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Abstract. The Neumann boundary value problem for a class of singularly perturbed
integro-parabolic equations is considered. An asymptotic expansion of a new class of
solutions of moving front type is constructed, and a theorem of existence of such solutions
is proved.

1. Introduction
Mathematical problems concerning reaction-advection-diffusion equations describe

many important practical applications in chemical kinetics, synergetics, astrophysics, bi-
ology, etc. In many important cases the solutions of these problems feature internal layers
(see [1] and references therein). Recently there is an increasing interest to more compli-
cated models, which include the effects of feedback or non-local interaction. These models
are represented by integro-differential equations (see [2], [3], [4]).

In this work we consider the following family of ε-depending initial boundary value
problems

L[u] ≡ −ε
∂u

∂t
(x, t, ε) + ε2∂2u

∂x2 (x, t, ε)− εA(x, ε)
∂u

∂x
(x, t, ε)−

−
b∫

a

g(u(x, t, ε), u(s, t, ε), x, s) ds = 0, a < x < b, (1)

∂u

∂x
(a, t, ε) = 0,

∂u

∂x
(b, t, ε) = 0, u(x, 0, ε) = u0(x, ε) (2)

and investigate the existence of moving internal layer solutions (fronts). Here, A(x, ε)
and g(u, v, x, s, ε) are sufficiently smooth functions (their actual degree of smoothness
is specified below), u0(x, ε) is some initial function of front type, and ε > 0 is a small
parameter.

The corresponding stationary boundary value problem for the case A ≡ 0 was con-
sidered in [5]. Our results develop and extend methods proposed in [5] and [6] to a new
more complicated class of problems. This work can be also considered as an extension of
results of [7] to nonlocal BVP’s. Some related problems where travelling wave solutions
for nonlocal problem with bistable nonlinearity and linear integral term was considered
in [4](see also references therein).
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The reduced equation

b∫

a

g(u(x, t), u(s, t), x, s) ds = 0 (3)

is an integral equation. Following to the investigation in [5], in order to have a solution
to (1), (2) of internal layer type we suppose to have a family of discontinuous solutions of
problem (3). Namely, we assume

Condition I. There exist two functions

ϕ(−) ∈ C(Ω(−)), where Ω(−) ≡ {(x, y) : a ≤ x ≤ y ≤ b},
ϕ(+) ∈ C(Ω(+)), where Ω(+) ≡ {(x, y) : a ≤ y ≤ x ≤ b},

which for every y ∈ (a, b) satisfy ϕ(−)(y, y) < ϕ(+)(y, y) and the system of the two coupled
integral equations

y∫
a

g(ϕ(−)(x, y), ϕ(−)(s, y), x, s, 0) ds+

+
b∫

y

g(ϕ(−)(x, y), ϕ(+)(s, y), x, s, 0) ds = 0, a < x < y,

y∫
a

g(ϕ(+)(x, y), ϕ(−)(s, y), x, s, 0) ds+

+
b∫

y

g(ϕ(+)(x, y), ϕ(+)(s, y), x, s, 0) ds = 0, y < x < b.

We also assume that
∫ b

a
gu(ϕ

(i)(x, y), ϕ(s, y), x, s, ε)ds > 0 for all x, y ∈ [a, b] and i = −, +,
where

ϕ(x, y) ≡
{

ϕ(−)(x, y) for x ∈ Ω(−),
ϕ(+)(x, y) for x ∈ Ω(+),

and that there exist a continuous function ϕ0(x) such that for all x ∈ [a, b]

ϕ(−)(x, x) < ϕ0(x) < ϕ(+)(x, x) and

b∫

a

gu(ϕ0(x), ϕ0(s), x, s, ε)ds < 0

(gu is derivative of g with respect to the first argument).

The goal of our paper is to show that, under some additional assumptions, the solution
to problem (1), (2) is of moving internal layer type

u(x, t, ε) ≈ ϕ(x, x∗(t, ε)) for ε ≈ 0,

where the location x∗(t, ε) of the internal layer is the point of intersection of the solution
u with the function ϕ0:

u(x?(t, ε), t, ε) = ϕ0(x
?(t, ε)). (4)
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In what follows the functions u and x∗ are the unknowns to be determined as solutions
to (1), (2), (4).

2. The formal asymptotic expansion of internal layer solutions
In this section we construct asymptotic expansions of internal layer solutions to prob-

lem (1), (2). In order to approximate the introduced location of the front x∗(t, ε) we use
the following ansatz

X∗(t, ε) =
∞∑

k=0

εkxk(t).

We also assume that the initial function u0(x, ε) is of front type, i.e. such that for small
ε u0(x, ε) is close to ϕ(x, x00) for a ≤ x < x00 and x00 < x ≤ b, where x00 is some point
from (a, b) where initially the front is located, that is we assume

X∗(0, ε) = x00.

In order to construct the formal asymptotic expansion we rewrite the initial boundary
value problem (1),(2),(4) as a system of two inital boundary value problems:

−ε
∂u

∂t
+ ε2∂2u

∂x2 − εA(x, ε)
∂u

∂x
−

b∫

a

g(u(x, t), u(s, t.ε), x, s) ds = 0, a < x < X∗(t, ε), (5)

∂u

∂x
(a, t) = 0, u(X∗(t, ε), t, ε) = ϕ0(X

∗(t, ε)), u(x, 0) = u0(x, ε), a ≤ x ≤ X∗(t, ε), (6)

−ε
∂u

∂t
+ ε2∂2u

∂x2 − εA(x, ε)
∂u

∂x
−

b∫

a

g(u(x, t), u(s, t), x, s) ds = 0, X∗(t, ε) < x < b, (7)

u(X∗(t, ε), t, ε) = ϕ0(X
∗(t, ε)),

∂u

∂x
(b, t) = 0, u(x, 0) = u0(x, ε), X∗(t, ε) ≤ x ≤ b. (8)

We construct boundary layer asymptotic expansions for the solutions to the two initial
boundary value problems (5),(6)and (7),(8) above and use the boundary layers near the
point X∗(t, ε) to describe the internal layer solution of the original problem (1),(2). In
the principal part of construction we follow the paper [5], where the reader can find
some additional details of the developing of our representations which are omitted here
for shortness.

To build the formal asymptotics U(x, t, ε) of the seeking solution u we shall use the
following ansatz

U(x, t, ε) =





U (−)(x, t, ε) = u(−)(x,X∗(t, ε), t, ε) + Q(−)(ξ, t, ε) + Π(−)(ξ(−), ε)
for a ≤ x ≤ X∗(t, ε),

U (+)(x, t, ε) = u(+)(x,X∗(t, ε), t, ε) + Q(+)(ξ, t, ε) + Π(+)(ξ(+), ε)
for X∗(t, ε) ≤ x ≤ b.

(9)

Here u(±)(x, y, ε) is the regular part, Q(±)(ξ, t, ε) are the internal layer parts and
Π(±)(ξ(±), ε) are the boundary parts. The parts Q(±)(ξ, t, ε) serve to describe the quick
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transition layer in a small vicinity of the point X(t, ε) ∈ (a, b) and thus depend on the
stretched variable

ξ =
x−X∗(t, ε)

ε
.

The functions Π(±)(ξ(±), ε) describe the boundary layers on the left and right sides of
interval (a, b) and depend on the stretched variables

ξ(−) =
x− a

ε
and ξ(+) =

b− x

ε

accordingly. Each term of the presented ansatz is treated as an integer power series with
respect to the small parameter ε, namely

u(±)(x, y, t, ε) =
∞∑

k=0

εku
(±)
k (x, y, t), Q(±)(ξ, t, ε) =

∞∑

k=0

εkQ
(±)
k (ξ, t),

Π(±)(ξ(±), ε) =
∞∑

k=0

εkΠ
(±)
k (ξ(±)).

The construction of the functions Π
(±)
k is described in details in [8]. These functions

are not depending on variable t, and therefore they do not have influence on the moving
internal layer. We note that in the case of Neumann boundary conditions we would have
Π

(±)
0 ≡ 0.

Remark 1. It will be shown below that the functions Q
(±)
k (ξ, t) depend of t just throw

dependence of X∗(t, ε). Therefore for U(x, t, ε) and Q(±)(ξ, t, ε) we also use the notations
U(x, X∗(t, ε), ε) and Q(±)(ξ,X∗(t, ε), ε).

In order to find the terms of the asymptotic expansion of X∗ we use the condition of
C1-matching of the asymptotics at the point X∗(t, ε):

U (−)(X∗(t, ε), t, ε) = U (+)(X∗(t, ε), ε), ε
∂U (−)

∂x
(X∗(t, ε), t, ε) = ε

∂U (+)

∂x
(X∗(t, ε), t, ε).

This is equivalent to

Q
(−)
0 (0, t) + u

(−)
0 (x0(t), x0(t))+

+
∞∑

k=1

εk
(
Q

(−)
k (0, t) + u

(−)
k (x0(t), x0(t)) + xk(t)w

(−)(t) + M
(−)
k (t)

)
=

= Q
(+)
0 (0, t) + u

(+)
0 (x0(t), x0(t)) +

+
∞∑

k=1

εk
(
Q

(+)
k (0, t) + u

(+)
k (x0(t), x0(t)) + xk(t)w

(+)(t) + M
(+)
k (t)

)
(10)

and

∂Q
(−)
0

∂ξ
(0, t) +

∞∑

k=1

εk

(
∂Q

(−)
k

∂ξ
(0, t) + N

(−)
k (t)

)
=

=
∂Q

(+)
0

∂ξ
(0, t) +

∞∑

k=1

εk

(
∂Q

(+)
k

∂ξ
(0, t) + N

(+)
k (t)

)
, (11)
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where

w(±)(t) ≡ ∂u
(±)
0

∂x
(x0(t), x0(t)) +

∂u
(±)
0

∂y
(x0(t), x0(t)).

Here M
(±)
k and N

(±)
k are certain functions recurrently expressed in terms of the preceding

orders of the asymptotics, in particular

M
(±)
1 (t) = 0, N

(±)
1 (t) =

∂u
(±)
0

∂x
(x0(t), x0(t)).

To formulate problems that determine the terms appearing in this series, it is neces-
sary to represent the equations in the coupled system of integro-differential equations in
the form of a sum of regular and boundary layer parts. For simplicity we shall omit in-
dices (−) and (+) in what follows if it is possible without misunderstanding. We represent
integral term as the sum

b∫

a

g(U(x, t, ε), U(s, t, ε), x, s, ε) ds =
2∑

k=1

Lk(x,X∗(t, ε), ε) +
2∑

k=1

QLk(ξ, t, ε). (12)

Here and in what follows, the following notation is used:

L1(x, y, ε) ≡
b∫

a

g(u(x, y, ε), u(s, y, ε), x, s, ε) ds,

L2(x, y, ε) ≡
b∫

a

(g(u(x, y, ε), U(s, y, ε), x, s, ε)− g(u(x, y, ε), u(s, y, ε), x, s, ε)) ds,

QL1(ξ, t, ε) ≡
b∫

a

(g(U(x, t, ε), u(s,X∗(t, ε), ε), x, s, ε)

− g(u(x,X∗(t, ε), ε), u(s,X∗(t, ε), ε), x, s, ε)) ds

and

QL2(ξ, t, ε) ≡
b∫

a

(g(U(x, t, ε), U(s, t, ε), x, s, ε)− g(u(x,X∗(t, ε), ε), U(s, t, ε), x, s, ε)−

− g(u(x, t, ε), u(s,X∗(t, ε), ε), x, s, ε) + g(u(x, X∗(t, ε), ε), u(s, x?(t, ε), ε), x, s, ε)) ds.

Let us separately transform each of the above terms. Represent the first term L1 in the
form

L1(x, y, ε) =

b∫

a

g(u0(x, y), u0(s, y), x, s, 0) ds+

+
∞∑

k=1

εk


P (x, y)uk +

b∫

a

gv(u0(x, y), u0(s, y), x, s, 0)uk(s, y) ds + Dk(x, y)


 ,
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where

P (x, y) ≡
b∫

a

gu(u0(x, y), u0(s, y), x, s, 0) ds,

( gv is derivative of g for second argument), and Dk(x, y) are recurrently expressed in
terms of the preceding orders of the asymptotics, in particular,

D1(x, y) =

b∫

a

gε(u0(x, y), u0(s, y), x, s, 0) ds.

The term L2 is transformed in a somewhat different way. Before expressing it as a series in
the small parameter ε, we change the integration variable by the formula s = X∗(t, ε)+ετ
(τ is the stretched variable). As a result, we obtain

L2(x,X∗(t, ε), ε) =

ε

(b−X∗(t,ε))/ε∫

(a−X∗(t,ε))/ε

[g(u(x,X∗(t, ε), ε), u(X∗(t, ε) + ετ,X∗(ε), ε) + Q(τ, t, ε), x,X∗((t, ε) + ετ, ε)

−g(u(x,X∗(t, ε), ε), u(X∗((t, ε) + ετ, X∗((t, ε), ε), x, X∗((t, ε) + ετ, ε)] dτ

≡ ε

(b−X∗(t,ε))/ε∫

(a−X∗(t,ε))/ε

[. . . ] dτ = ε

+∞∫

−∞

[. . . ] dτ − ε

(a−X∗((t,ε))/ε∫

−∞

[. . . ] dτ − ε

+∞∫

(b−X∗((t,ε))/ε

[. . . ] dτ =

= ε

+∞∫

−∞

[g(u0(x,X∗(t, ε)), u0(x0, x0) + Q0(τ, t), x, x0, 0)−

g(u0(x,X∗(t, ε)), u0(x0, x0), x, x0, 0)] dτ +

+
∞∑

k=1

εk+1Tk+1(x,X∗((t, ε))− Φ1(x,X∗((t, ε), ε)− Φ2(x,X∗((t, ε), ε).

Here, Tk(x,X∗((t, ε)) are certain functions recurrently expressed in terms of the preceding
orders of the asymptotics and

Φ1(x,X∗((t, ε), ε) ≡ ε

(a−X∗((t,ε))/ε∫

−∞

[. . . ] dτ, Φ2(x,X∗(t, ε), ε) ≡ ε

+∞∫

(b−X∗((t,ε))/ε

[. . . ] dτ.

It is shown below that all the boundary functions Qk(ξ, t) have an exponential estimate
at infinity. Under this condition, the integrand in the definition of Φ1(x,X∗(t, ε), ε) also
satisfies this estimate. Then, the estimate |Φ1(x,X∗(t, ε), ε)| ≤ (εC/ν)eν(a−X∗((t,ε))/ε is
valid, therefore, the relationship Φ1(x,X∗(t, ε), ε) = o(εn) is fulfilled for all n ≥ 0 as
ε → +0. Analogously, Φ2(x,X∗(t, ε), ε) = o(εn) for all n ≥ 0 as ε → +0. Thus it is
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possible to neglect terms Φ1(x,X∗(t, ε), ε) and Φ2(x,X∗(t, ε), ε) in comparison with any
other term with a power dependence on ε.

Using the conventional scheme after transformation of QL1, we obtain

QL1(ξ, t, ε) =

b∫

a

(g(u0(x0, x0) + Q0(ξ, t), u0(s, x0), x0, s, 0)−

−g(u0(x0, x0), u0(s, x0), x0, s, 0)) ds +
∞∑

k=1

εkSk(ξ, t).

Finally, when transforming the term QL2, the same sequence of operations as in the case
with the term L2 is required. As a result, we obtain

QL2(ξ, t, ε) = ε

+∞∫

−∞

(g(u0(x0, x0) + Q0(ξ, t), u0(x0, x0) + Q0(τ, t), x0, x0, 0)−

−g(u0(x0, x0), u0(x0, x0) + Q0(τ, t), x0, x0, 0)−
−g(u0(x0, x0) + Q0(ξ, t), u0(x0, x0), x0, x0, 0) +

+g(u0(x0, x0), u0(x0, x0), x0, x0, 0)) dτ +
∞∑

k=1

εk+1Θk(ξ, t)−Ψ(ξ, t, ε). (13)

Here Θk(ξ, t) are certain functions recurrently expressed in terms of the preceding orders
of the asymptotics and the function Ψ(ξ, t, ε) has the same origin as functions Φ1(x, y, ε)
and Φ2(x, y, ε) in the case of the expansion for L2. By analogy with the above discussion, it
can be shown that, in the subsequent reasoning, Ψ(ξ, t, ε) = o(εn) for all n ≥ 0, therefore,
the function Ψ can be neglected in comparison with any term with a power dependence
on ε.

Applying the differential operator D ≡ ε2 ∂2

∂x2 − εA(x, ε) ∂
∂x

− ε ∂
∂t

on the ansatz (9)
we get

DU(x, t, ε) = Du(x,X∗(t, ε), ε) +

[
∂2

∂ξ2
+

(
∂X∗

∂t
(t, ε)− εA(x, ε)

)
∂

∂ξ
− ε

∂

∂t

]
Q(ξ, t, ε).

Equating the sum of coefficients of the equal powers of ε to zero, we easily obtain equations
for determining all terms of the asymptotic.

It is obvious that the equation for the zeroth order regular function u0(x, y) coincides
with the reduced equation (3). Thus, let us put

u
(±)
0 (x, y) = ϕ(±)(x, y).

Extracting leading terms from expansions (10) and (12), we obtain the problem for de-
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termination of the boundary functions Q
(±)
0 (v0(t) = x′0(t)), namely

∂2Q
(±)
0

∂ξ2 + (v0(t)− A(x0(t), 0))
∂Q

(±)
0

∂ξ
=

=

b∫

a

[g(u
(±)
0 (x0(t), x0(t)) + Q

(±)
0 (ξ, t), u

(±)
0 (s, x0(t)), x0(t), s, 0)−

−g(u
(±)
0 (x0(t), x0(t)), u

(±)
0 (s, x0(t)), x0(t), s, 0)] ds, ξ ∈ R±, (14)

Q
(±)
0 (0, t) + u

(±)
0 (x0(t), x0(t)) = ϕ0(x0(t)), (15)

Q
(−)
0 (−∞, t) = Q

(+)
0 (+∞, t) = 0. (16)

It is clear that the solutions of problems (14)-(16) do not explicitly depend on the argument
t and depend on x0 as parameter. Therefore according to Remark 1 we can use the
notation

Q
(±)
0 (ξ, t) ≡ Q

(±)
0 (ξ, x0(t)).

In order to use known results for problems (14)-(16) we introduce the continuous function

ũ(ξ, x0) ≡




ϕ(−)(x0, x0) + Q
(−)
0 (ξ, x0), ξ < 0,

ϕ0(x0), ξ = 0,

ϕ(+)(x0, x0) + Q
(+)
0 (ξ, x0), ξ > 0.

Now we can rewrite problems (14) - (16) into the form

∂2ũ
∂ξ2 + (v0 − A(x0, 0))∂ũ

∂ξ
=

∫ a

b
g(ũ, ϕ(s, x0), x0, s, 0) ds, ξ ∈ R,

ũ(0, x0) = ϕ0(x0), ũ(−∞, x0) = ϕ(−)(x0, x0), ũ(+∞, x0) = ϕ(+)(x0, x0).
(17)

The equation in (17) is a second order ODE and from Condition I it follows that
ϕ(±)(x0, x0) are the sadle points. This problem is well studied (see, for example, [7],
[9]), and we have the following result.

Lemma 1 For all x0 ∈ (a, b) there exists a unique v0 such that problem (17) has a
unique solution ũ satisfying the estimates

∣∣ũ(ξ, x0)− ϕ(±)(x0, x0)
∣∣ ≤ Ce−ν|ξ|, (18)

where C and ν are some positive constants. The function v0(x0) satisfies the relation

v0(x0) =

ϕ(+)(x0,x0)R
ϕ(−)(x0,x0)

"
bR

a
g(u,ϕ(s,x0),x0,s,0) ds

#
du

+∞R
−∞

 
∂ũ
∂ξ

(ξ,x0)

!2

dξ

+ A(x0, 0). (19)

From Lemma 1 it follows that Q
(±)
0 (ξ, t) have the exponential estimate

∣∣∣Q(±)
0 (ξ, t)

∣∣∣ ≤ Ce−ν|ξ|, (20)
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and the location of front can be determined as a solution of the initial value problem

x′0 = v0(x0),

x0(0) = x00,
(21)

where x00 determines the initial location of the front. The roots of v0(x0) determine the
location of stationary solution with internal layers (see [5]). At the present work we
consider just motion of fronts (without approaching to stationary solutions), therefore we
assume

Condition II. Let v0(x0) > 0 for any x0 ∈ [a, b].
Problem (21) has a solution for t ∈ [0, T ], where T is defined by the estimate

x0(T ) < b (the front moves to the right boundary).
¿From the solvability of problem (17) it follows the zeroth order C1-matching con-

dition (see (11))

∂Q
(−)
0

∂ξ
(0, x0(t)) =

∂Q
(+)
0

∂ξ
(0, x0(t)) (22)

is satisfied.
We now turn to the analysis of the linear problems determining the higher order

terms in the asymptotic expansion.
The first order regular expansion term u1(x, y, t) of (9) has to be determined for

any smooth function y(t) ∈ (a, b) for t ∈ [0, T ] therefore we denote it by u1y(x, t) and
determined by the operator equation

P (x, y)u1y(x, t) + +
b∫

a

gv(u0(x, y), u0(s, y), x, s, 0)u1y(s, y) ds+

D1(x, y) + T1(x, y) = ∂u0
∂t

(x, y) = ∂u0
∂y

(x, y)
∂y
∂t

(23)

If y(t) is determined, then u1y(x, t) is a known function of x, t and we use for it the
notation For a shortness we use for this term the notation u1(x, y, t) where y denote the
point where u1(x, y, t) is discontinues.

By analogy with Condition I one can rewrite problem (23) in the form of two coupled
linear integro-differential equations

u
(−)
1y +

y∫
a

K(−−)(x, s, y)u
(−)
1y (s, t) ds+

+
b∫

y

K(−+)(x, s, y)u
(+)
1y (s, t) ds = f

(−)
1y (x, t), a < x < y,

u
(+)
1y +

y∫
a

K(+−)(x, s, y)u
(−)
1y (s, t) ds+

+
b∫

y

K(++)(x, s, y)u
(+)
1 (s, t) ds = f

(+)
1y (x, t), y < x < b.

(24)
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Here for i, j ∈ {−, +} we denoted

K(ij)(x, s, y) =
gv(u

(i)
0 (x, y), u

(j)
0 (s, y), x, s, 0)

P (i)(x, y)
,

f
(i)
1y (x, t) =

∂u0

∂y
(x, y)

∂y

∂t
−D

(i)
1 (x, y)− T

(i)
1 (x, y)

P (i)(x, y)
(y = y(t)).

Suppose that the following condition is satisfied.

Condition III. Let the system of the coupled integral inequalities

w(−)(x, y) +
y∫
a

K(−−)(x, s, y)w(−)(s) ds +
b∫

y

K(−+)(x, s, y)w(+)(s) ds > 0, a ≤ x ≤ y,

w(+)(x, y) +
y∫
a

K(+−)(x, s, y)v(−)(s) ds +
b∫

y

K(++)(x, s, y)v(+)(s) ds > 0, y ≤ x ≤ b,

for all y ∈ (a, b) has a positive solution .

Remark I. Condition III is fulfilled if all eigenvalues of the following problem

λw(−)(x, y) +
y∫
a

K(−−)(x, s, y)w(−)(s) ds +
b∫

y

K(−+)(x, s, y)w(+)(s) ds = 0, a ≤ x ≤ y,

λw(+,y)(x) +
y∫
a

K(+−)(x, s, y)v(−)(s) ds +
b∫

y

K(++)(x, s, y)v(+)(s) ds = 0, y ≤ x ≤ b,

have estimate |λ| < 1.
We can also use the sufficient condition

P (x, y) +
b∫

a

gv(ϕ(x, y), ϕ(s, y), x, s, 0) ds > 0 ∀ (x, y) ∈ [a, b],

that can be easily checked.

If Condition III is fulfilled then for all y problem (24) has unique solution u
(±)
1 (x, y)

with discontinuity at the point y (see [10]).

The internal layer functions Q
(±)
1 (ξ, t) are the solutions of the equations

∂2Q
(±)
1

∂ξ2 + ṽ0(x0)
∂Q

(±)
1

∂ξ
−

−Q
(±)
1

b∫
a

gu(ũ(ξ, t), ϕ(s, x0), x0, s, 0) ds = q
(±)
1 (ξ, t), ξ ∈ R±,

(25)

where

q
(±)
1 (ξ, t) = −x′1

∂ũ

∂ξ
(ξ, x0)− (

∂A

∂x
(x0, 0)(x1 + ξ)+

∂A

∂ε
(x0, 0))ṽ0(x0)+S

(±)
1 (ξ, t)+Θ

(±)
0 (ξ, t),
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and
ṽ0(t) ≡ v0(t)− A(x0(t), 0).

The equations (25) is considered with the boundary conditions

Q
(−)
1 (0, t) = u

(−)
1 (x0, x0) + x1

[
∂u

(−)
0

∂x
(x0, x0) +

∂u
(−)
0

∂y
(x0, x0)

]
≡ p

(−)
1 (t),

Q
(+)
1 (0, t) = u

(+)
1 (x0, x0) + x1

[
∂u

(+)
0

∂x
(x0, x0) +

∂u
(+)
0

∂y
(x0, x0)

]
≡ p

(+)
1 (t),

(26)

Q
(−)
1 (−∞, t) = Q

(+)
1 (+∞, t) = 0. (27)

Using that ∂ũ
∂ξ

(ξ, t) is the solution of the homogeneous equation for (25) we can obtain

the following integral representation of solution of problem (25)–(26):

Q
(±)
1 (ξ, t) = z(ξ, x0)



p

(±)
1 (t)−

ξ∫

0

e−ṽ0(x0)η

z2(η, x0)



±∞∫

η

z(χ, x0)e
ṽ0(x0)χq±1 (χ, t)dχ


 dη



 , (28)

where

z(ξ, x0) ≡ ∂ũ

∂ξ
(ξ, x0)

(
∂ũ

∂ξ
(0, x0)

)−1

.

¿From the definition of q1(ξ, t) and the exponential estimate (20) for Q0(ξ, t) it follows
that |q1(ξ, t)| ≤ Ce−ν|ξ| for all ξ ∈ R±. Now it is obvious that, if the function x1(t) is
known, the linear problems (25)-(26) have unique solutions and these solutions also have
the exponential estimates at infinity

∣∣∣Q(±)
1 (ξ, t)

∣∣∣ ≤ Ce−ν|ξ|.

To find function x1(t) we shall use the first order C1-matching condition (see (11))

∂Q
(−)
1

∂ξ
(0, t) +

∂u
(−)
0

∂x
(x0(t), x0(t)) =

∂Q
(+)
1

∂ξ
(0, t) +

∂u
(+)
0

∂x
(x0(t), x0(t)). (29)

¿From the integral representation (28) and condition (29) we obtain the following equation
for function x1(t):

x′1 −B(x0(t))x1 = F1(x0(t)), (30)

and

B(x0) =

+∞∫
−∞

ũξ(ξ, x0)e
ṽ0(x0)ξN(ξ, x0) dξ − ũξ(0, x0)ṽ0(x0)D(x0)

+∞∫
−∞

ũ2
ξ(ξ, x0)eṽ0(x0)ξ dξ

11



where
N(ξ, x0) = −Ax(x0, 0)ṽ0(x0) + g(ũ(ξ, x0), ϕ

(−)(x0, x0), x0, s, 0)−
−g(ũ(ξ, t), ϕ(+)(x0, x0), x0, s, 0) + ϕ

(−)
x (x0, x0)

x0∫
a

gu(∗)ds+

+ϕ
(+)
x (x0, x0)

b∫
x0

gu(∗)ds +
x0∫
a

gv(∗)ϕ(−)
y (s, x0)ds+

+
b∫

x0

gv(∗)ϕ(+)
y (s, x0)ds +

b∫
a

gx(∗)ds

((∗) ≡ (ũ(ξ, x0), ϕ(s, x0), x0, s, 0)),

D(x0) = ϕ(+)
x (x0, x0)− ϕ(−)

x (x0, x0) + ϕ(+)
y (x0, x0)− ϕ(−)

y (x0, x0)

and

F1(x0) =
+∞∫
−∞

ũξ(ξ, x0)e
ṽ0(x0)ξ{−(Ax(x0, 0)ξ + Aε(x0, 0))ṽ0(x0) + ξ{ϕ(−)

x (x0, x0)
x0∫
a

gu(∗)ds

+ϕ
(+)
x (x0, x0)

b∫
x0

gu(∗)ds}+ ū
(−)
1 (x0, x0)

x0∫
a

gu(∗)ds + ū
(+)
1 (x0, x0)

b∫
x0

gu(∗)ds+

+
b∫

a

gv(∗)ū1(s, x0)ds + ξ
b∫

a

gx(∗)ds +
b∫

a

gε(∗)ds + Θ0(ξ, x0)} dξ+

+ũξ(0, x0)ṽ0(x0)(u
(+)
1 (x0, x0)− u

(−)
1 (x0, x0))

(Θ0(ξ, x0) is the integral term in the left-hand side of (13)).
For equation (30) we have initial condition

x1(0) = 0.

The problems to determine the terms uk(x, y) and Qk(ξ, t) for k ≥ 2 have the same
structure as problem (23) and (25)-(26), respectively. Thus, we get that all these problems
are always solvable. Particularly, the functions Qk(ξ, t) can be represented in the form (28)

where index 1 has to be replaced by k, and q
(±)
k (ξ, t) are known on each step functions

with the exponential estimate. Thus, we have
∣∣∣Q(±)

k (ξ, t)
∣∣∣ ≤ Ce−ν|ξ|,

where C > 0 and ν > 0 are certain constants independent of ξ.
Using the k-th order C1-matching condition (see (11)) we get the equation for xk(t)

which is similar to equation (30) for x1(t)

x′k −B(x0(t))xk = Fk(t),

where Fk(t) is known on the each step function, with additional condition xk(0) = 0.
If input dates are sufficiently smooth then we can continue our construction to any

order of n, and our formal asymptotics satisfies the problem to order of εn+1.

3. Existence result

12



To validate the asymptotics constructed above, we invoke the asymptotic method
of differential inequalities [11], which was initially proposed for PDE’s, and got some
extension for integro-differential equations(see [5],[8]and [10]. This approach is based on
well known differential inequalities technique and we recall the definition of upper and
lower solutions to problem (1), (2).

Definition 1. A function β(x, t, ε) ∈ C{[a, b] × [0, T ]} ∩ C2,1{(a, x?(t)] × (0, T ]} ∩
C2,1{[x?(t), b) × (0, T ]}, where x?(t) ∈ (a, b) for t ∈ [0, T ] is a smooth function, is called
an upper solution to problem (1), (2) if

1) L[β] ≤ 0 for all (x, t) ∈ {(a, x?]× (0, T ]} ∩ {[x?, b)× (0, T ]},
2)

∂β
∂x

(x? + 0, t, ε)− ∂β
∂x

(x? − 0, t, ε) ≤ 0,

3)
∂β
∂x

(a, t, ε) ≤ 0 and
∂β
∂x

(b, t, ε) ≥ 0,

4) β(x, 0, ε) ≥ u0(x, ε),

where L is the integro-differential operator of equation (1). Similarly, the function
α(x, t, ε) belonging to the same class of smoothness is called a lower solution if it satisfies
to the conversed inequalities.

The proof of the existence of a solution to problem (1), (2) relies on the following the-
orem of differential inequalities, which is a slight extension of the corresponding theorem
in [2] (see Chapter 2, Sect.2.7) (see also [12], [13] and [14]).

Theorem 1. Assume that there exist the functions α(x, t, ε) and β(x, t, ε) such that
the following conditions are valid:

(a) α(x, t, ε) and β(x, t, ε) are the lower and upper solutions to problem (1), (2),
respectively;

(b) α(x, t, ε) ≤ β(x, tε) for all (x, t) ∈ {[a, b]× [0, T ]};
(c) A(x, ·) ∈ C1([a, b], g(u, v, x, s, ·) and gu(. . . ), gv(. . . ) ∈ C([α(x, t, ·), β(x, t, ·)] ×

[α(s, t, ·), β(s, t, ·)]× [a, b]2);
(d) gv(. . . ) ≤ 0 for all (u, v, x, s) ∈ [α(x, t, ·), β(x, t, ·)]× [α(s, t, ·), β(s, t, ·)]× [a, b]2.
Then problem (1), (2) has unique classical solution u(x, t, ε) such that α(x, t, ε) ≤

u(x, t, ε) ≤ β(x, t, ε) for (x, t) ∈ {[a, b]× (0, T ]}.
We note once again that Theorem 1 can be used in our case only if the function g in

Eq. (1) satisfies to so called quasimonotonicity assumption(d). Therefore we assume the
following condition.

Condition IV. The function g(u, v, x, s, ε) is monotonically nonincreasing with re-
spect to v for all admissible values of its arguments.

The lower and upper solutions to problem (1), (2) are sought in the form

αn(x, t, ε) = U(n+1)α(x, t, ε) + εn+1
[
−q(x, y) + Q̃(n+1)α(ξα, t)

]

− εn+1(e−κξ(−)
+ e−κξ(+)

),

βn(x, t, ε) = U(n+1)β(x, t, ε) + εn+1
[
q(x, y) + Q̃(n+1)β(ξβ, t)

]

+ εn+1(e−κξ(−)
+ e−κξ(+)

),

(31)

where U(n+1)α(x, ε) and U(n+1)β(x, ε) are (n+1)-st order (n ≥ 0) partial sums of series (9)
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with y = x?
α(t, ε) and y = x?

β(t, ε), respectively, where

x?
α(t, ε) =

n∑

k=0

εkxk(t) + εn+1x(n+1)α(t), x?
β(t, ε) =

n∑

k=0

εkxk(t) + εn+1x(n+1)β(t),

and x(n+1)α and x(n+1)β to be determined later. The stretched variable ξ we replaced here
by ξα = [x− x?

α(t, ε)]/ε in αn, and by ξβ = [x− x?
β(t, ε)]/ε in βn.

We recall that function x0(t) is such that a + ∆ ≤ x0(t) ≤ b − ∆ (∆ > 0 is some
positive number) for all t ∈ [0, T ].

The function q(x, y) ≥ q0 > 0 for all (x, y) ∈ [a, b]× [x0(t)−∆, x0(t) + ∆] is positive
solution to integral equation

P (x, y)q(x, y) +

b∫

a

gv(u0(x, y), u0(s, y), x, s, 0)q(s, y)ds = 1 (32)

The existence of such positive solution of equation (32) follows from Condition III.
The function x(n+1)β is defined from the problem

x′(n+1)β −B(x0(t))x(n+1)β = F(n+1)β(t)− σ, x(n+1)β(0) = −δ, , (33)

where

F(n+1)β(t) = q(−)(x0, x0)
x0∫
a

gu(∗)ds + q(+)(x0, x0)
b∫

x0

gu(∗)ds+

+
b∫

a

gv(∗)q(s, x0)ds + ũξ(0, x0)ṽ0(x0)(q
(+)(x0, x0)− q(−)(x0, x0))

((∗) ≡ (ũ(ξ, x0), ϕ(s, x0), x0, s, 0)), and σ and δ are some positive numbers. If we choose
δ sufficiently large we have

x(n+1)β(t) < 0, t ∈ [0, T ] (34)

We determine the function Q̃(n+1)β(ξ, t) from the problem which is similar to the prob-
lems (25)-(27)

d2Q̃
(±)
(n+1)β

dξ2 + ṽ0(t)
dQ̃

(±)
(n+1)β

dξ
− Q̃

(±)
(n+1)β

b∫
a

gu(ũ(ξ, t), ϕ(s, x0), x0, s, 0) ds =

= q
(±)
(n+1)β(ξ, t), ξ ∈ R±,

(35)

Q̃
(−)
(n+1)β(0, t) = q(−)(x0, x0) + x(n+1)β

[
∂u

(−)
0

∂x
(x0, x0) +

∂u
(−)
0

∂y
(x0, x0)

]
,

Q̃
(+)
(n+1)β(0, t) = q(+)(x0, x0) + x(n+1)β

[
∂u

(+)
0

∂x
(x0, x0) +

∂u
(+)
0

∂y
(x0, x0)

]
,

(36)

Q̃
(−)
(n+1)β(−∞, t) == Q̃

(+)
(n+1)β(+∞, t) = 0, (37)

where

q
(±)
(n+1)β(ξ, t) = −x′(n+1)β

∂ũ

∂ξ
(ξ, x0)− ∂A

∂x
(x0, 0)x(n+1)β ṽ0(x0).
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The solution of problem (35)–(37) can be obtained explicitly.
Now we can check that the function βn(x, t, ε) given by the representation (31) satisfies

Definition 1.
From the structure of βn(x, t, ε) it follows that it satisfies the differential inequality.

We have
L[βn] ≤ −εn+1 + o(εn+1).

Thus, for sufficiently small values of the parameter ε we obtain L[βn] < 0.
From representation (31) for βn(x, t, ε) using the equation for x(n+1)β (see (33) we get

that in the point x?
β(t, ε) the condition of the derivative’s jump is satisfied

dβ
dx

(x?
β(t, ε) + 0, t, ε)− dβ

dx
(x?

β(t, ε)− 0, t, ε) =

= εn(x′(n+1)β −B(x0(t))x(n+1)β − F(n+1)β(t))ũ−1
ξ (0, x0)

∫ +∞
−∞ ũ2

ξ(ξ, x0)e
ṽ0(x0)ξ dξ + O(εn+1)

= −εnσũ−1
ξ (0, x0)

∫ +∞
−∞ ũ2

ξ(ξ, x0)e
ṽ0(x0)ξ dξ + O(εn+1) < 0

for sufficiently small ε > 0.
Therefore the function βn(x, ε) satisfies the definition of the upper solution and it is

an upper solution for problem (1), (2).
Similarly it can be shown that function αn(x, ε) is lower solution for problem (1), (2).
The proof that αn(x, ε) and βn(x, ε) are ordered we show that difference βn(x, ε) −

αn(x, ε) > 0 by the same way as in [10], [11].
Thus, αn(x, t, ε) and βn(x, t, ε) satisfy all conditions of Theorem 1. Therefore, prob-

lem (1), (2) has a solution u(x, t, ε) such that αn(x, t, ε) ≤ u(x, t, ε) ≤ βn(x, t, ε).
Taking into account that βn(x, t, ε) − αn(x, t, ε) = O(εn) we find that u(x, t, ε) =
αn(x, t, ε) + O(εn). In the case when n ≥ 1, we can neglect inessential terms and write

u(x, t, ε) = Un−1(x, t, ε) + O(εn) with x?(t, ε) =
n+1∑
k=0

εkxk(t). Thus, we have proved the

following theorem.
Theorem 2. Assume that A ∈ Cn+2([a, b]), g ∈ Cn+2(R2 × [a, b]2) (n ≥ 0) and for

sufficiently small ε, and Conditions I-IV are fulfilled. Then for sufficiently small values
of the parameter ε > 0 problem (1), (2) with initial function

α1(x, 0, ε) ≤ u0(x, ε) ≤ β1(x, 0, ε)

has a classical solution u = u(x, t, ε) for t ∈ [0, T ] such that

lim
ε→0

u(x, t, ε) =

{
ϕ(−)(x, x0(t)) for a ≤ x < x0(t) < b

ϕ(+)(x, x0(t)) for x0(t) < x ≤ b.

Moreover, if smoothness condition on coefficients A and g are fulfilled for n ≥ 2 and

αn−1(x, 0, ε) ≤ u0(x, ε) ≤ βn−1(x, 0, ε)
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then u(x, t, ε) = Un−1(x, t, ε) + O(εn) where

Un−1(x, t, ε) =





n−1∑
k=0

εk
[
u

(−)
k (x, x?

n(t, ε)) + Q
(−)
k (ξ, t)

]
+

n−1∑
k=1

εkΠ
(−)
k (ξ(−)), a ≤ x ≤ x?

n(t, ε),

n−1∑
k=0

εk
[
u

(+)
k (x, x?

n(t, ε)) + Q
(+)
k (ξ, t)

]
+

n−1∑
k=1

εkΠ
(+)
k (ξ(+)), x?

n(t, ε) < x ≤ b

with ξ = [x− x?
n(t, ε)]/ε and x?

n(t, ε) =
n+1∑
k=0

εkxk(t).
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