fractional differential equations delay differential equation linear equations existence uniqueness asymptotic stability Laplace transform Asymptotic Properties of Fractional Delay Differential Equations Katja Krol Krol Katja Institut für Mathematik, Humboldt-Universität zu Berlin (ISSN 0863-0976),

Asymptotic Properties of Fractional Delay Differential Equations

Katja Krol

Preprint series: Institut für Mathematik, Humboldt-Universität zu Berlin (ISSN 0863-0976),

MSC 2000

34K06 Linear functional-differential equations
26A33 Fractional derivatives and integrals
34K20 Stability theory
34K25 Asymptotic theory
34D05 Asymptotic properties
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions

Abstract
In this paper we study the asymptotic properties of d-dimensional linear fractional differential equations with time delay. First results on existence and uniqueness of solutions are presented. Then we propose necessary and sufficient conditions for asymptotic stability of equations of this type using the inverse Laplace transform method.


This document is well-formed XML.