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Abstract

In this article a new approach is proposed for constructing a domain decomposition method

based on the iterative operator-splitting method for nonlinear differential equations. The con-

vergence properties of such a method are studied. The main feature of the proposed idea are

the linearization of the nonlinear equations and the application of iterative splitting methods.

We present iterative operator-splitting method with embedded Newton methods to solve the

nonlinearity. We confirm with numerical applications the effectiveness of the proposed itera-

tive operator-splitting method in comparison with the classical Newton methods. We provide

improved results and convergence rates.
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1. Introduction

In this paper we propose a modified Jacobian-Newton iterative method to solve non-
linear differential equations. In the first paper we concentrate on ordinary differential
equations, but numerical results are also obtained for partial differential equations. Basic
studies of the operator-splitting methods are found in [20] and [17]. Further important
research was done to obtain a higher order for the splitting methods (see [21]). For this
reason, the iterative splitting methods became more important for linear and nonlinear
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differential equations, while simple increasing of iteration steps affects the order of the
scheme (see [24]).

The outline of the paper is as follows. For our mathematical model we describe the
convection-diffusion-reaction equation in Section 2. The fractional splitting is introduced
in Section 3. We present the iterative splitting methods in Section 4. Section 5 discuss the
Newton methods and their modifications. In Section 6 we present the numerical results
from the solution of selected model problems. We end the article in Section 7 with a
conclusion and comments.

2. Mathematical Model

The motivation for the study presented below originates from a computational simu-
lation of heat-transfer [12] and convection-diffusion-reaction-equations [8,15,16,13].

In the present paper we concentrate on ordinary differential equations, given as

∂tu(t) = A(u(t)) u(t) + B(u(t)) u(t) , t ∈ (0, T ), (1)

where the initial condition is u(0) = u0. The operators A(u) and B(u) can be spatially
discretized operators, i.e. they can correspond to the discretized in space convection
and diffusion operators (matrices). In the following, we deal with bounded nonlinear
operators.

The aim of this paper is to present a new method based on Newton and iterative
schemes.

In the next section we discuss the decoupling of the time-scale with a first-order frac-
tional splitting method.

3. Fractional-splitting Methods of first-order for Linear Equations

First we describe the simplest operator-splitting, which is called sequential operator-
splitting, for the following linear system of ordinary differential equations:

∂tu(t) = A u(t) + B u(t) , t ∈ (0, T ), (2)

where the initial condition is u(0) = u0. The operators A and B are linear and bounded
operators in a Banach space, see also Section 2.

The sequential operator-splitting method is introduced as a method that solves two
subproblems sequentially, where the different subproblems are connected via the initial
conditions. This means that we replace the original problem (2) with the subproblems

∂u∗(t)

∂t
= Au∗(t) , with u∗(tn) = un ,

∂u∗∗(t)

∂t
= Bu∗∗(t) , with u∗∗(tn) = u∗(tn+1) ,

where the splitting time-step is defined as τn = tn+1 − tn. The approximated solution is
un+1 = u∗∗(tn+1).

Clearly, the replacement of the original problem with the subproblems usually results
in some error, called splitting error. The splitting error of the sequential operator-splitting
method can be derived as (cf. e.g. [17], [20])
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ρn =
1

τn
(exp(τn(A + B)) − exp(τnB) exp(τnA)) u(tn)

=







0 , for [A, B] = 0 ,

O(τn) , for [A, B] 6= 0 ,

where [A, B] := AB − BA is the commutator of A and B. Consequently, the splitting
error is O(τn) when the operators A and B do not commute, otherwise the method
is exact. Hence, by definition, the sequential operator-splitting is called the first-order
splitting method .

4. The Iterative-splitting Method

The following algorithm is based on the iteration with fixed splitting discretization step-
size τ . On the time interval [tn, tn+1] we solve the following subproblems consecutively
for i = 0, 2, . . . 2m.

∂ui(x, t)

∂t
= Aui(x, t) + Bui−1(x, t), with ui(t

n) = un (3)

u0(x, tn) = un , u−1 = 0,

and ui(x, t) = ui−1(x, t) = u1 , on ∂Ω × (0, T ) ,

∂ui+1(x, t)

∂t
= Aui(x, t) + Bui+1(x, t), (4)

with ui+1(x, tn) = un ,

and ui(x, t) = ui−1(x, t) = u1 , on ∂Ω × (0, T ) ,

where un is the known split approximation at the time level t = tn (see [7]).

Remark 1 We can generalize the iterative splitting method to a multi-iterative split-
ting method by introducing new splitting operators, e.g. spatial operators. Then we obtain
multi-indices to control the splitting process, each iterative splitting method can be solved
independently, while connecting with further steps to the multi-splitting methods. In the
following we introduce the multi-iterative splitting method for a combined time-space split-
ting method.

5. The Modified Jacobian-Newton Methods and Fixpoint-iteration Methods

In this section we describe the modified Jacobian-Newton methods and Fixpoint-
iteration methods.

We propose for weak nonlinearities, e.g. quadratic nonlinearity, the fixpoint iteration
method, where our iterative operator splitting method is one, see [24]. For stronger
nonlinearities, e.g. cubic or higher order polynomial nonlinearities, the modified Jacobian
method with embedded iterative-splitting methods.

The contribution of embedding the splitting methods into the Newton methods are to
decouple the equation systems into simpler equations. Such simple equation systems can
be solved with the scalar Newton methods.
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5.1. The altered Jacobian-Newton iterative methods with embedded sequential splitting
methods

We restrict our attention to time-dependent partial differential equations of the form

dc

dt
= A(c(t))c(t) + B(c(t))c(t), with c(tn) = cn, (5)

where A(c), B(c) : X → X are linear and densely defined in the real Banach space X,
involving only spatial derivatives of c, see [27]. We assume also that we have a weak
nonlinear operator with A(c)c = λ1c and B(c)c = λ2c, where λ1 and λ2 are constant
factors.

In the following we discuss the embedding of a sequential splitting method into the
Newton method.

The altered Jacobian-Newton iterative method with an embedded iterative-splitting
method is given as:

Newton’s method:
F (c) = dc

dt−A(c(t))c(t)−B(c(t))c(t) and we can compute c(k+1) = c(k)−D(F (c(k)))−1F (c(k)),
where D(F (c)) is the Jacobian matrix and k = 0, 1, . . ..

We stop the iterations when we obtain : |c(k+1) − c(k)| ≤ err, where err is an error
bound, e.g. err = 10−4.

We assume the spatial discretization, with spatial grid points, i = 1, . . . , m and obtain
the differential equation system:

F (c) =

















F (c1)

F (c2)
...

F (cm)

















(6)

where c = (c1, . . . , cm)T and m is the number of spatial grid points.
The Jacobian matrix for the equation system is given as :

DF (c) =







































∂F (c1)

c1

∂F (c1)

c2
. . .

∂F (c1)

cm

∂F (c2)

c1

∂F (c2)

c2
. . .

∂F (c2)

cm

...

∂F (cm)

c1

∂F (cm)

c2
. . .

∂F (cm)

cm







































where c = (c1, . . . , cm).
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The modified Jacobian is given as :

DF (c) =







































∂F (c1)

c1
+ F (c1)

∂F (c1)

c2
. . .

∂F (c1)

cm

∂F (c2)

c1

∂F (c2)

c2
F (c2) . . .

∂F (c2)

cm

...

∂F (cm)

c1

∂F (cm)

c2
. . .

∂F (cm)

cm
+ F (cm)







































where c = (c1, . . . , cn).
By embedding the sequential splitting method we obtain the following algorithm: We

decouple into two equation systems :

F1(u1) = ∂tu1 − A(u1)u1 = 0 with u1(t
n) = cn, (7)

F2(u2) = ∂tu2 − B(u2)u2 = 0 with u2(t
n) = u1(t

n+1), (8)

where the results of the methods are c(tn+1) = u2(t
n+1). and u1 = (u11, . . . , u1n), u2 =

(u21, . . . , u2n).
Thus at least we have to solve two Newton methods, each in one equations system. The
contribution is to reduce the Jacobian matrix into a diagonal entries, e.g. with a weighted
Newton method, see [26]. The splitting method with embedded Newton method is given
for the continuous method as:

u
(k+1)
1 = u

(k)
1 − D(F1(u

(k)
1 ))−1(∂tu

(k)
1 − A(u

(k)
1 )u

(k)
1 ), (9)

with D(F1(u
(k)
1 )) =

∂

∂u
(k)
1

(∂tu
(k)
1 − A(u

(k)
1 ) −

∂A(u
(k)
1 )

∂u
(k)
1

u
(k)
1 ), (10)

u
(k)
1 (tn) = cn and k = 0, 1, 2, . . . , K, (11)

u
(l+1)
2 = u

(l)
2 − D(F2(u

(l)
2 ))−1(∂tu

(l)
2 − B(u

(l)
2 )u

(l)
2 ), (12)

with D(F2(u
(l)
2 )) =

∂

∂u
(k)
1

(∂tu
(k)
2 − B(u

(l)
2 ) −

∂B(u
(l)
2 )

∂u
(l)
2

u
(l)
2 ), (13)

u
(l)
2 (tn) = uK

1 (tn+1) and l = 0, 1, 2, . . . , L. (14)

For the improvement method, we can apply the weighted Newton method. We try to
skip the delicate outer diagonals in the Jacobian matrix and apply:

u
(k+1)
1 = u

(k)
1 − (D(F1(u

(k)
1 )) + δ1(u

(k)
1 ))−1(F1(u

(k)
1 ) + ǫ u

(k)
1 ), (15)

where the function δ can be applied as a scalar, e.g. δ = 10−6, also the same with ǫ. It
is important to be sure that δ is small enough to preserve the convergence.
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Remark 2 If we assume that we discretize the equation (7) and (8) with the backward-
Euler method, e.g.:

F1(u1(t
n+1)) = u1(t

n+1) − u1(t
n) − ∆tA(u1(t

n+1))u1(t
n+1) = 0 with u1(t

n) = cn,

F2(u2) = u2(t
n+1) − u2(t

n) − ∆tB(u2(t
n+1))u2(t

n+1) = 0 with u2(t
n) = u1(t

n+1),

then we obtain the derivations D(F1(u1(t
n+1))) and D(F2(u2(t

n+1)))

D(F1(u1(t
n+1))) = 1 − ∆t(A(u1(t

n+1)) +
∂A(u1(t

n+1))

∂u1(tn+1)
u1(t

n+1)),

D(F2(u2)) = 1 − ∆t(B(u2(t
n+1)) +

∂B(u2(t
n+1))

∂u2(tn+1)
u2(t

n+1)),

We can apply the equation (15) analogously u
(l+1)
2 .

5.2. Iterative operator-splitting method as a fixpoint scheme

The iterative operator-splitting method is used as a fixpoint scheme to linearize the
nonlinear operators, see [23] and [24].

We restrict our attention to time-dependent partial differential equations of the form:

du

dt
= A(u(t))u(t) + B(u(t))u(t), with u(tn) = cn, (16)

where A(u), B(u) : X → X are linear and densely defined in the real Banach space X,
involving only spatial derivatives of c, see [27]. In the following we discuss the standard
iterative operator-splitting methods as a fixpoint iteration method to linearize the oper-
ators.

We split our nonlinear differential equation (16) by applying:

dui(t)

dt
= A(ui−1(t))ui(t) + B(ui−1(t))ui−1(t), with ui(t

n) = cn, (17)

dui+1(t)

dt
= A(ui−1(t))ui(t) + B(ui−1(t))ui+1, with ui+1(t

n) = cn, (18)

where the time step is τ = tn+1 − tn. The iterations are i = 1, 3, . . . , 2m + 1. u0(t) = cn

is the starting solution, where we assume the solution cn+1 is near cn, or u0(t) = 0. So
we have to solve the local fixpoint problem. cn is the known split approximation at the
time level t = tn.
The split approximation at time level t = tn+1 is defined as cn+1 = u2m+2(t

n+1). We
assume the operators A(ui−1), B(ui−1) :X → X to be linear and densely defined on the
real Banach space X, for i = 1, 3, . . . , 2m + 1.
Here the linearization is done with respect to the iterations, such that A(ui−1), B(ui−1)
are at least non-dependent operators in the iterative equations, and we can apply the
linear theory.
The linearization is at least in the first equation A(ui−1) ≈ A(ui), and in the second
equation B(ui−1) ≈ B(ui+1)
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We have
||A(ui−1(t

n+1))ui(t
n+1) − A(un+1)u(tn+1)|| ≤ ǫ,

with sufficient iterations i = {1, 3, . . . , 2m + 1}.
Remark 3 The linearization with the fixpoint scheme can be used for smooth or weak
nonlinear operators, otherwise we loose the convergence behavior, while we did not con-
verge to the local fixpoint, see [24].

The second ideas is based on the Newton method.

5.3. Jacobian-Newton iterative method with embedded operator-splitting method

Newton method is used to solve the nonlinear parts of the iterative operator-splitting
method, see the linearization techniques in [24],[25].
Newton method:
The function is given as:
F (c) = ∂c

∂t − A(c(t))c(t) − B(c(t))c(t) = 0,
The iteration can be computed as:

c(k+1) = c(k) − D(F (c(k)))−1F (c(k)),
where D(F (c)) is the Jacobian matrix and k = 0, 1, . . .. and c = (c1, . . . , cm) is the
solution vector of the spatial discretised nonlinear equation.
We then have to apply the iterative operator-splitting method and obtain:

F1(ui) = ∂tui − A(ui)ui − B(ui−1)ui−1 = 0, (19)

with ui(t
n) = cn, (20)

F2(ui+2) = ∂tui+1 − A(ui)ui − B(ui+1)ui+1 = 0, (21)

with ui+1(t
n) = cn, (22)

where the time step is τ = tn+1 − tn. The iterations are i = 1, 3, . . . , 2m + 1. c0(t) = 0
is the starting solution and cn is the known split approximation at the time level t = tn.
The results of the methods are c(tn+1) = u2m+2(t

n+1).
Thus at least we have to solve two Newton methods and the contributions will be to
reduce the Jacobian matrix, e.g. skip the diagonal entries. The splitting method with the
embedded Newton method is given as:

u
(k+1)
i = u

(k)
i − D(F1(u

(k)
i ))−1(∂tu

(k)
i − A(u

(k)
i )u

(k)
i − B(u

(k)
i−1)u

(k)
i−1),

with D(F1(u
(k)
i )) = −(A(u

(k)
i ) +

∂A(u
(k)
i )

∂u
(k)
i

u
(k)
i ),

and k = 0, 1, 2, . . . , K,

with ui(t
n) = cn,

u
(l+1)
i+1 = u

(l)
i+1 − D(F2(u

(l)
i+1))

−1(∂tu
(l)
i+1 − A(u

(k)
i )u

(k)
i − B(u

(k)
i+1)u

(k)
i+1)c

(l)
2 ),

with D(F2(u
(l)
i+1)) = −(B(u

(l)
i+1) +

∂B(u
(l)
i+1)

∂u
(l)
i+1

u
(l)
i+1),

and l = 0, 1, 2, . . . , L,
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with ui+1(t
n) = cn,

where the time step is τ = tn+1 − tn. The iterations are: i = 1, 3, . . . , 2m + 1. c0(t) = 0
is the starting solution and cn is the known split approximation at the time level t = tn.
The results of the methods are c(tn+1) = u2m+2(t

n+1).
For the improvement to skip the delicate outer diagonals in the Jacobian matrix, we

apply u
(k+1)
i = u

(k)
i − (D(F1(u

(k)
i )) + δ1(u

(k)
i ))−1(F1(u

(k)
i ) + ǫ u

(k)
i ), and analogously

u
(l+1)
i+1 .

Remark 4 For the iterative operator-splitting method with the Newton iteration we have
two iteration procedures. The first iteration is the Newton method to compute the solution
of the nonlinear equations, the second iteration is the iterative splitting method, which
compute the resulting solution of the coupled equation systems. The embedded method is
used for strong nonlinearities.

6. Numerical Results

In this section, we present the numerical results for nonlinear differential equation
using several variations of the proposed Newton and iterative schemes as solvers.

6.1. First numerical example

As a nonlinear differential example, we choose the Bernoulli equation:

∂u(t)

∂t
= (λ1 + λ3)u(t) + (λ2 + λ4)(u(t))p, t ∈ [0, T ], with u(0) = 1, (23)

where the analytical solution can be derived, see [23], as:

u(t) = exp((λ1 + λ3)t)

[

−
λ2 + λ4

λ1 + λ3
exp((λ1 + λ3)(p − 1)t) + c

]1/(1−p)

.

Using u(0) = 1 we find that c = 1 + λ2+λ4

λ1+λ3
, so

u(t) = exp((λ1 + λ3)t)

{

1 +
λ2 + λ4

λ1 + λ3
[1 − exp((λ1 + λ3)(p − 1)t)]

}1/(1−p)

.

We choose p = 2 , λ1 = −1, λ2 = −0.5, λ3 = −100, λ4 = −20 and for example
∆t = 10−2.

The analytical solutions can be given as:

u(t)1−p = u0 exp((1 − p)(λ1 + λ3)t) +
λ2 + λ4

λ1 + λ3
(exp((1 − p)(λ1 + λ3)t) − 1) . (24)

We divide the time interval [0, T ], with T = 1, in n intervals with length τn = T
n .

0.) The sequential operator-splitting method with analytical solutions is given as:
We apply the quasilinear iterative operator-splitting method:
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du1(t)

dt
= A(u1(t))u1(t), with u1(t

n) = un,

du2(t)

dt
= B(u2(t))u2, with u2(t

n) = un+1
1 ,

with the nonlinear operators A(u)u = λ1u(t)+λ2(u(t))p−1u, B(u)u = λ3u(t)+λ4(u(t))p−1u.
The result is given as u2(t

n+1) = un+1.
We apply the Newton method and discretize the operators with time discretization

methods, as Backward Euler or higher Runge-Kutta methods.
The analytical results for each equation part is given as:

u1(t)
1−p = u(tn) exp((1 − p)(λ1)t) +

λ2

λ1
(exp((1 − p)(λ1)t) − 1) . (25)

u2(t
n+1)1−p = u1(t

n+1) exp((1 − p)(λ3)t) +
λ4

λ3
(exp((1 − p)(λ3)t) − 1) . (26)

where the result is given as : u(tn+1) = u2(t
n+1).

We can apply the simpler equations and solve the sequential Operator-Splitting method.

1.) The sequential operator-splitting method with embedded Newton method is given
as:

We apply the quasilinear iterative operator-splitting method:

du1(t)

dt
= A(u1(t))u1(t), with u1(t

n) = un,

du2(t)

dt
= B(u2(t))u2, with u2(t

n) = un+1
1 ,

with the nonlinear operators A(u)u = λ1u(t)+λ2(u(t))p−1u, B(u)u = λ3u(t)+λ4(u(t))p−1u

. The result is given as u2(t
n+1) = un+1.

We apply the Newton method and discretize the operators with time discretization
methods, as Backward Euler or higher Runge-Kutta methods.

The splitting method with embedded Newton’s method is given as

u
(k+1)
1 = u

(k)
1 − D(F1(u

(k)
1 ))−1(∂tu

(k)
1 − A(u

(k)
1 )u

(k)
1 ), (27)

with D(F1(u
(k)
1 )) = −(A(u

(k)
1 ) +

∂A(u
(k)
1 )

∂u
(k)
1

u
(k)
1 ), (28)

u
(k)
1 (tn) = cn and k = 0, 1, 2, . . . , K, (29)

u
(l+1)
2 = u

(l)
2 − D(F2(u

(l)
2 ))−1(∂tu

(l)
2 − B(u

(l)
2 )u

(l)
2 ), (30)

with D(F2(u
(l)
2 )) = −(B(u

(l)
2 ) +

∂B(u
(l)
2 )

∂u
(l)
2

u
(l)
2 ), (31)

u
(l)
2 (tn) = uK

1 (tn+1) and l = 0, 1, 2, . . . , L. (32)

where we discretize the equations and obtain the discretised operators :

∂tu
(k)
1 − A(u

(k)
1 )u

(k)
1 = 0 (33)
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as

F1(u1(t
n+1))u

(k)
1 (tn+1) − u1(t

n) − ∆tA(u
(k)
1 (tn+1))u

(k)
1 (tn+1) = 0 , (34)

where we have the initialization of the Newton’s method as u
(0)
1 (tn+1) = 0 or u

(0)
1 (tn+1) =

u1(t
n)

For the second iteration equation we have:

∂tu
(l)
2 − B(u

(l)
2 )u

(l)
2 (35)

as

F2(u2(t
n+1)) = u

(l)
2 (tn+1) − u2(t

n) − ∆tB(u
(l)
2 (tn+1))u

(l)
2 (tn+1) = 0 , (36)

where we have the initialization of the Newton’s method as u
(0)
2 (tn+1) = 0 or u

(0)
2 (tn+1) =

u1(t
n).

The derivations are given as :

D(F1(u1(t
n+1))) = 1 − ∆t(A(u1(t

n+1)) +
∂A(u1(t

n+1))

∂u1(tn+1)
u1(t

n+1)),

D(F2(u2)) = 1 − ∆t(B(u2(t
n+1)) +

∂B(u2(t
n+1))

∂u2(tn+1)
u2(t

n+1)).

2.) The standard iterative operator-splitting method is given as :
We apply the quasilinear iterative operator-splitting method:

dui(t)

dt
= A(ui−1(t))ui(t) + B(ui−1(t))ui−1(t), with ui(t

n) = un,

dui+1(t)

dt
= A(ui−1(t))ui(t) + B(ui−1(t))ui+1, with ui+1(t

n) = un,

with the nonlinear operators A(u)u = λ1u(t)+λ2(u(t))p−1u, B(u)u = λ3u(t)+λ4(u(t))p−1u

. The initialization of the fixpoint iteration is u0 = un or u0 = 0 with A(u0) = λ1 and
B(u0) = λ3.

For the iterations we can apply the analytical solution of each equations:

ui(t) = un exp(A(ui−1(t))t)

+(A(ui−1(t)))
−1(B(ui−1(t))ui−1(t))(1 − exp(A(ui−1(t))t)), (37)

ui+1(t) = un exp(B(ui−1(t))t)

+(B(ui−1(t)))
−1(A(ui−1(t))ui−1(t))(1 − exp(B(ui−1(t))t)), (38)

Further the iterative steps can be done.

3.) Newton iterative method with embedded iterative operator-splitting method is
given as :

We apply the quasilinear iterative operator-splitting method:

10



dui(t)

dt
= A(ui(t))ui(t) + B(ui−1(t))ui−1(t), with ui(t

n) = un,

dui+1(t)

dt
= A(ui(t))ui(t) + B(ui+1(t))ui+1, with ui+1(t

n) = un,

with the nonlinear operators A(u)u = λ1u(t)+λ2(u(t))p−1u, B(u)u = λ3u(t)+λ4(u(t))p−1u.
The initialization of the fixpoint iteration is u0(t

n+1) = un or u0(t
n+1) = 0.

The discretization of the nonlinear ordinary differential equation is performed with
higher-order Runge-Kutta methods.

The Newton method is applied as

u
(k+1)
i = u

(k)
i − D(F1(u

(k)
i ))−1(∂tu

(k)
i − A(u

(k)
i )u

(k)
i − B(ui−1)ui−1),

with D(F1(u
(k)
i )) = −(A(u

(k)
i ) +

∂A(u
(k)
i )

∂u
(k)
i

u
(k)
i ),

and k = 0, 1, 2, . . . , K,

with ui(t
n) = cn,

with ui(t
n+1) = ui(t

n+1)K+1, where |ui(t
n+1)K+1 − ui(t

n+1)K | ≤ err

u
(l+1)
i+1 = u

(l)
i+1 − D(F2(u

(l)
i+1))

−1(∂tu
(l)
i+1 − A(ui)ui − B(u

(l)
i+1)u

(l)
i+1)c

(l)
2 ),

with D(F2(u
(l)
i+1)) = −(B(u

(l)
i+1) +

∂B(u
(l)
i+1)

∂u
(l)
i+1

u
(l)
i+1),

and l = 0, 1, 2, . . . , L,

with ui+1(t
n) = cn,

with ui+1(t
n+1) = ui+1(t

n+1)L+1, where |ui+1(t
n+1)L+1 − ui+1(t

n+1)L| ≤ err

where the time step is τ = tn+1 − tn. The iterations are i = 1, 3, . . . , 2m + 1. u0(t) = 0
is the starting solution and cn is the known split approximation at the time level t = tn.
The results of the methods are u(tn+1) = u2m+2(t

n+1).
We apply the discretization methods for the iteration steps.
We discretize the equations :

∂tu
(k)
i − A(u

(k)
i )u

(k)
i − B(ui−1)ui−1 = 0 , (39)

as

F1(u
(k)
i (tn+1)) = u

(k)
i (tn+1) − ui(t

n) − ∆t(A(u
(k)
i (tn+1))u

(k)
i (tn+1) + B(ui−1(t

n+1))ui−1(t
n+1)) ,(40)

where we have the initialization of the Newton’s method as u
(0)
i (tn+1) = 0 or u

(0)
i (tn+1) =

u(tn)
For the second iteration equation we have:

∂tu
(l)
2 − A(ui)ui − B(u

(l)
2 )u

(l)
2 = 0 (41)

as
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F2(u
(l)
i+1(t

n+1)) = u
(l)
i+1(t

n+1) − ui+1(t
n)

−∆t
(

A(ui(t
n+1))ui(t

n+1) + B(u
(l)
i+1(t

n+1))u
(l)
i+1(t

n+1)
)

(42)

where we have the initialization of the Newton’s method as u
(0)
i+1(t

n+1) = 0 or u
(0)
i+1(t

n+1) =
u(tn).

The derivations are given as :

D(F1(u
(k)
i (tn+1))) = 1 − ∆t(A(u

(k)
i+1(t

n+1)) +
∂A(u

(k)
i+1(t

n+1))

∂u
(k)
i+1(t

n+1)
u

(k)
i+1(t

n+1)),

D(F2(u
(l)
i+1(t

n+1))) = 1 − ∆t(B(u
(l)
i+1(t

n+1)) +
∂B(u

(l)
i+1(t

n+1))

∂u
(l)
i+1(t

n+1)
u

(l)
i+1(t

n+1)),

Our numerical results for the different methods are presented in the Tables 1-4. The
errors of the methods are shown in Figure 1-3. We chose different iteration steps and
time partitions. The error between the analytical and numerical solution is shown with
the supremum norm at time T = 1.0.

Table 1
Numerical results for the Bernoulli equation with sequential operator-splitting method.

time part. approx. solution error

1 0.0000000000 6.620107e-044

2 0.0000000000 5.874983e-023

3 0.0000000000 6.351951e-016

4 0.0000000000 1.917794e-012

5 0.0000000002 2.232302e-010

10 0.0000023626 2.362646e-006

50 0.0015822287 1.582229e-003

Table 2
Numerical results for the Bernoulli equation with sequential operator-splitting method with embedded
Newton’s method.

time part. approx. solution error

1 0.4705129443 4.705129e-001

4 0.0546922483 5.469225e-002

5 0.0269954419 2.699544e-002

10 0.0008034713 8.034713e-004

15 0.0000000000 1.137634e-044

100 0.0000000000 1.137634e-044
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Fig. 1. Analytical and approximated solution with sequential operator-splitting method.
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Fig. 2. Analytical and approximated solution with sequential operator-splitting method with embedded
Newton’s method.

The experiments result in showing the reduced errors for more iteration steps and more
time partitions. Because of the time-discretization method for ODEs, we restrict the
number of iteration steps to a maximum of 5 iteration steps. If we restrict the error bound
to 10−3, 2 iteration steps and 5 time partitions give the most effective combination.
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Table 3
Numerical results for the Bernoulli equation with iterative operator-splitting method.

time part. number of iter. approx. solution error

1 2 0.0125000000 1.250000e-002

1 4 0.2927814810 2.927815e-001

1 10 0.0109667158 1.096672e-002

1 50 0.0109556732 1.095567e-002

5 2 0.0109913109 1.099131e-002

5 4 0.3152826900 3.152827e-001

5 10 0.0108511723 1.085117e-002

5 50 0.0108509643 1.085096e-002

10 2 0.0108995483 1.089955e-002

10 4 0.2437741856 2.437742e-001

10 10 0.0108426328 1.084263e-002

10 50 0.0108426158 1.084262e-002

50 2 0.0149667882 1.496679e-002

50 4 0.0166913971 1.669140e-002

50 10 0.0157464111 1.574641e-002

50 50 0.0159933864 1.599339e-002

100 2 0.0154572223 1.545722e-002

100 4 0.0160048071 1.600481e-002

100 10 0.0158481781 1.584818e-002

100 50 0.0158673179 1.586732e-002

Table 4
Numerical results for the Bernoulli equation with iterative operator-splitting method with embedded
Newton’s method.

time part. number of iter. approx. solution error

1 2 0.0000000000 1.137634e-044

1 4 0.0000000000 1.137634e-044

1 10 0.0000000000 1.137634e-044

1 20 0.0000000000 1.137634e-044

2 2 0.0000000000 1.137634e-044

2 4 0.0000000000 1.137634e-044

2 10 0.0000000000 1.137634e-044

2 20 0.0000000000 1.137634e-044

7. Conclusions and Discussions

We present decomposition methods for differential equations based on iterative and
non-iterative methods. The nonlinear equations are solved with embedded Newton meth-
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Fig. 3. Analytical and approximated solution with iterative operator-splitting method.

ods. We present new ideas of the linearization to obtain more accurate results. The su-
periority of the new embedded Newton methods over the traditional sequential methods
are demonstrated. The results show more accurate solutions with respect to the time
decomposition. In the future the iterative operator-splitting method can be generalized
for multi-dimensional problems and also for non-smooth and nonlinear problems in time
and space. In a next paper we discuss the error analysis of the nonlinear methods.
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