
Boundary Layer Solutions to Problems with Infinite

Dimensional Singular and Regular Perturbations

Lutz Recke1 and Oleh Omel’chenko1,2

1 Department of Mathematics, Humboldt University of Berlin,
Unter den Linden 6, D-10099 Berlin, Germany

2 Institute of Mathematics, National Academy of Sciences of Ukraine,
Tereshchenkivska Str. 3, 01601 Kyiv-4, Ukraine

Abstract.

We prove existence, local uniqueness and asymptotic estimates for boundary layer
solutions to singularly perturbed equations of the type (ε(x)2u′(x))′ = f(x, u(x)) +
g(x, u(x), ε(x)u′(x)), 0 < x < 1, with Dirichlet and Neumann boundary conditions. Here
the functions ε and g are small and, hence, regarded as singular and regular functional
perturbation parameters. The main tool of the proofs is a generalization (to Banach space
bundles) of an Implicit Function Theorem of R. Magnus.

Keywords: singular perturbation, asymptotic approximation, boundary layer, im-
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1 Introduction and Results

This paper concerns boundary value problems for second order semilinear ODEs of the
type

(ε(x)2u′(x))′ = f(x, u(x)) + g(x, u(x), ε(x)u′(x)), 0 < x < 1,
u(0) = b0, u

′(1) = b1.

}
(1.1)

In (1.1) the functions ε : [0, 1] → (0,∞) and g : [0, 1]× R2 → R are close to zero (in the
sense of certain function space norms), i.e. ε and g are the infinite dimensional singular
and regular perturbation parameters, respectively. The boundary data b0, b1 ∈ R are fixed
as well as the function f ∈ C2([0, 1]× R).

We suppose that there exist C2-functions u0 : [0, 1] → R and v0, w0 : [0,∞) → R
such that

f(x, u0(x)) = 0 and ∂2f(x, u0(x)) > 0, x ∈ [0, 1] (1.2)

and
v′′0(y) = f(0, u0(0) + v0(y)), y > 0,
v0(0) = b0 − u0(0), v0(∞) = 0, v′0(0) 6= 0

}
(1.3)

and
w′′0(y) = f(1, u0(1) + w0(y)), y > 0,
w′0(0) = w0(∞) = 0.

}
(1.4)

In (1.2), ∂2f denotes the partial derivative of the function f with respect to its second
variable. Similar notation will be used later on.
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Our goal is to describe existence, local uniqueness and asymptotic behavior for ε→ 0
and g → 0 of boundary layer solutions to (1.1), i.e. of solutions u with

u(x) ≈ Uε(x) := u0(x) + v0

(∫ x

0

dξ

ε(ξ)

)
+ w0

(∫ 1

x

dξ

ε(ξ)

)
. (1.5)

The existence and uniqueness part of our main result Theorem 1.1 below has the
following structure: For all ε ≈ 0 and all g ≈ 0 there exists exactly one solution u ≈ Uε to
(1.1). In order to make this statement rigorous we have to introduce norms which measure
the distances of the perturbation parameters ε and g from zero and of the solution u from
the approximate solution Uε. The singular perturbation parameter ε will vary in the set

C1
+([0, 1]) := {ε ∈ C1([0, 1]) : ε(x) > 0 for all x ∈ [0, 1]}, (1.6)

and its distance from zero will be measured by the norm

‖ε‖∞ := max {|ε(x)| : x ∈ [0, 1]}
as well as by the norm ‖ε‖∞ + ‖ε′‖∞. The solutions u will belong to C2([0, 1]), and their
distance from Uε will be measured by the norm

‖u‖ε :=

√∫ 1

0

(|u(x)|2 + |ε(x)u′(x)|2 + |ε(x) (ε(x)u′(x))′ |2) dx

ε(x)
. (1.7)

Remark that there exists a positive constant such that for all ε ∈ C1
+([0, 1]) with ‖ε‖∞ ≤ 1

and all u ∈ C2([0, 1]) it holds

‖u‖∞ + ‖εu′‖∞ ≤ const ‖u‖ε. (1.8)

(cf. (3.16)). Hence, the behavior of the function g for large second and third arguments
is not relevant for our results. Therefore, the regular perturbation parameter g will be
considered to belong to the space

C0,1,1([0, 1]×K2) := {g ∈ C([0, 1]×K2) : ∂2g and ∂3g exist and are continuous}, (1.9)

and its distance from zero will be measured by the norm

‖g‖∞ := max {|g(x, u, v)| : x ∈ [0, 1], u, v ∈ K},
where K := [−4k, 4k] is a compact interval defined by a parameter k > 0 which should
be choosen sufficiently large such that |u0(x)|, |v0(y)|, |v′0(y)|, |w0(y)|, |w′0(y)| ≤ k for all
x ∈ [0, 1] and y ∈ [0,∞).

Our main result is the following

Theorem 1.1 Let f ∈ C2([0, 1] × R) satisfy (1.2)–(1.4). Then there exist ε0 > 0 and
δ > 0 such that for all ε ∈ C1

+([0, 1]) and g ∈ C0,1,1([0, 1]×K2) with

‖ε‖∞ + ‖ε′‖∞ +

√∫ 1

0

dx

ε(x)
(‖g‖∞ + ‖∂2g‖∞ + ‖∂3g‖∞) < ε0 (1.10)
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there exists exactly one solution u = uε,g to (1.1) such that ‖u−Uε‖ε < δ. Moreover, there
exists c > 0 such that

‖uε,g − Uε‖ε ≤ c


‖ε‖∞ + ‖ε′‖∞ +

√∫ 1

0

dx

ε(x)
‖g‖∞


 . (1.11)

Our paper is organized as follows:
In Section 2 we formulate and prove a generalization of the Implicit Function Theorem

which is perhaps of its own interest. There we use recent results of R. Magnus [2]. In
Section 3 we apply this Implicit Function Theorem for proving Theorem 1.1.

Remark 1.2 about the boundary layer property of the solutions uε,g Assump-
tions (1.2), (1.3) and (1.4) imply that there exists a, α > 0 such that |v0(y)|, |w0(y)| ≤
ae−αy for all y ≥ 0. Hence, the definition (1.5) of Uε and the assertion (1.11) yield that
for each γ ∈ (0, 1/2) there exists cγ > 0 such that

|uε,g(x)| ≤ cγ


‖ε‖∞ + ‖ε′‖∞ +

√∫ 1

0

dy

ε(y)
‖g‖∞


 for all x ∈ [γ, 1− γ].

Remark 1.3 about sufficient conditions for (1.3) and (1.4) Suppose b0−u0(0) > 0.
Then assumption (1.3) is satisfied if, for example, the conservative system

v′′ = f(0, u0(0) + v)

has a homoclinic solution v∗ : R→ R with v∗(±∞) = 0 and v∗(y) > b0−u0(0) for at least
one y ∈ R. In order to show this, without loss of generality we can assume v′∗(0) = 0.
Then there exist y1 < 0 < y2 such that v∗(y1) = v∗(y2) = b0 − u0(0), v′∗(y1) > 0 and
v′∗(y2) < 0. Hence, the functions v0(y) := v∗(y + yj), j = 1, 2 satisfy (1.3).

The choice with j = 1 leads to a non-monotone function v0 and, hence, to a non-
monotone Dirichlet boundary layer at x = 0 of the solution uε,g, produced by Theorem 1.1
(cf. (1.5)). The choice with j = 1 leads to a monotone Dirichlet boundary layer.

Similarly one can formulate sufficient conditions for (1.4): If w′′ = f(1, u0(1) + w)
has a homoclinic solution w∗ with w∗(±∞) = 0, then there exists y0 ∈ R such that
w′∗(y0) = 0. Hence, the function w0(y) := w∗(y + y0) satisfies (1.4). If w∗(y0) 6= 0, then
this leads, via Theorem 1.1, to solutions uε,g with ”large” Neumann boundary layers at
x = 1. If w∗(y0) = 0 and, hence, w∗ = 0, this leads to ”small” Neumann boundary layers
(cf. (1.5)).

Remark 1.4 about the case ε = const Suppose that ε is a constant function and
that g = 0. Then (1.1) reads as

ε2u′′(x) = f(x, u(x)), 0 < x < 1,
u(0) = b0, u′(1) = b1.

}
(1.12)

For those problems J. Hale and D. Salazar showed in [1] existence and asymptotic
behavior for ε→ 0 of solutions with monotone or non-monotone Dirichlet boundary layers
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and with ”small” or ”large” Neumann boundary layers and with internal layers. Their
existence proofs were based on a combination of the Liapunov-Schmidt procedure and the
implicit function theorem. For that they needed eigenvalue estimates for the differential
operator

ε2 d
2

dx2
+ ∂2f(x,U(x, ε))

with corresponding homogeneous boundary conditions, where U(x, ε) is a family of second
order approximate solutions to (1.12), i.e. this family satisfies (1.12) with an error of
order O(ε2).

The proof of our Theorem 1.1 is also based on the implicit function theorem, but we
don’t need neither the Liapunov-Schmidt procedure nor eigenvalue estimates. Instead we
use a lemma of R. Magnus [2, Lemma 1.3] which helps to verify the assumptions of a
quite general implicit function theorem (see our Section 2).

Existence and asymptotic behavior for ε → 0 of solutions to (1.12) with monotone
Dirichlet boundary layers and with ”small” Neumann boundary layers is proved also by
upper and lower solution techniques, see, for example, [3, 4].

2 A Generalization of the Implicit Function Theorem

In this section we formulate and prove an implicit function theorem with minimal as-
sumptions concerning continuity with respect to the control parameter. This is just what
we need for the proof of our Theorem 1.1.

Our implicit function theorem is very close to that of R. Magnus [2, Theorem 1.2].
The difference is that we work in bundles of Banach spaces and with multi-dimensional
control parameters, while Magnus works with a fixed pair of Banach spaces and with
scalar control parameters. For other implicit function theorems with weak assumptions
concerning continuity with respect to the control parameter see [5, Theorem 7], [6, The-
orem 3.4] and [7, Theorem 4.1].

Theorem 2.1 Let E be a normed vector space and E0 a subset of E such that zero
belongs to the closure of E0. Further, for any ε ∈ E0 let be given normed vector spaces
Λε and Banach spaces Uε and Vε. Finally, for any ε ∈ E0 and λ ∈ Λε let be given maps
Fε,λ ∈ C1(Uε, Vε) such that

‖Fε,λ(0)‖ → 0 for ‖ε‖+ ‖λ‖ → 0, (2.1)

‖F ′ε,λ(u)− F ′ε,λ(0)‖ → 0 for ‖ε‖+ ‖λ‖+ ‖u‖ → 0 (2.2)

and

there exist ε0 > 0 and c > 0 such that for all ε ∈ E0 and λ ∈ Λε with
‖ε‖+ ‖λ‖ < ε0 the operators F ′ε,λ(0) are invertible and ‖F ′ε,λ(0)−1‖ ≤ c.

}
(2.3)

Then there exist ε1 ∈ (0, ε0) and δ > 0 such that for all ε ∈ E0 and λ ∈ Λε with
‖ε‖+ ‖λ‖ < ε1 there exists exactly one u = uε,λ with ‖u‖ < δ and Fε,λ(u) = 0. Moreover,

‖uε,λ‖ ≤ 2c ‖Fε,λ(0)‖. (2.4)
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Proof For ε ∈ E0 and λ ∈ Λε with ‖ε‖+ ‖λ‖ < ε0 we have Fε,λ(u) = 0 if and only if

Gε,λ(u) := u− F ′ε,λ(0)−1Fε,λ(u) = u. (2.5)

Moreover, for such ε and λ and all u, v ∈ Uε we have

Gε,λ(u)−Gε,λ(v) =

∫ 1

0

G′ε,λ(su+ (1− s)v)(u− v)ds =

= F ′ε,λ(0)−1

∫ 1

0

(
F ′ε,λ(0)− F ′ε,λ(su+ (1− s)v)

)
(u− v)ds.

Hence, assumptions (2.2) and (2.3) imply that there exist ε1 ∈ (0, ε0) and δ > 0 such that
for all ε ∈ E0 and λ ∈ Λε with ‖ε‖+ ‖λ‖ < ε1

‖Gε,λ(u)−Gε,λ(v)‖ ≤ 1

2
‖u− v‖ for all u, v ∈ Kδ

ε := {w ∈ Uε : ‖w‖ ≤ δ}.

Using this and (2.3) again, for all ε ∈ E0 and λ ∈ Λε with ‖ε‖+ ‖λ‖ < ε1 we get

‖Gε,λ(u)‖ ≤ ‖Gε,λ(u)−Gε,λ(0)‖+ ‖Gε,λ(0)‖ ≤ 1

2
‖u‖+ c‖Fε,λ(0)‖. (2.6)

Hence, assumption (2.1) yields that Gε,λ maps Kδ
ε into Kδ

ε for all ε ∈ E0 and λ ∈ Λε with
‖ε‖+ ‖λ‖ < ε1, if ε1 is chosen sufficiently small. Now, Banach’s fixed point theorem gives
a unique in Kδ

ε solution u = uε,λ to (2.5) for all ε ∈ E0 and λ ∈ Λε with ‖ε‖+ ‖λ‖ < ε1.
Moreover, (2.6) yields ‖uε,λ‖ ≤ 1/2‖uε,λ‖+ c‖Fε,λ(0)‖, i.e. (2.4).

The following lemma is [2, Lemma 1.3], translated to our setting. It gives a criterion
how to verify the key assumption (2.3) of Theorem 2.1:

Lemma 2.2 Let F ′ε,λ(0) be Fredholm of index zero for all ε ∈ E0 and all λ ∈ Λε. Suppose
that there do not exist sequences ε1, ε2 . . . ∈ E0, λ1 ∈ Λε1 , λ2 ∈ Λε2 . . . and u1 ∈ Uε1 , u2 ∈
Uε2 . . . with ‖un‖ = 1 for all n ∈ N and ‖εn‖+‖λn‖+‖F ′εn,λn

(0)un‖ → 0 for n→ 0. Then
(2.3) is satisfied.

Proof Suppose that (2.3) is not true. Then there exist sequences ε1, ε2 . . . ∈ E0 and
λ1 ∈ Λε1 , λ2 ∈ Λε2 . . . with ‖εn‖ + ‖λn‖ → 0 for n → 0 such that either F ′εn,λn

(0) is not
invertible or it is but ‖F ′εn,λn

(0)−1‖ ≥ n for all n ∈ N. In the first case there exist un ∈ Uεn

with ‖un‖ = 1 and F ′εn,λn
(0)un = 0 (because F ′εn,λn

(0) is Fredholm of index zero). In the
second case there exist vn ∈ Vεn with ‖vn‖ = 1 and ‖|F ′εn,λn

(0)−1vn‖ ≥ n, i.e.

‖|F ′εn,λn
(0)un‖ ≤ 1

n
with un :=

F ′εn,λn
(0)−1vn

‖F ′εn,λn
(0)−1vn‖ .

But this contradicts to the assumptions of the lemma.
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3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. Hence, we always suppose the assumptions of
Theorem 1.1 to be satisfied. In particular, we use the functions u0, v0 and w0, which are
introduced in (1.2), (1.3) and (1.4), and the notation C1

+([0, 1]) and C0,1,1([0, 1] × K2),
introduced in (1.6) and (1.9).

3.1 Introduction of Stretched Variables

For ε ∈ C1
+([0, 1]) we introduce functions ϕε, ψε : [0, 1] → [0,∞) by

ϕε(x) :=

∫ x

0

dy

ε(y)
, ψε(x) :=

∫ 1

x

dy

ε(y)
.

Obviously, ϕε and ψε are strictly monotone C2-functions, and

ϕ′ε(x) =
1

ε(x)
, ψ′ε(x) = − 1

ε(x)
.

We look for solutions to (1.1) by means of the ansatz

u(x) = u0(x) + v(ϕε(x)) + w(ψε(x)). (3.1)

From (3.1) follows

ε(x)2u′(x) = ε(x)2u′0(x) + ε(x) (v′(ϕε(x))− w′(ψε(x))) ,
(ε(x)2u′(x))′ = (ε(x)2u′0(x))

′
+ v′′(ϕε(x)) + w′′(ψε(x)) + ε′(x) (v′(ϕε(x))− w′(ψε(x))) .

Therefore, if v : [0, ϕε(1)] → R and w : [0, ψε(0)] → R are solutions to the boundary value
problems

v′′ + ε′(ϕ−1
ε (y))v′ + 2ε(ϕ−1

ε (y))ε′(ϕ−1
ε (y))u′0(ϕ

−1
ε (y)) + ε(ϕ−1

ε (y))u′′0(ϕ
−1
ε (y)) =

= f(ϕ−1
ε (y), u0(ϕ

−1
ε (y)) + v), 0 < y < ϕε(1),

v(0) = b0 − u0(0), v′(ϕε(1)) = 0



 (3.2)

and

w′′ − ε′(ψ−1
ε (y))w′ =

= f(ψ−1
ε (y), u0(ψ

−1
ε (y)) + v(χε(y)) + w)− f(ψ−1

ε (y), u0(ψ
−1
ε (y)) + v(χε(y)))+

+g(ψ−1
ε (y), u0(ψ

−1
ε (y)) + v(χε(y)) + w, ε(ψ−1

ε (y))u′0(ψ
−1
ε (y)) + v′(χε(y))− w′),

0 < y < ψε(0),
w′(0) = ε(1)(u′0(1)− b1), w(ψε(0)) = 0,





(3.3)

then u, defined by (3.1), is a solution to (1.1). And vice versae: If u is a solution to (1.1)
and v is a solution to (3.2), then w, defined by (3.1), is a solution to (3.3). Here we
denoted, for the sake of shortness,

χε(y) := ϕε(ψ
−1
ε (y)).

Remark 3.1 Obviously, making the ansatz (3.1), one can write down a lot of boundary
value problems for v and w, different from (3.2) and (3.3), with the same property that
their solutions generate, via (3.1), solutions to (1.1). Our choice of the concrete form of
(3.2) and (3.3) is mainly caused by tactical reasons.
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3.2 Solution of the problem for the left boundary layer function

In this subsection we show, by applying Theorem 2.1, that for all small ε ∈ C1
+([0, 1])

there exists exactly one solution v ≈ v0 to (3.2). For that reason we work in the Sobolev
space W 2,2(0, ϕε(1)) with its usual norm

‖v‖W 2,2(0,ϕε(1)) :=

√∫ ϕε(1)

0

(v(y)2 + v′(y)2 + v′′(y)2) dy.

Lemma 3.2 There exist ε0 > 0 and δ > 0 such that for all ε ∈ C1
+([0, 1]) with ‖ε‖∞ +

‖ε′‖∞ < ε0 there exists exactly one solution v = vε to (3.2) with

‖v − v0‖W 2,2(0,ϕε(1)) < δ.

Moreover, there exists c > 0 such that

‖vε − v0‖W 2,2(0,ϕε(1)) ≤ c (‖ε‖∞ + ‖ε′‖∞) . (3.4)

Proof We are going to apply Theorem (2.1).
In a first step we introduce the setting of Theorem 2.1:
We set E := C1([0, 1]) with its usual norm ‖ε‖∞ + ‖ε′‖∞, E0 := C1

+([0, 1]) and
Λε := {0} for all ε ∈ E0. Therefore, in what follows there are no indices λ. Further, for
ε ∈ E0 we set

Uε := W 2,2(0, ϕε(1)), Vε := L2(0, ϕε(1))× R2,

and Fε = (Aε, Bε, Cε) ∈ C1(Uε, Vε) with Aε ∈ C1(Uε, L
2(0, ϕε(0))) and Bε, Cε ∈ C1(Uε,R)

is defined by

Aε(v) := v′′ + v′′0 + ε′(ϕ−1
ε (y))(v′ + v′0)+

+2ε(ϕ−1
ε (y))ε′(ϕ−1

ε (y))u′0(ϕ
−1
ε (y)) + ε(ϕ−1

ε (y))u′′0(ϕ
−1
ε (y))− f(ϕ−1

ε (y), u0(ϕ
−1
ε (y)) + v)

and
Bε(v) := v(0), Cε(v) := v′(ϕε(1)) + v′0(ϕε(1)).

Obviously, we have Fε(v) = 0 if and only if v + v0 is a solution to (3.2).
In a second step we verify assumption (2.1) of Theorem 2.1:
Because of assumptions (1.2) and (1.3) for any y ∈ [0, ϕε(1)] it holds

(Aε(0))(y)− ε′(ϕ−1
ε (y))v′0 − 2ε(ϕ−1

ε (y))ε′(ϕ−1
ε (y))u′0(ϕ

−1
ε (y))− ε(ϕ−1

ε (y))u′′0(ϕ
−1
ε (y)) =

= f(0, u0(0) + v0(y))− f(ϕ−1
ε (y), u0(ϕ

−1
ε (y)) + v0(y)) =

= −
∫ 1

0

∫ 1

0

∂1∂2f(sϕ−1
ε (y), u0(0) + tv0(y))ϕ

−1
ε (y)v0(y)dsdt

−
∫ 1

0

∫ 1

0

∂2
2f(ϕ−1

ε (y), u0(sϕ
−1
ε (y)) + tv0(y))u

′
0(sϕ

−1
ε (y))ϕ−1

ε (y)v0(y)dsdt.

Further, from the definition of ϕε follows

ϕε(x) ≥ x

‖ε‖∞ for all x ∈ [0, 1]. (3.5)
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Hence
ϕ−1
ε (y) ≤ y‖ε‖∞ for all y ∈ [0, ϕε(1)]. (3.6)

Therefore we get
‖Fε(0)‖Vε ≤ const (‖ε‖∞ + ‖ε′‖∞) (3.7)

i.e. (2.1) is satisfied. Here we used that v0 and v′0 decay exponentially. Remark that, if the
(2.2) and (2.3) are also satisfied and, hence, Theorem 2.1 works, then its assertion (2.4)
together with (3.7) imply the claimed asymptotic estimate (3.4).

In a third step we verify assumption (2.2) of Theorem 2.1: We have B′
ε(v)−B′

ε(0) =
C ′ε(v)− C ′ε(0) = 0 and

‖ (A′ε(v)− A′ε(0)) v‖2
L2(0,ϕε(1)) =

=

∫ ϕε(1)

0

∣∣∣∣
∫ 1

0

∂2
2f(ϕ−1

ε (y), u0(ϕ
−1
ε (y)) + sv(y) + v0(y))ds

∣∣∣∣
2

|v(y)v(y)|2dy ≤

≤ const max
0≤y≤ϕε(1)

|v(y)|2
∫ ϕε(1)

0

v(y)2dy ≤ const ‖v‖2
Uε
‖v‖2

Uε
,

i.e. (2.2) is satisfied.
In the fourth and last step we verify assumption (2.3) of Theorem 2.1. For that we

use Lemma 2.2. It is well-known that linear differential operators of the type

v ∈ W 2,2(a, b) 7→ (v′′ + p(y)v′ + q(y)v, v(a), v′(b)) ∈ L2(a, b)× R2

with continuous coefficient functions p and q are Fredholm of index zero. Hence, it remains
to verify the second assumption of Lemma 2.2.

Let εn ∈ C1
+([0, 1]) and vn ∈ W 2,2(0, ϕεn(1)) be sequences with

∫ ϕεn (1)

0

(
vn(y)

2 + v′n(y)
2 + v′′n(y)

2
)
dy = 1 (3.8)

and

‖εn‖2
∞ + ‖ε′n‖2

∞ + |vn(0)|2 + |v′n(ϕεn(1))|2+

+

∫ ϕεn (1)

0

(
v′′n + ε′(ϕ−1

εn
(y))v′n − ∂2f(ϕ−1

εn
(y), u0(ϕ

−1
εn

(y)) + v0(y))vn
)2
dy → 0. (3.9)

Any of the functions vn can be extended onto [0,∞) to a function ṽn ∈ W 2,2(0,∞) in
such a way that ‖ṽn‖W 2,2(0,∞) ≤ const. In particular, ṽn is a bounded sequence in the
Hilbert space W 2,2(0,∞). Hence, without loss of generality we can assume that there
exists v∗ ∈ W 2,2(0,∞) such that

ṽn ⇀ v∗ in W 2,2(0,∞) for n→∞. (3.10)

Moreover, because of the continuous embedding W 2,2(0,∞) ↪→ W 1,∞(0,∞) it follows that
ṽn and ṽ′n are a bounded sequences also in L∞(0,∞), this will be used in the following.
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We are going to show that v∗ = 0. For that reason we derive a variational equation
for v∗ as follows: Take a smooth test function η : (0,∞) → R with compact support. Then
we have∫ ∞

0

(ṽ′n(y)η
′(y) + ∂2f(0, u0(0) + v0(y))ṽn(y)η(y)) dy = v′n(ϕεn(1))η(ϕεn(1))

+

∫ ϕεn(1)

0

(−v′′n(y) + ∂2f(ϕ−1
εn

(y), u0(ϕ
−1
εn

(y)) + v0(y))vn(y)
)
η(y)dy

−
∫ ϕεn (1)

0

∫ 1

0

∂1∂2f(sϕ−1
εn

(y), u0(ϕ
−1
εn

(y)) + v0(y))ϕ
−1
εn

(y)vn(y)η(y) ds dy

−
∫ ϕεn (1)

0

∫ 1

0

∂2
2f(ϕ−1

εn
(y), u0(sϕ

−1
εn

(y)) + v0(y))u
′
0(sϕ

−1
εn

(y))ϕ−1
εn

(y)vn(y)η(y) ds dy

+

∫ ∞

ϕεn(1)

(ṽ′n(y)η
′(y) + ∂2f(0, u0(0) + v0(y))ṽn(y)η(y)) dy. (3.11)

The first two terms in the right hand side of (3.11) tend to zero for n → ∞ because of
(3.9). The absolute value of third term in the right hand side of (3.11) can be estimated
by

∫ R

0

∫ 1

0

∣∣∂1∂2f(sϕ−1
εn

(y), u0(ϕ
−1
εn

(y)) + v0(y))ϕ
−1
εn

(y)vn(y)η(y)
∣∣ dsdy+

+

∫ ϕεn (1)

R

∫ 1

0

∣∣∂1∂2f(sϕ−1
εn

(y), u0(ϕ
−1
εn

(y)) + v0(y))ϕ
−1
εn

(y)vn(y)η(y)
∣∣ dsdy

≤ const

(
Rϕ−1

εn
(R) +

∫ ∞

R

η(y)2dy

)
,

where R ∈ (0, ϕεn(1)) is arbitrary. Remark that (3.5) and (3.6) yield ϕεn(1) → ∞ for
n→∞ and ϕ−1

εn
(R) → 0 for n→∞. Taking first R sufficiently large such that

∫∞
R
η(y)2dy

is small, and then, fixing such R, take n sufficiently large such that Rϕ−1
εn

(R) is small, we
see that the third term in the right hand side of (3.11) tends to zero for n→∞.

Similarly one shows that the fourth term in the right hand side of (3.11) tends to
zero for n→∞.

Finally the last term in the right hand side of (3.11): Its absolute value can be
estimated by a constant times

∫∞
ϕεn (1)

(η(y)2 + η′(y)2) dy and, hence, tends to zero for
n→∞.

Using (3.10) and taking the limit n→∞ in (3.11), we get
∫ ∞

0

(v′∗(y)η
′(y) + ∂2f(0, u0(0) + v0(y))v∗(y)η(y)) dy = 0 for all η ∈ C∞c (0,∞).

Therefore v∗ is C2–smooth and satisfies

v′′∗(y) = ∂2f(0, u0(0) + v0(y))v∗(y) for all y > 0.

The function v′0 together with an exponentially growing function constitutes a fundamen-
tal system for this linear homogeneous ODE, hence v∗ = const v′0. Moreover, (3.9) and
(3.10) and the compact embedding W 1,2(0, 1) ↪→ C([0, 1]) yield v∗(0) = 0, hence v∗ = 0.
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Now we are going to show that

∫ ϕεn(1)

0

(
vn(y)

2 + v′n(y)
2 + v′′n(y)

2
)
dy → 0 for n→∞, (3.12)

which is the needed contradiction to (3.8):
Because of assumption (1.2) there exists a constant c > 0 such that

c

∫ ϕεn(1)

0

(
vn(y)

2 + v′n(y)
2
)
dy

≤
∫ ϕεn (1)

0

(
v′n(y)

2 + ∂2f(ϕ−1
εn

(y), u0(ϕ
−1
εn

(y)))vn(y)
2
)
dy

=

∫ ϕεn (1)

0

(−v′′n(y) + ∂2f(ϕ−1
εn

(y), u0(ϕ
−1
εn

(y)) + v0(y))vn(y)
)
vn(y)dy

+v′n(ϕεn(1))vn(ϕεn(1))− v′n(0)vn(0)

−
∫ ϕεn(1)

0

∫ 1

0

∂2
2f(ϕ−1

εn
(y), u0(ϕ

−1
εn

(y)) + sv0(y))v0(y)vn(y)
2dsdy. (3.13)

The first three terms in the right hand side of (3.13) tend to zero for n→∞ because of
(3.9) and |vn(y)| ≤ const. The absolute value of the last term in the right hand side of
(3.13) can be estimated by a constant times

∫ R

0

ṽ2
n(y)dy +

∫ ∞

R

|v0(y)|dy,

where R > 0 is arbitrary. Now we proceed as above: First take R sufficiently large such
that the second term is small. Then fix this R, use the compact embedding W 1,2(0, R) ↪→
C([0, R]) and take n sufficiently large, such that the first term is small.

For (3.12) it remains to show that
∫ ϕεn (1)

0
v′′n(y)

2dy → 0 for n→∞. But this follows
from

‖v′′n‖L2(0,ϕεn (1)) ≤ ‖v′′n − ∂2f(ϕ−1
εn

(y), v0)vn‖L2(0,ϕεn(1)) + ‖∂2f(ϕ−1
εn

(y), v0)vn‖L2(0,ϕεn (1)).

The first term in the right hand side tends to zero because of (3.9), and the second one
because of ‖vn‖L2(0,ϕεn (1)) → 0 (which was shown above).

3.3 Solution of the problem for the right boundary layer func-
tion

Let vε be the solution to (3.2) for small ε ∈ C1
+([0, 1]), produced by Lemma 3.2. Inserting

v = vε in (3.3) we get

w′′(y)− ε′(ψ−1
ε (y))w′(y) = f(ψ−1

ε (y), v0
ε(y) + w(y))− f(ψ−1

ε (y), v0
ε(y))+

+g(ψ−1
ε (y), v0

ε(y) + w(y), v1
ε(y)− w′(y)), 0 < y < ψε(0),

w′(0) = ε(1)(u′0(0)− b1), w(ψε(0)) = 0,



 (3.14)
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where, for the sake of shortness, we denoted

v0
ε(y) := u0(ψ

−1
ε (y)) + vε(ϕε(ψ

−1
ε (y))), v1

ε(y) := ε(ψ−1
ε (y))u′0(ψ

−1
ε (y)) + v′ε(ϕε(ψ

−1
ε (y))).

A function w is a solution to (3.14) if and only if

u(x) = u0(x) + vε(ϕε(x)) + w(ψε(x)) (3.15)

is a solution to (1.1). Moreover, using (1.5) and (3.15), we get u − Uε = (vε − v0) ◦ ϕε +
(w − w0) ◦ ψε. Hence, with the notation (1.7) this gives

‖(w − w0) ◦ ψε‖ε − ‖(vε − v0) ◦ ϕε‖ε ≤ ‖u− Uε‖ε ≤ ‖(vε − v0) ◦ ϕε‖ε + ‖(w − w0) ◦ ψε‖ε.

On the other side, by means of (3.1) one easily calculates that

‖(vε − v0) ◦ ϕε‖ε = ‖vε − v0‖W 2,2(0,ϕε(1)), ‖(w − w0) ◦ ψε‖ε = ‖w − w0‖W 2,2(0,ψε(0)).

Hence, from (3.4) follows

‖u− Uε‖ε ≤ c(‖ε‖∞ + ‖ε′‖∞) + ‖w − w0‖W 2,2(0,ψε(0)) ≤ 2c(‖ε‖∞ + ‖ε′‖∞) + ‖u− Uε‖ε.

Finally, the continuous embedding W 1,2(0,∞) ↪→ L∞(0,∞) yields that there exists a
positive constant such that for all ε ∈ C1

+([0, 1]) with ‖ε‖∞ ≤ 1 and all u ∈ C2([0, 1]) it
holds

‖(u− Uε)‖∞ + ‖ε(u− Uε)′‖∞ = ‖(u− Uε) ◦ ϕ−1
ε ‖C1([0,ϕε(1)]) ≤

≤ const ‖(u− Uε) ◦ ϕ−1
ε ‖W 2,2(0,ϕε(1)) = const ‖u− Uε‖ε. (3.16)

Therefore, Theorem 1.1 is proved if the following Lemma is proved:

Lemma 3.3 There exist ε0 > 0 and δ > 0 such that for all ε ∈ C1
+([0, 1]) and all

g ∈ C0,1,1([0, 1]×K2) with

‖ε‖∞ + ‖ε′‖∞ +

√∫ 1

0

dx

ε(x)
(‖g‖∞ + ‖∂2g‖∞ + ‖∂3g‖∞) < ε0

there exists exactly one solution w = wε,g to (3.14) with

‖w − w0‖W 2,2(0,ψε(0)) < δ.

Moreover, there exists c > 0 such that

‖wε,g − w0‖W 2,2(0,ψε(0)) ≤ c


‖ε‖∞ + ‖ε′‖∞ +

√∫ 1

0

dx

ε(x)
‖g‖∞


 . (3.17)
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Proof We proceed as in the proof of Lemma 3.2, i.e. we apply Theorem 2.1 again.
In a first step we introduce the setting of Theorem 2.1. We set E := C1([0, 1]) with its

usual norm ‖ε‖∞+‖ε′‖∞ and E0 := C1
+([0, 1]) as in Lemma 3.2. Further, for ε ∈ C1

+([0, 1])
we set (cf. (1.9))

Λε := C0,1,1([0, 1]×K2) with the norm

√∫ 1

0

dx

ε(x)
(‖g‖∞ + ‖∂2g‖∞ + ‖∂3g‖∞)

and
Uε := W 2,2(0, ψε(0)), Vε := L2(0, ψε(0))× R2 with their usual norms.

Finally, for ε ∈ C1
+([0, 1]) and g ∈ C1([0, 1] × K2) we define Fε,g = (Aε,g, Bε,g, Cε,g) ∈

C1(Uε, Vε) with A ∈ C1(Uε, L
2(0, ψε(0))) and B,C ∈ C1(Uε,R) by

(Aε,g(w)) (y) := w′′ + w′′0 − ε′(ψ−1
ε (y))(w′(y) + w′0(y))

+f(ψ−1
ε (y), v0

ε(y))− f(ψ−1
ε (y), v0

ε(y) + w(y) + w0(y))

−g(ψ−1
ε (y), κ(v0

ε(y) + w(y) + w0(y)), κ(v
1
ε(y)− w′(y)− w′0(y)))

and
Bε,g(w) := w′(0)− ε(1)(u′0(0)− b1), Cε,g(w) := w(ψε(0)).

Here κ : R → [0, 1] is a C∞ cut off function with κ(z) = 1 for |z| ≤ 4k and κ(z) =
0 for |z| ≥ 5k. Obviously, for sufficiently small ‖ε‖∞ and ‖w − w0‖W 2,2(0,ψε(0)) we have
κ(v0

ε(y) + w(y) + w0(y)) = v0
ε(y) + w(y) + w0(y) and κ(v1

ε(y)− w′(y)− w′0(y)) = v1
ε(y)−

w′(y)− w′0(y) for all y ≥ 0 and, hence, Fε,g(w) = 0 if and only if w + w0 is a solution to
(3.14). Moreover, for such ε and w it holds

(A′ε,g(w)w̄)(y) = w̄′′ − ε′(ψ−1
ε (y))w′(y)− ∂2f(ψ−1

ε (y), v0
ε(y) + w(y) + w0(y))w̄(y)

−∂2g(ψ
−1
ε (y), v0

ε(y) + w(y) + w0(y), v
1
ε(y)− w′(y)− w′0(y))w̄(y)

−∂3g(ψ
−1
ε (y), v0

ε(y) + w(y) + w0(y), v
1
ε(y)− w′(y)− w′0(y))w̄

′(y)

and B′
ε,g(w)w̄ = w̄′(0), C ′ε,g(w)w̄ = w̄(ψε(0)).

In a second step we verify assumption (2.1) of Theorem 2.1: We have

(Aε,g(0))(y) + ε′(ψ−1
ε (y))w′0(y))

+g(ψ−1
ε (y), κ(v0

ε(y) + w0(y)), κ(v
1
ε(y)− w′(y)− w′0(y)))

= f(1, u0(1) + w0(y)) + f(ψ−1
ε (y), v0

ε)− f(ψ−1
ε (y), v0

ε(y) + w0(y))

= w0(y)

∫ 1

0

(
∂2f(1, u0(1) + tw0(y))− ∂2f(ψ−1

ε (y), v0
ε(y) + tw0(y))

)
dt

= w0(y)

∫ 1

0

∫ 1

0

(1− ψ−1
ε (y))

(
∂1∂2f(s+ (1− s)ψ−1

ε (y), u0(1) + tw0(y))

+∂2
2f(ψ−1

ε (y), u0(s+ (1− s)ψ−1
ε (y)) + tw0(y))u

′
0(s+ (1− s)ψ−1

ε (y))
)

+vε(ϕε(ψ
−1
ε (y)))∂2

2f(ψ−1
ε (y), u0(ψ

−1
ε (y)) + svε(ϕε(ψ

−1
ε (y))) + tw0(y))dsdt.
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Therefore

‖Aε,g(0)‖2
L2(0,ψε(0)) ≤

≤ const

∫ ψε(0)

0

(‖g‖2
∞ + w0(y)

2
(‖ε′‖∞ + (1− ψ−1

ε (y))2 + vε(ϕε(ψ
−1
ε (y)))2

))
dy. (3.18)

Moreover, it holds

ψε(x) ≥ 1− x

‖ε‖∞ and 1− ψ−1
ε (y) ≤ y‖ε‖∞ (3.19)

and, hence, ∫ ψε(0)

0

w0(y)
2(1− ψ−1

ε (y))2dy ≤ const‖ε‖2
∞.

Finally, we have
∫ ψε(0)

0

vε(ϕε(ψ
−1
ε (y)))2w0(y)

2dy =

∫ 1

0

vε(ϕε(x))
2w0(ψε(x))

2 dx

ε(x)
≤

≤ const

(∫ 1/2

0

w0(ψε(x))
2 dx

ε(x)
+

∫ 1

1/2

vε(ϕε(x))
2 dx

ε(x)

)
≤

≤ const

(∫ 1/2

0

w0(ψε(x))
2 dx

ε(x)
+

∫ 1

1/2

v0(ϕε(x))
2 dx

ε(x)
+ ‖ε‖∞ + ‖ε′‖∞

)
=

= const

(∫ ψε(1/2)

0

w0(y)
2dy +

∫ ϕε(1)

ϕε(1/2)

v0(y)
2dy + ‖ε‖∞ + ‖ε′‖∞

)
≤

≤ const

(∫ ψε(1/2)

ψε(0)

e−2αydy +

∫ ϕε(1)

ϕε(1/2)

e−2αydy + ‖ε‖∞ + ‖ε′‖∞
)
≤

≤ const (‖ε‖∞ + ‖ε′‖∞) .

Here we used (3.4), (3.5) and (3.19). Inserting this into (3.18) we get

‖Aε,g(0)‖2
L2(0,ψε(0)) + |Bε,g(0)|2 + |Cε,g(0)|2 ≤ const

(‖ε‖2
∞ + ‖ε′‖2

∞ + ψε(0)‖g‖2
∞

)
,

i.e. (2.1) is satisfied. Remark that, if the (2.2) and (2.3) are also satisfied and, hence,
Theorem 2.1 works, then its assertion (2.4) implies the claimed asymptotic estimate (3.17).

In a third step we verify assumption (2.2) of Theorem 2.1: We have

B′
ε,g(w)−B′

ε,g(0) = C ′ε,g(w)− C ′ε,g(0) = 0

and

‖ (
A′ε,g(w)− A′ε,g(0)

)
w‖2

L2(0,ψε(0)) =

=

∫ ψε(0)

0

(
w(y)

(∫ 1

0

∂2
2f(ψ−1

ε (y), v0
ε(y) + w0(y) + sw(y))dsw(y)

−∂2g(ψ
−1
ε (y), v0

ε(y) + w0(y) + w(y), v1
ε(y)− w′0(y)− w′(y))

+∂2g(ψ
−1
ε (y), v0

ε(y) + w0(y), v
1
ε(y)− w′0(y))

)

−w′(y) (−∂3g(ψ
−1
ε (y), v0

ε(y) + w0(y) + w(y), v1
ε(y)− w′0(y)− w′(y))

+∂3g(ψ
−1
ε (y), v0

ε(y) + w0(y), v
1
ε(y)− w′0(y))

))2
dy.
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Therefore

‖ (
F ′ε,g(w)− F ′ε,g(0)

)
w‖2

Vε
≤

≤ const

(
‖w‖2

Uε
+

∫ 1

0

dx

ε(x)

(‖∂2g‖2
∞ + ‖∂3g‖2

∞
)) ‖w‖2

Uε
,

i.e. (2.2) is satisfied.
In the fourth and last step we verify assumption (2.3) of Theorem 2.1. For that we

use Lemma 2.2 again.
Let εn ∈ C1

+([0, 1]), gn ∈ C0,1,1([0, 1] × K2) and wn ∈ W 2,2(0, ψεn(0)) be sequences
with ∫ ψεn(0)

0

(
wn(y)

2 + w′n(y)
2 + w′′n(y)

2
)
dy = 1 (3.20)

and

‖εn‖2
∞ + ‖ε′n‖2

∞ +

∫ 1

0

dx

ε(x)

(‖∂2gn‖2
∞ + ‖∂3gn‖2

∞
)

+ |w′n(0)|2 + |wn(ϕεn(1)|2

+

∫ ψεn (0)

0

(w′′n − ε′(ψ−1
εn

(y))w′n(y)− ∂2f(ψ−1
εn

(y), v0
ε(y) + w0(y))vn(y)

−∂2gn(ψ
−1
ε (y), v0

ε(y) + w0(y), v
1
ε(y)− w′0(y))

+∂3gn(ψ
−1
ε (y), v0

ε(y) + w0(y), v
1
ε(y)− w′0(y)))

2dy → 0. (3.21)

As in the proof of Lemma 3.2 we can assume that wn is the restriction on [0, ψε(0)] of
a function w̃ ∈ W 2,2(0, ψε(0)), that w̃n and w̃′n are bounded sequences also in L∞(0,∞)
and that there exists w∗ ∈ W 2,2(0,∞) such that

w̃n ⇀ w∗ in W 2,2(0,∞) for n→∞. (3.22)

Moreover, as in the proof of 3.2 one can show that

∫ ∞

0

(w′∗(y)η
′(y) + ∂2f(0, u0(1) + w0(y))w∗(y)η(y)) dy = 0 for all η ∈ C∞c (0,∞),

i.e. w∗ = const w′0. Therefore, assumption w′0(0) = 0 from (1.4) yields w∗(0) = 0. More-
over, (3.21), (3.10) and the compact embedding W 2,2(0, 1) ↪→ C1([0, 1]) imply w′∗(0) = 0,
i.e. w∗ = 0.

Using this, as in the proof of Lemma 3.2 we can construct a contradiction to the
assumption (3.20).
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