Navier-Stokes equation regzlarity of weak solutions A Meyers' type estimate for weak solutions to a generalized Pierre-Etienne Druet Druet Pierre-Etienne Joachim Naumann Naumann Joachim Jörg Wolf Wolf Jörg Institut für Mathematik, Humboldt-Universität zu Berlin (ISSN 0863-0976), 2008-6

A Meyers' type estimate for weak solutions to a generalized stationary Navier-Stokes system

Pierre-Etienne Druet , Joachim Naumann , Jörg Wolf

Preprint series: Institut für Mathematik, Humboldt-Universität zu Berlin (ISSN 0863-0976), 2008-6

MSC 2000

35Q30 Stokes and Navier-Stokes equations
35D10 Regularity of generalized solutions

Abstract
In this paper, we prove a Meyers' type estimate for weak solutions to a Stokes system with bounded measurable coefficients in place of the usual constant viscosity. Besides the perturbation argument due to Meyers, we make use of the solvability of the classical Stokes problem in $[ W^{ 1,\, q}_{0,\sigma } (\Omega )]^n\, (n=2 \,\, \mbox{or} \,\,n=3, 2< q < 3+\var, \partial \Omega \,\, \mbox{Lipschitz} ). $


This document is well-formed XML.