
In other words, for sufficiently small ε Theorem 4.2 provides different asymptotics for
one and the same solution to problem (1.1) which is unique in ∪k

n=0Bn.

5 Appendix: Exponential Decay and Growth of So-

lutions to Second Order ODEs

The following lemma collects well-known facts about the behavior of solutions to some
auxiliary second order ODEs.

Lemma 5.1 Let f ∈ C2(R2) and w0 ∈ C2([0,∞)) be such that f(0, 0) = 0, ∂1f(0, 0) >
0, w0(0) 6= 0, w0(∞) = 0 and

w′′
0(y) = f(w0(y), w′

0(y)) for y > 0. (5.1)

Then the following holds:
(i) There exist a, b, y0 > 0 such that

aeλy ≤ |w0(y)| ≤ beλy for all y ≥ y0,

aeλy ≤ |w′
0(y)| ≤ beλy for all y ≥ y0,

where λ = {∂2f(0, 0)−
√

[∂2f(0, 0)]2 + 4∂1f(0, 0)}/2.
(ii) The function w′

0 together with an exponentially growing function constitutes a
fundamental system for the linear homogeneous ODE

w′′(y) = ∂1f(w0(y), w′
0(y))w(y) + ∂2f(w0(y), w′

0(y))w′(y). (5.2)
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