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Abstract. We present two basic lemmas on exact and approximate solutions of inclusions and
equations in general spaces. Its applications involve Ekeland’s principle, characterize calmness, lower
semicontinuity and the Aubin property of solution sets in some Hoelder-type setting and connect
these properties with certain iteration schemes of descent type. In this way, the mentioned stability
properties can be directly characterized by convergence of more or less abstract solution procedures.
New stability conditions will be derived, too. Our basic models are (multi-) functions on a complete
metric space with images in a linear normed space.
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1 Introduction

This paper deals with the existence and stability of solutions to a generalized equation:

Given a closed multifunction F : X ⇉ P and p ∈ P
find x ∈ X such that p ∈ F (x).

X is a complete metric space, P a linear normed space over IR.
(1.1)

The double arrow indicates that F (x) ⊂ P . F is said to be closed if gphF := {(x, p) |
p ∈ F (x)} is a closed set. The elements p ∈ P are canonical parameters of the inclusion.
For functions f : X → P , we identify f(x) and F (x) = {f(x)}. Then F is closed if f is
continuous. In the whole paper, we study the solution sets to (1.1)

S(p) := F−1(p) = {x ∈ X | p ∈ F (x)} (1.2)

near to some (p̄, x̄) ∈ gphS and stability properties of S - mainly calmness and Aubin property
with some fixed exponent q > 0 in the estimate (Hoelder-type stability).

System (1.1) describes equations and stationary or critical points of various variational con-
ditions. In particular, it reflects level set mappings of extended functionals

S(p) = {x ∈ X | f(x) ≤ p}, f : X → IR ∪ {∞} l.s.c., p ∈ IR, (1.3)

where gphF = epi f . Systems

S(y) := {x ∈ X | g(x, y) = 0} (1.4)

are of the form (1.1) after defining a norm for p := g(. , ȳ) − g(. , y) (and x in a region of
interest) and setting

S(p) = {x | g(x, ȳ) = p(x)}, F = S−1. (1.5)
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Many applications of (1.1) are known for optimization problems, for equilibria in games,
in so-called MPECs of different type and stochastic and/or multilevel (multiphase) mod-
els. We refer to [7, 2, 15, 45, 39, 3, 9, 30] for the related settings. Furthermore, Lipschitz
properties (which means q = 1 below) of solutions or feasible points are crucial for deriving
duality, optimality conditions, local error estimates and penalty methods in optimization.
Basic results of this type, as far as they concern the subsequent stabilities with q = 1, can
be found in [2, 8, 16, 18, 22, 36, 37] (Aubin property), [6, 13, 31, 33, 42, 44] (strongly Lip-
schitz), [4, 5, 11, 25, 41, 43] (locally upper Lipschitz and calmness) and the monographs
[3, 9, 29, 38, 39, 45]. Sufficient conditions for Hoelder stability (q = 1

2) of stationary points
in optimization problems can be found already in [1, 17, 26, 27].

The key of the current paper is Lemma 2.4 (and a modified version Lemma 4.1) on solv-
ability of (1.1). It helps to characterize all subsequent Hoelder-type stabilities of S in Def. 1
below, by the fact that certain iteration schemes find related solutions to (1.1) for all/certain
initial data near the reference point. In this way, we point out the connections between
stability, approximate solutions and solution procedures directly. Also Ekeland’s principle
will appear as a consequence of this Lemma. Our approach avoids the known drawbacks of
stability criteria by means of (mostly used) generalized derivatives, namely: possibly empty
contingent derivatives, the often necessary restriction to Asplund spaces and, last not least,
the (not seldom hard) translation of the derivative conditions in terms of the original data.

Three iteration schemes which consist of certain "descent steps" will be used. The first one,
S1, involves (in general) global minimization. Hence it is most far from being an applicable
"algorithm" in the proper sense. Nevertheless, it helps to describe stability. With the second
one, S2, the convergence is linear in the parameter (image) space and the stepsize depends
on the Hoelder exponents. The scheme S3 reformulates S2 by using a more familiar stepsize
rule.

For q = 1, aspects of our approach - based on penalizations, projections and successive
approximation - can be already found in [19, 31, 32] for less general spaces and Lipschitz
stability. The 1-1 correspondence Lemma 2.2 between calm multifunctions and calm level
sets of an assigned Lipschitz functions appeared, perhaps first, in [28]. Newton type methods
(again under stronger hypotheses) for showing the Aubin property or calmness have been
exploited already in [12] and [20]. Calmness of an (in)finite number of real-valued C1− in-
equalities on a Banach space has been characterized by identifying subsystems which must be
metrically regular in [19] (based on the family Ξ0 of Sect. 4.1) and by a descent method in [32] .

Concerning the involved Hoelder exponents q, many questions in view of establishing more
verifiable conditions for relevant systems will remain open and shall be studied in forthcoming
work. Here, we show how q occurs in the related conditions and which difficulties may appear
concerning q 6= 1 and the classical case of q = 1.

The paper is organized as follows. In Sect. 2, we present and specify the needed defini-
tions as well as the basic Lemma 2.4. In Sect. 3, we interpret it and derive consequences for
stability. In Sect. 4, we study the schemes S2 and S3 and certain applications to (Hoelder-)
calmness for particular systems.

Notations:

We say that some property holds near x̄ if it holds for all x in some neighborhood of x̄. By
o = o(t) we denote a quantity of the type o(t)/t → 0 if t ↓ 0, and B(x̄, ε) = {x ∈ X | d(x, x̄) ≤
ε} denotes the closed ε ball around x̄. For M ⊂ X, we put B(M, ε) = ∪x∈M B(x, ε), and

dist(x, M) = infξ∈M d(x, ξ) is the usual point-to set-distance; dist(x, ∅) = ∞. Finally, x
M−→ x̄

denotes convergence x → x̄ with x ∈ M . Our hypotheses of differentiability, continuity or
closeness have to hold near the reference points only.
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2 Hoelder type stability and the basic Lemma

2.1 Stability properties

The following definitions describe, for q = 1, typical local Lipschitz properties of the multi-
function S = f−1 or of level sets (1.3) for functions f : X → IR; mostly called calmness,
Aubin property and Lipschitz lower semi-continuity, respectively. In what follows we will
speak about the analogue properties with exponent q > 0 and add [q] in order to indicate this
fact. To avoid the missleading notion "Lipschitz lower semi-continuity [q]" we simply write
l.s.c. [q].

Definition 1. Let z̄ = (p̄, x̄) ∈ gphS, S : P ⇉ X.

(D1) S obeys the Aubin property [q] at z̄ if

∃ ε, δ, L > 0 : x ∈ S(p) ∩ B(x̄, ε) ⇒ B(x, L‖p − π‖q) ∩ S(π) 6= ∅ ∀p, π ∈ B(p̄, δ). (2.1)

(D2) S is called calm [q] at z̄ if

∃ ε, δ, L > 0 : x ∈ S(p) ∩ B(x̄, ε) ⇒ B(x, L‖p − p̄‖q) ∩ S(p̄) 6= ∅ ∀p ∈ B(p̄, δ). (2.2)

(D3) S is said to be lower semi-continuous [q] ( l.s.c. [q] ) at z̄ if

∃ δ, L > 0 : B(x̄, L‖p̄ − π‖q) ∩ S(π) 6= ∅ ∀π ∈ B(p̄, δ). ♦ (2.3)

Compared with (D1), we have π = p̄ and p = p̄ in (D2) and (D3), respectively. The constant
L is called rank of the related stability.

If q = 1, these properties have several applications:
Imposed for feasible sets in optimization models, (standard C1- problems in IRn and several

problems with cone-constraints in Banach spaces) these 3 properties are constraint qualifica-
tions which ensure the existence of Lagrange multipliers. In addition,

(D1) characterizes the topological behavior of solutions in the inverse function theorem due
to Graves and Lyusternik [18, 36].

(D3) required for level sets S (1.3) with f(x̄) = p̄, implies that x̄ cannot be a stationary
point of the type

f(x) ≥ f(x̄) − o( d(x, x̄) ). (2.4)

Using these definitions for q = 1, other known stability properties can be defined and charac-
terized (we apply the often used notations of [29]).

Remark 2.1. Let q = 1.

(i) S is locally upper Lipschitz at z̄ ⇔ S is calm at z̄ and x̄ is isolated in S(p̄).

(ii) S obeys the Aubin property (equivalently: F = S−1 is metrically regular, S is pseudo-
Lipschitz) at z̄
⇔ S is calm at all z ∈ gphS near z̄ with fixed constants ε, δ, L and Lipschitz l.s.c. at z̄
⇔ S is Lipschitz l.s.c. at all z ∈ gphS near z̄ with fixed constants δ and L.

(iii) S is strongly Lipschitz at z̄ ⇔ S is obeys the Aubin property at z̄ and S(p) ∩ B(x̄, ε)
is single-valued for some ε > 0 and all p near p̄. ♦

In the strongest case (iii), the solution mapping S is locally (near z̄) a Lipschitz function.

2.2 Some well-known results for Banach spaces and q = 1

For Banach spaces X, P and f ∈ C1(X, P ), the local upper Lipschitz property holds for
(the multivalued inverse) S = f−1 at (f(x̄), x̄) if Df(x̄) is injective; the Aubin property is
ensured if Df(x̄) is surjective (Graves-Lyusternik theorem [18, 36]).
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To obtain similar statements for F (1.1) recall that the contingent derivative [2] CF (x̄, p̄)(u)
of F at (x̄, p̄) ∈ gphF in direction u ∈ X is the (possibly empty) set of all limits

v = lim t−1
k (pk − p̄) where pk ∈ F (x̄ + tkuk), tk ↓ 0 and uk → u. (2.5)

Then CS = CF−1 satisfies, by definition, u ∈ CS(p̄, x̄)(v) ⇔ v ∈ CF (x̄, p̄)(u). We refer
to [2, 45, 29, 25] for further properties and interrelations to other generalized derivatives. If
F = f is a function, the argument p̄ = f(x̄) can be deleted in the notation of Cf .

Definition 2. CF is injective at (x̄, p̄) if ‖v‖ ≥ c‖u‖ ∀v ∈ CF (x̄, p̄)(u) holds for some c > 0.
CF is uniformly surjective near (x̄, p̄) if there is some c > 0 such that

BP (0, c) ⊂ CF (x, p)(BX(0, 1)) ∀(x, p) ∈ [B(x̄, c) × B(p̄, c)] ∩ gphF (2.6)

(also called CF is open with uniform rank). ♦

For F (1.1) with X = IRn and P = IRm, the local upper Lipschitz property of F−1 at (p̄, x̄)
coincides with injectivity of CF at (x̄, p̄) [25]; the Aubin property with uniform surjectivity of
CF near (x̄, p̄) [2]. Based on the fact that one may weaker require cBP ⊂ conv CF (x, p)(BX)
in (2.6), this also means injectivity of a limiting coderivative [37].

For Banach spaces, these conditions are still sufficient for the Aubin property, but far from
being necessary even if X = l2 and P = IR. We refer to [29], example BE2 with the concave
function f(x) = inf xk. A detailed investigation of various criteria for Lipschitz behavior of S
was the subject of [31].

Having the Aubin property, the inclusions (or equations) remain Lipschitz stable under
various nonlinear perturbations as in (1.4). A first and basic approach was presented in [42]
while [10] presents recent investigations and instructive results in this direction.

In the classical case of f ∈ C1(IRn, IRn), all mentioned stability properties (q = 1), except
for calmness, coincide with det Df(x̄) 6= 0. Calmness makes difficulties since it may disappear
after adding small smooth functions: S = f−1 for f ≡ 0 is calm at 0, not so for f = ε x2.

2.3 Calm [q] multifunctions and Lipschitz functions

For arbitrary multifunctions (1.2), calmness is a monotonicity property for two Lipschitz
functions,

dist(x, S(p̄)) and ψS(x, p) = dist((p, x), gphS),

defined via dP×X((p, x), (p′, x′)) = max{ ‖p− p′‖, d(x, x′) } or some equivalent metric in the
product space. For q = 1, the next statement is Lemma 3.2 in [28].

Lemma 2.2. S is calm [q] with 0 < q ≤ 1 at (p̄, x̄) ∈ gphS if and only if

∃ε > 0, α > 0 such that α dist(x, S(p̄)) ≤ ψS(x, p̄)q ∀x ∈ B(x̄, ε). ♦ (2.7)

In other words, calmness [q] at (p̄, x̄) is violated iff

0 < ψS(xk, p̄)q = o( dist(xk, S(p̄)) ) holds for some sequence xk → x̄. (2.8)

Proof. Let (2.7) be true. Then, given x ∈ S(p) ∩ B(x̄, ε), it holds

ψS(x, p̄)q ≤ d((p, x), (p̄, x))q = ‖p − p̄‖q

and α dist(x, S(p̄)) ≤ ψS(x, p̄)q ≤ ‖p − p̄‖q, which yields calmness [q] with all L > 1
α .

Conversely, let (2.7) be violated, i.e., (2.8) be true. Given any positive δk < o( dist(xk, S(p̄)) )
we find (pk, ξk) ∈ gphS such that, for large k,

d((pk, ξk), (p̄, xk))
q < ψS(xk, p̄)q + δk < bk := 2 o( dist(xk, S(p̄)) ). (2.9)

4



Particularly, (2.9) implies, due to 0 < q ≤ 1, that d(ξk, xk)
q < bk and b

1/q
k ≤ bk. In addition,

the triangle inequality dist(xk, S(p̄)) ≤ d(xk, ξk) + dist(ξk, S(p̄)) yields

dist(ξk, S(p̄)) ≥ dist(xk, S(p̄)) −d(ξk, xk)

> dist(xk, S(p̄)) − b
1/q
k ≥ dist(xk, S(p̄)) −bk.

Since (2.9) also implies ‖pk − p̄‖q < bk, we thus obtain for ξk ∈ S(pk) and k → ∞,

‖pk − p̄‖q

dist(ξk, S(p̄))
<

bk

dist(xk, S(p̄)) − b
1/q
k

≤ bk

dist(xk, S(p̄)) − bk
→ 0

Because of ξk → x̄ and ξk ∈ S(pk), so S is not calm [q] at (p̄, x̄).

Hence calmness [q] for S at (p̄, x̄) coincides with calmness of a Lipschitzian inequality:

Corollary 2.3. For 0 < q ≤ 1, S is calm [q] at (p̄, x̄) ∈ gphS ⊂ P × X ⇔ the level set
map Σ(r) := {x | ψS(x, p̄) ≤ r} is calm [q] at (0, x̄) ∈ IR × X. ♦

For this reason, we shall pay particular attention to the mapping S (1.3). The (usually
complicated) distance ψS(., p̄) may be replaced by any (locally Lipschitz) function φ satisfying

α φ(x) ≤ ψS(x, p̄) ≤ β φ(x) for x near x̄ and certain constants 0 < α ≤ β. (2.10)

Estimates of ψS for (often used) composed systems can be found in [28]. For convex mappings
S (i.e. X is a B-space and gphS is convex), both ψS and d(., S(p̄)) are convex functions.
For polyhedral S in finite dimension and polyhedral norms, ψS and d(., S(p̄)) are piecewise
linear. Generally, checking condition (2.7) may be a hard task. But, by the equivalence,
one cannot avoid to investigate ψS in the original or some equivalent way if calmness or the
Aubin property with some exponent q should be characterized. The subsequent statements
can be written (even shorter) in terms of ψS without using S explicitly. However, though
multifunctions and generalized equations play a big role in nonsmooth analysis, we formulate
the most statements in this terminology.

2.4 The basic statement

From now on, q > 0 denotes any fixed exponent, S, F are related to (1.1) where

X is a complete metric space, P a linear normed space,
S : P ⇉ X is closed, (p̄, x̄) ∈ gphS, F = S−1.

(2.11)

Clearly, q > 1 is out of interest if F = f is a locally Lipschitz function.

Motivation: Given (p, x) ∈ gphS and π ∈ P our stability properties claim to verify that
some ξ ∈ S(π)∩B(x, L‖π−p‖q) exists. To show this, we shall use iterations (pk, xk) ∈ gphS
which start at (p, x) and converge to (π, ξ).

In view of calmness, such iterations may be trivial, e.g., if only S(p) and S(π) are non-empty
and already (p2, x2) is the point we are looking for. This, however, is not the typical situation
for basic applications. In contrary, the hypotheses will usually only permit to achieve an
approximation of (π, ξ) after a big couple of steps. Furthermore, to apply local informations
of F near (xk, pk) ∈ gphF for constructing (pk+1, xk+1) ∈ gphS, small steps are usually
necessary and, as we will see, possible under the Aubin property.

In what follows, we use the notion procedure for indicating the conditions which define the
next iterate. We emphasize that these procedures are still far from being algorithms which
can be practically applied for computation unless specifying them under additional hypotheses
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(like in section 4). On the other hand, they indicate which type of next iterates exist and can
be used in order to determine a point (π, ξ) in question.

Moving from (p, x) to (p′, x′) with ‖p′ − π‖ < ‖p − π‖ in gphS can be seen as a descent
step for such "procedures". The next lemma asserts

S(π) ∩ B(x, L‖π − p‖q) 6= ∅

for particular initial points (p, x) = (p1, x1) whenever descent steps of the type

‖p′ − π‖q + λ d(x′, x) < ‖p − π‖q (λ > 0). (2.12)

are possible for all (p, x), p 6= π in some neighborhood Ω of (p̄, x̄). Usually, (p1, x1) belongs
to a small neighborhood Ω′ ⊂ Ω. To obtain the stability statements we are aiming at, these
neighborhoods must be specified.

Below, the constant λ plays the role of L−1, ε and δ are not necessarily small. Concerning
the arrangement of the constants in order to satisfy the subsequent crucial condition (2.14)
we refer to Remark 2.5. Furthermore, we will put C = P in the most applications, except for
(3.8).

Roughly speaking, the lemma is a generalization of a simple fact: If f ∈ C1(IRn, IR),
f(0) = 0 and ‖Df‖ ≥ λ everywhere then f = ±λ has solutions in the unit ball.

Lemma 2.4. Let S satisfy (2.11), C ⊂ P be convex, p̄ ∈ C and λ, q > 0. In addition,
suppose there are ε, δ > 0 and some π ∈ B(p̄, δ) ∩ C such that

for all (p, x) ∈ gphS ∩ [ B(p̄, δ) × B(x̄, ε) ] with p ∈ C \ {π}
there is some (p′, x′) ∈ gphS satisfying (2.12) and p′ ∈ conv{p, π}. (2.13)

Then, if (p1, x1) ∈ gphS, p1 ∈ B(p̄, δ)∩C and d(x1, x̄)+‖p1−π‖ is small enough such that

d(x1, x̄) + λ−1‖p1 − π‖q ≤ ε, (2.14)

there exists some ξ ∈ S(π) ∩ B(x1, λ−1‖π − p1‖q). ♦

Proof. We suppose (2.13) and consider any (p1, x1) and π satisfying the hypotheses. The
Lemma is trivial if p1 = π (put ξ = x1). Let p1 6= π. Now (p, x) = (p1, x1) fulfills

p ∈ B(p̄, δ) ∩ C, x ∈ S(p) ∩ B(x̄, ε), p 6= π (2.15)

as required in (2.13). Hence (2.12) ensures

µ(p, x) := inf { ‖p′ − π‖q + λ d(x′, x) | (p′, x′) ∈ gphS, p′ ∈ conv{p, π} } < ‖p − π‖q.

Next consider
Procedure S1: Beginning with k = 1 assign, to (pk, xk), some (pk+1, xk+1), with

(i) ‖pk+1 − π‖q + λ d(xk+1, xk) < ‖pk − π‖q, (pk+1, xk+1) ∈ gphS
(ii) pk+1 ∈ conv{pk, π}
(iii) ‖pk+1 − π‖q + λ d(xk+1, xk) < µ(pk, xk) + 1/k.

(2.16)

Convergence of xk: From (i), we obtain for step n ≥ 1, as long as the iterations exist,

λ d(xn+1, x1) ≤ λ
∑n

k=1 d(xk+1, xk)
≤ ‖p1 − π‖q − ‖p2 − π‖q + ... + ‖pn − π‖q − ‖pn+1 − π‖q

= ‖p1 − π‖q − ‖pn+1 − π‖q ≤ ‖p1 − π‖q.
(2.17)
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Thus (2.14) and (2.17) yield

d(xn+1, x̄) ≤ d(xn+1, x1) + d(x1, x̄) ≤ λ−1‖p1 − π‖q + d(x1, x̄) ≤ ε.

So, if pk+1 6= π, (pk+1, xk+1) fulfills (2.15) since pk+1 ∈ conv{pk, π} ⊂ conv{p1, π} ⊂ C.
If pn = π for some n then ξ = xn satisfies the assertion due to (2.17). Otherwise, since
∑

k d(xk+1, xk) is bounded, the sequence {xk} converges in the complete space X, xk → ξ.

Accumulation points of pk: Again by (i), we observe ‖pk − π‖ → β for some β.
Next we need an accumulation point, say η ∈ C ∩ B(p̄, δ), of the sequence {pk}. By our

assumptions, η exists due to (ii) since all pk belong to the compact segment conv{p1, π}.
Notice that η exists also under other assumptions, discussed in Remark 3.10, below. For

this reason, let us only use that some (infinite) subsequence of {pk} converges to η.
Since S is closed, η fulfills ξ ∈ S(η). If η = π, (2.17) implies again the assertion. Let η 6= π.

Due to η ∈ conv{p1, π} ⊂ C and the above estimates, (2.13) holds for (p, x) := (η, ξ), too:
There exist (p′, x′) ∈ gphS and some α > 0, such that

‖p′ − π‖q + λ d(x′, ξ) < ‖η − π‖q − α and p′ ∈ conv{η, π}.

The shown convergence of some subsequence of (pk, xk) yields, for certain large k,

µ(pk, xk) ≤ ‖p′ − π‖q + λ d(x′, xk) < ‖pk − π‖q − α
and by (iii) also

‖pk+1 − π‖q + λ d(xk+1, xk) < µ(pk, xk) + 1/k < βq − α/2 + 1/k < βq − α/4 .

This contradicts ‖pk − π‖ → β and implies η = π. So the Lemma is true, indeed.

Remark 2.5. If the constants satisfy

λ−1(2δ)q ≤ 1
2ε (2.18)

then (2.14) holds for all (p1, x1) near (p̄, x̄), namely if x1 ∈ B(x̄, 1
2ε) and p1 ∈ B(p̄, δ). ♦

Lemma 2.6. For the level set map S (1.3) and p̄ = f(x̄), condition (2.13) is equivalent to

∀x ∈ B(x̄, ε) with π < f(x) ≤ p̄ + δ and f(x) ∈ C
∃x′ : (fπ(x′) − π)q + λ d(x′, x) < (fπ(x) − π)q (2.19)

where fπ(x′) = max{π, f(x′)}. ♦

Proof. By definition, (2.13) requires

∀ (p, x) with f(x) ≤ p, x ∈ B(x̄, ε) and p ∈ [p̄ − δ, p̄ + δ ] ∩ C, p 6= π
∃ (p′, x′) : p′ ∈ conv{π, p}, f(x′) ≤ p′ and |p′ − π|q + λ d(x′, x) < |p − π|q. (2.20)

If f(x) ≤ π the point (x′, p′) = (x, π) trivially satisfies f(x′) ≤ p′ and 0 = |p′−π|q+λ d(x′, x) <
|p − π|q. Hence (2.20) coincides with

∀ (p, x) with π < f(x) ≤ p, x ∈ B(x̄, ε) and π < p ≤ p̄ + δ, p ∈ C
∃ (p′, x′) : p′ ∈ [π, p], f(x′) ≤ p′ and (p′ − π)q + λ d(x′, x) < (p − π)q.

Here, it suffices to look at the smallest possible p′ = fπ(x′) and the smallest possible p = f(x)
only. This proves the Lemma.
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3 Consequences and interpretations of Lemma 2.4

Violation of assumption (2.13):
Condition (2.13) fails to hold iff some (p, x) ∈ gphS ∩ [B(p̄, δ) × B(x̄, ε)], p ∈ C fulfills

‖p′ − π‖q + λd(x′, x) ≥ ‖p − π‖q > 0 ∀(p′, x′) ∈ gphS, p′ ∈ conv{π, p}. (3.1)

In other words, then (p, x) is a global solution of the problem

min
p′,x′

‖p′ − π‖q + λd(x′, x) s.t. (p′, x′) ∈ gphS, p′ ∈ conv{p, π} (3.2)

with optimal value v > 0. If (p, x) solves (3.2) with v = 0 then p = π and x ∈ S(π) ∩ B(x̄, ε)
hold trivially. Thus the existence of interesting points (p, x) ∈ gphS follows in both cases.

3.1 Calmness and Aubin property [q]

Remark 3.1. (Necessity of (2.13)) If S obeys the Aubin property [q] at (p̄, x̄), condition (2.13)
can be satisfied with C = P , λ ∈ (0, L−1), ε, δ from Def. 1 and all π ∈ B(p̄, δ). Indeed, given
(p, x) as in (2.13), put p′ = π and select x′ ∈ S(π) ∩ B(x, L‖p − π‖q) which exists by Def.
1. Then (2.12) holds trivially. If S is calm [q] at (p̄, x̄), condition (2.13) can be satisfied with
the same settings; only π = p̄ is fixed, now. ♦

Remark 3.2. (Sufficiency of (2.13)) In Lemma 2.4, let C = P and let the constants be taken
as in Remark 2.5. Then the assertion becomes

S(π)∩B(x1, L‖p1 −π‖q) 6= ∅ if L = λ−1, p1 ∈ B(p̄, δ) and x1 ∈ S(p1)∩B(x̄, 1
2ε). (3.3)

If (2.13) is valid with π = p̄ and any λ, ε, δ > 0, it is also valid for smaller δ satisfying (2.18).
Thus (3.3) may be applied and ensures calmness. Similarly, if (2.13) holds for all π ∈ B(p̄, δ),
it holds for smaller δ satisfying (2.18), too. Then (3.3) proves the Aubin property (both with
exponent q). ♦

The latter remarks imply immediately

Proposition 3.3. Suppose (2.11) and let C = P, z̄ = (p̄, x̄). Then
(i) S obeys the Aubin property [q] at z̄ ⇔ there are λ, ε, δ > 0 satisfying condition (2.13)
for all π ∈ B(p̄, δ).
(ii) With fixed π = p̄, the same holds in view of calmness [q]. ♦

If π = p̄ we may check whether already (p′, x′) = (p̄, x̄) satisfies (2.12). Having

λd(x̄, x) < ‖p − p̄‖q

then the calmness estimate is evident and nothing remains to prove. Thus, to verify calmness
via the existence of appropriate λ, ε, δ, only points

(p, x) → (p̄, x̄) such that (p, x) ∈ gphS, x 6= x̄ and lim ‖p − p̄‖q d(x, x̄)−1 = 0 (3.4)

are of interest.

Calm level sets: Applying Prop. 3.3(ii) to level sets, we obtain the following statement for
(p̄, x̄) = (0, x̄) due to the equivalence between (2.13) and (2.19) and π = 0.

Proposition 3.4. S (1.3) is calm [q] at (0, x̄) ⇔ there are λ, ε, δ > 0 such that

∀x ∈ B(x̄, ε) with 0 < f(x) ≤ δ ∃x′ : max{0, f(x′)}q − f(x)q < −λ d(x′, x). ♦ (3.5)
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For S (1.3) and p̄ = 0, (3.4) means x → x̄, f(x) > 0 and 0 = lim f(x)qd(x, x̄)−1. If X = IRn,
each sequence x = xk of this type obeys a subsequence such that

xk = x̄ + tku + o(tk)wk, wk → w, tk ↓ 0, f(xk) > 0, lim f(xk)
q/tk = 0. (3.6)

This verifies

Corollary 3.5. If X = IRn then S (1.3) is calm [q] at (0, x̄) ⇔ for some λ > 0 and each
sequence of the form (3.6),

some x′
k satisfies max{0, f(x′

k)}q − f(xk)
q < −λ d(x′

k, xk) (for large k). ♦ (3.7)

3.2 Ekeland’s principle and lower semi-continuity [q]

Remark 3.6. To find some ξ ∈ S(π)∩B(x̄, λ−1‖π− p̄‖q) as required for S being l.s.c. [q], put

δ = ‖π − p̄‖, ε = λ−1δq, C = conv{p̄, π}. (3.8)

Then, setting (p1, x1) = (p̄, x̄), (2.14) holds again and Lemma 2.4 yields

Either some ξ ∈ S(π) ∩ B(x̄, ε) exists or
some (p, x) ∈ gphS ∩ [B(p̄, δ) × B(x̄, ε)], p ∈ C \ {π} solves (3.2). ♦

In the first case, (p, x) = (π, ξ) solves problem (3.2), too. This already proves an existence
theorem.

Theorem 3.7. Suppose (2.11). Given any π ∈ P and λ, q > 0, choose δ, ε, C as in (3.8).
Then some (p, x) ∈ gphS ∩ [B(p̄, δ) × B(x̄, ε)], p ∈ C solves (3.2), i.e.,

(p, x) ∈ argmin
p′,x′

{ ‖p′ − π‖q + λd(x′, x) | (p′, x′) ∈ gphS, p′ ∈ conv{p, π} }. ♦ (3.9)

The application to level sets (1.3) leads us to

Proposition 3.8. Let f : X → IR ∪ {∞} be l.s.c., π < f(x̄) < ∞, λ, q > 0 and fπ(.) =
max{ π, f(.) }. Then some z ∈ B(x̄, λ−1(f(x̄) − π)q) fulfills

f(z) ≤ f(x̄) and (fπ(x′) − π)q + λ d(x′, z) ≥ (fπ(z) − π)q ∀x′ ∈ X. ♦ (3.10)

Proof. Put p̄ = f(x̄), choose δ, ε, C as in (3.8) and study condition (2.19) of Lemma 2.6.
If (2.19) is violated then (3.10) holds for some z ∈ B(x̄, ε) with π < f(z) ≤ p̄ and nothing
remains to prove. Otherwise (2.19) and (2.13) are satisfied. So we can apply Lemma 2.4
like in Remark 3.6, with (p1, x1) = (p̄, x̄) since (2.14) is valid. In consequence, some ξ ∈
S(π) ∩ B(x̄, ε) exists, and we may put z = ξ because of (fπ(ξ) − π)q = 0.

Let us again specify:

Proposition 3.9. (Ekeland’s principle for g = f q) If infX f = 0 holds in Prop. 3.8, then
some z ∈ X fulfills

f(z) ≤ f(x̄), d(z, x̄) ≤ λ−1f(x̄)q and f(x′)q + λ d(x′, z) ≥ f(z)q ∀x′ ∈ X. ♦ (3.11)

The usual constants in Ekeland’s principle [14] (q = 1) for inf f = 0 are

f(x̄) = εE , αE > 0, λE = εE/αE , d(z, x̄) ≤ αE . (3.12)

Here, we obtain the same by setting εE = f(x̄) = δ and αE = f(x̄)/λ.

(Generalized) derivatives :For 0 < q ≤ 1, the function rq is concave on IR+. So (3.11) also
yields
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q (f(x′) − f(z)) f(z)q−1 ≥ f(x′)q − f(z)q ≥ −λd(x′, z) ∀x′ ∈ X. (3.13)

If X is a Banach space and f ∈ C1 then (3.13) implies via x′ = z + tu, t → 0,

q ‖Df(z)‖ ≤ λ f(z)1−q ≤ λ f(x̄)1−q. (3.14)

For small f(x̄) and q < 1, the estimate (3.14) is better than ‖Df(z)‖ ≤ λ for q = 1, whereas
the bound λ−1f(x̄)q of d(z, x̄) is larger than λ−1f(x̄).

For arbitrary l.s.c. f on a Banach space, (3.13) can be applied in order to estimate Cf(x)
and D−f(x; u) = inf Cf(x)(u), the contingent and the lower Dini derivative in direction u.
By the definitions only, then (3.13) implies (as for f ∈ C1) that

inf
‖u‖=1

D−f(z; u) ≥ −λ f(z)1−q ≥ −λ f(x̄)1−q.

If f is locally Lipschitz, Cf(x)(u) is a non-empty compact interval, and one may put uk ≡ u
in Def. (2.5).

3.3 The role of C, conv{p, π} and q

The convex set C restricts the variation of p to regions of interest, e.g. a subspace (closed or
not) of P or a line-segment only. If C is closed, one can pass to the (again closed) mappings
FC(x) = F (x) ∩ C and S = F−1

C in order to avoid this restriction.
The condition p′ ∈ conv{p, π} of (2.13) requires to study solutions for the homotopy

pα = α π + (1 − α)p, 0 ≤ α ≤ 1.

Obviously, ‖pα − p‖ = α‖π − p‖, ‖pα − π‖ = (1 − α)‖π − p‖. So the bounds ‖p′ − p‖q and
b := ‖p − π‖q − ‖p′ − π‖q of d(x′, x) in Def. 1 and (2.12) can be easily compared

‖p′ − p‖q ≥ b if q ≤ 1, ‖p′ − p‖q ≤ b if q ≥ 1. (3.15)

Remark 3.10. If dimP < ∞, the extra requirement

‖p1 − π‖ + ‖π − p̄‖ ≤ δ (3.16)

under (2.14) allows to delete all condition which involve C or conv{p, π} in Lemma 2.4. ♦

Proof. Indeed, the proof of Lemma 2.4 shows that, for (non-convex) closed C of finite dimen-
sion, the conditions p′ ∈ conv{p, π} of (2.13) and (2.16)(ii) can be replaced by p′ ∈ C and
pk+1 ∈ C, respectively. To ensure that pk+1 ∈ B(p̄, δ) remains true for the constructed points,
(3.16) suffices since ‖pk+1 − p̄‖ ≤ ‖pk+1 − π‖ + ‖π − p̄‖ ≤ ‖p1 − π‖ + ‖π − p̄‖ ≤ δ.

In general, the convergence of sequences satisfying ‖pk+1 − π‖ < ‖pk − π‖ is connected with
the drop property in the parameter space P [34].

3.4 Local and global aspects

Let X be a Banach space. Then, conditions for the discussed stabilities (q = 1) are usually
given via generalized derivatives or subgradients, cf. section 2.2. However, for calmness,
they imply only sufficient conditions, in general. The key consists in the fact that, in (2.13),
d((p′, x′), (p, x)) may be too large in order to apply informations on derivatives at (p, x). So
it becomes important to know whether or not

condition (2.13) implies that (p, x) is not a local minimizer of problem (3.2). (3.17)

Having (3.17), local optimality conditions could be used to check (2.13) in equivalent way.
Obviously, (3.17) holds if gphS is convex and q = 1 (connect (p′, x′) and (p, x) by a line). It
also holds if condition (2.13) is required for all π near p̄ (as needed for the Aubin property).
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Lemma 3.11. In Lemma 2.4, let C = P , q ≥ 1 and λ, ε, δ be constants satisfying (2.13) for
all π ∈ B(p̄, δ). Then, with possibly smaller constants λ′, ε′, δ′, statement (3.17) is valid. ♦

Proof. By Prop. 3.3, S obeys the Aubin property [q] at (p̄, x̄) with rank L = λ−1 and
certain ε′, δ′ > 0 in Def. 1. Thus, given p ∈ B(p̄, δ′) \ {π} and x ∈ S(p) ∩ B(x̄, ε′) we can
first choose p′ ∈ relint conv{p, π} arbitrarily close to p and obtain next the existence of
x′ ∈ S(p′)∩B(x, L‖p′ − p‖q). With λ′ = λ/2, this yields λ′d(x′, x) < ‖p′ − p‖q. Due to q ≥ 1
and (3.15) we may continue, ‖p′ − p‖q ≤ ‖π − p‖q − ‖p′ − π‖q. Thus inequality (2.14) holds
as required for (p′, x′) arbitrarily close to (p, x).

Generally, (3.17) can be violated.

Example 1. The locally Lipschitz function (differentiable everywhere, but not C1)

f(x) =

{

x + x2 sin(1/x) if x 6= 0
0 if x = 0

has local minima and maxima arbitrarily close to 0 though S = f−1 is calm at the origin.
Hence (3.17) fails to hold in spite of the fact that the hypotheses of Lemma 2.4 are satisfied;
put p′ = 0 for (p̄, x̄) = (0, 0), π = 0 and small constants. ♦

Without (3.17), derivative-conditions (which exclude that (p, x) solves (3.2) locally) are
only sufficient for the desired stability. This also applies to the calmness conditions for level
sets (1.3) in terms of slopes and subdifferentials in [24], Thm. 2.1. Having, e.g., directional
derivatives f ′ of f at x, it suffices to know - by Prop. 3.4 - that, for p̄ = f(x̄) = 0,

inf
u∈B

f ′(x; u) ≤ −λ for all x near x̄ with 0 < f(x) ≤ δ (for some δ > 0). (3.18)

Similarly, contingent derivatives Cf(x) of a locally Lipschitz function f on IRn can be used
to obtain the sufficient calmness condition

inf
u∈B

max
v∈Cf(x)(u)

v ≤ −λ for all (x, f(x)) near (x̄, 0), f(x) > 0. (3.19)

For convex f on IRn, these conditions coincide and are equivalent to

min
x∗∈∂φ(x)

‖x∗‖ ≥ λ for all (x, f(x)) near (x̄, 0), f(x) > 0. (3.20)

by the basic relation between f ′ and the convex subdifferential. Thus, these are sharp criteria
for calmness of S (1.3) in the convex case, but not in the Lipschitzian one. To obtain necessity,
one needs additional hypotheses which ensure that f(x′)q − f(x)q can be sufficiently sharp
estimated by the used generalized derivative of f at x with f(x) > 0, provided that x′, x ∈
B(x̄, ε) and ε is small enough, cf. Thm. 4.7.

3.5 Uniform Lipschitzian lower semi-continuity and Aubin property

We call S l.s.c. [q] near (p̄, x̄) ∈ gphS with uniform rank L if, for all (p, x) ∈ gphS near
(p̄, x̄), there exists some δ(p, x) > 0 such that

S(p′) ∩ B(x, L‖p′ − p‖q) 6= ∅ ∀p′ ∈ B(p, δ(p, x)). (3.21)

Compared with remark 2.1 (ii), now the radii of the balls B(p, δ) may depend on (p, x).

Corollary 3.12. If q ≥ 1 then S (2.11) obeys the Aubin property [q] at (p̄, x̄) ⇔ S is l.s.c.
[q] near (p̄, x̄) with uniform rank L. ♦
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Proof. Direction (⇒) is trivial, we consider (⇐). Suppose (3.21) for all (p, x) ∈ gphS ∩
[ B(p̄, δ0) × B(x̄, ε0) ]. Let 0 < λ < L−1. Given π ∈ B(p̄, δ0) and p 6= π select any p′ ∈
relint conv{π, p} ∩ B(p, δ(p, x)) and next x′ in the intersection of (3.21). Because of (3.15)
and q ≥ 1 now λd(x′, x) < ‖p′−p‖q ≤ ‖π−p‖q−‖p′−π‖q yields the existence of x′ as required
in (2.13) for ε = ε0, δ = δ0 and all π ∈ B(p̄, δ). So Prop. 3.3 ensures the assertion.

For q = 1 and under additional hypotheses (namely that x 7→ dist(π, F (x)) is l.s.c., and
projections onto F (x) exist if F (x) 6= ∅), this statement can be also found in [29] (Thm. 3.4)
or [31] (Thm. 1). There, the additional hypotheses were needed in order to apply Ekeland’s
principle for deriving the related stability. Here, conversely, his principle just follows from the
sufficiently general stability statements.

4 Proper descent steps

To modify condition (2.12) let 0 < λ < 1, π ∈ P and require:

For all (p, x) ∈ gphS ∩ [ B(p̄, δ) × B(x̄, ε) ]
there is some (p′, x′) ∈ gphS satisfying

(i) λ d(x′, x) ≤ ‖p − π‖q and (ii) ‖p′ − π‖ ≤ (1 − λ) ‖p − π‖.
(4.1)

Condition (2.12) is now weakened by deleting the term ‖p′ − π‖q, but (ii) is added. The set
C does not appear.
Again we specify the condition for level sets S (1.3) and π = 0. If (p̄, x̄) = (0, x̄) and f(x̄) = 0
(as used for calmness [q]), (4.1) claims

∀x ∈ B(x̄, ε) with 0 < f(x) ≤ δ there is some x′ satisfying
λ d(x′, x) ≤ f(x)q and f(x′) ≤ (1 − λ)f(x).

(4.2)

If f(x̄) = δ > 0 and (p̄, x̄) = (δ, x̄) (as for l.s.c. [q]), (4.1) claims the same.

Using (4.1), let us replace procedure S1 by a simpler one without involving global infima.

Procedure S2: Find any (pk+1, xk+1) ∈ gphS such that

(i) λd(xk+1, xk) ≤ ‖pk − π‖q and (ii) ‖pk+1 − π‖ ≤ (1 − λ)‖pk − π‖. (4.3)

Our basic lemma now attains the following form.

Lemma 4.1. Suppose λ ∈ (0, 1) and (4.3) for any sequence of (pk, xk), k ≥ 1 (not necessarily
in gphS). Then it holds, with θ = 1 − λ and L = [ λ (1 − θq) ]−1,

d(xk+1, x1) ≤
k

∑

i=1

d(xi+1, xi) ≤ L ‖p1 − π‖q, (4.4)

after which ξ = limxk ∈ B(x1, L ‖p1 − π‖q) in the complete space X exists. Moreover, if
ε, δ > 0, π, p1 ∈ B(p̄, δ) and d(x1, x̄) + ‖p1 − π‖ + ‖π − p̄‖ is small enough such that

d(x1, x̄) + L ‖p1 − π‖q ≤ ε and ‖p1 − π‖ + ‖π − p̄‖ ≤ δ, (4.5)

then all (pk, xk) satisfy (4.5). ♦

Proof. If pk = π we have trivially (pk+1, xk+1) = (pk, xk). Otherwise, (4.3)(ii) implies

‖pk+1 − π‖q ≤ θq‖pk − π‖q.
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Along with (i) this yields both λ d(xk+1, xk) ≤ ‖pk − π‖q ≤ (θq)k−1 ‖p1 − π‖q and

d(xk+1, x1) ≤ ∑k
i=1 d(xi+1, xi) ≤ λ−1

∑k
i=1 (θq)i−1 ‖p1 − π‖q ≤ L ‖p1 − π‖q. (4.6)

Thus convergence of (pk, xk) is ensured by (4.3) only. Finally, let (p1, x1) satisfy the remaining
assumptions. The choice of the constants (4.5) then yields

d(xk+1, x̄) ≤ d(x1, x̄) + d(xk+1, x1) ≤ d(x1, x̄) + L ‖p1 − π‖q ≤ ε,
‖pk − p̄‖ ≤ ‖pk − π‖ + ‖π − p̄‖ ≤ ‖p1 − π‖ + ‖π − p̄‖ ≤ δ.

(4.7)

Hence the lemma is valid.

Remark 4.2. If the constants satisfy

L (2δ)q ≤ ε/2 and ‖π − p̄‖ ≤ δ/3. (4.8)

then (4.5) holds for all (p1, x1) near (p̄, x̄), namely if x1 ∈ B(x̄, ε/2) and p1 ∈ B(p̄, δ/3). ♦

Remark 4.3. Even if (pk, xk), (pk+1, xk+1) are not in gphS, Lemma 4.1 ensures convergence

(pk, xk) → (π, ξ), ξ ∈ B(x1, L ‖p1 − π‖q).

To obtain ξ ∈ S(π), it obviously suffices that points (p′k+1, x
′
k+1) ∈ gphS exist with d(x′

k+1, xk+1)+
‖p′k+1 − pk+1‖ → 0. This allows approximations with respect to gphS. ♦

Theorem 4.4. For the mapping S (2.11), suppose that λ ∈ (0, 1), ε, δ > 0 and some π ∈
B(p̄, δ) satisfy (4.1). Then, if (p1, x1) ∈ gphS and the remaining hypotheses of Lemma 4.1
are fulfilled, i.e., p1 ∈ B(p̄, δ) and

d(x1, x̄) + L ‖p1 − π‖q ≤ ε and ‖p1 − π‖ + ‖π − p̄‖ ≤ δ, (4.9)

procedure S2 defines an infinite sequence satisfying

limxk = ξ ∈ S(π) and d(ξ, x1) ≤ L ‖p1 − π‖q. ♦ (4.10)

Proof. By Lemma 4.1, we may apply the hypothesis (4.1) to (p1, x1) and all generated points
(pk, xk). Thus the points (pk+1, xk+1) in question exist in gphS, indeed. Evidently, (4.3)(ii)
implies pk → π. Applying now (pk, xk) ∈ gphS and closeness of S, the limit ξ = limxk

belongs to S(π). So nothing remains to prove.

The theorem allows us to replace the procedures and conditions in order to derive criteria
for calmness and the Aubin property with geometrically decreasing ‖p′ − π‖ and the stepsize
estimate (4.1)(i).

Corollary 4.5. Suppose (2.11). Then
(i) S obeys the Aubin property [q] at (p̄, x̄) ⇔ there are λ ∈ (0, 1) and ε, δ > 0 satisfying
(4.1) for all π ∈ B(p̄, δ).
(ii) With fixed π = p̄, the same holds in view of calmness [q]. ♦

Proof. Repeat the proof of Prop. 3.3. Necessity (⇒) follows again via Remark 3.1 while Thm.
4.4 and Remark 4.2 ensure the sufficiency.

The equivalence in terms of S2 can be written in a more convenient algorithmic manner.

Procedure S3: Given (p1, x1) ∈ gphS put λ1 = 1 and determine (pk+1, xk+1) ∈ gphS
satisfying

(i) λk d(xk+1, xk) ≤ ‖pk − π‖q, (ii) ‖pk+1 − π‖ ≤ (1 − λk) ‖pk − π‖. (4.11)

If (pk+1, xk+1) exists put λk+1 := λk. Otherwise (pk+1, xk+1) := (pk, xk), λk+1 = 1
2λk.

k := k + 1, repeat. ♦

Having λk ≥ λ > 0 and initial points near (p̄, x̄), then both the convergence and the estimate
(4.10) are ensured by Thm. 4.4. More precisely, involving also Prop. 3.3 and Cor. 4.5, we
may thus summarize
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Theorem 4.6. Suppose (2.11) and C = P . Then
(i) S obeys the Aubin property [q] at (p̄, x̄)
⇐⇒ There exist λ, ε, δ > 0 satisfying (2.13) for all π ∈ B(p̄, δ).
⇐⇒ There exist λ ∈ (0, 1) and ε, δ > 0 satisfying (4.1) for all π ∈ B(p̄, δ).
⇐⇒ There are α > 0 and λ ∈ (0, 1) such that iterates (pk+1, xk+1) for procedure S2 exist in
each step, whenever the initial points satisfy

d(x1, x̄) + ‖p1 − p̄‖ + ‖π − p̄‖ < α and x1 ∈ S(p1). (4.12)

⇐⇒ There are α > 0 and λ ∈ (0, 1) such that limλk ≥ λ holds for all initial points of S3
satisfying (4.12).

(ii) With fixed π ≡ p̄, the same holds in view of calmness [q]. ♦

For q = 1 and less general spaces, the equivalence between the stability properties and the
related behavior of S3 is known from [31, 32].

4.1 Calm C1 systems

We derive two criteria for calmness (using Lemma 2.4 and Thm. 4.4) and show that calmness
holds true iff a zero of the related system can be found by a simple (proper) algorithm. Let
X be a Banach space,

S(p) = {x ∈ X | gi(x) ≤ pi, i = 1, . . . , m}, p ∈ IRm and gi ∈ C1(X, IR). (4.13)

To investigate calmness of S at (0, x̄) ∈ IRm × X, we set

f(x) = max
i

{0, gi(x)}. (4.14)

Obviously, the level sets to f are calm at (0, x̄) ∈ IR × X iff so is S at (0, x̄) ∈ IRm × X. Put

I(x) = {i | gi(x) = f(x)}, F+ = {x | f(x) > 0} (4.15)

and let Ξ denote the family of all J ⊂ {1, . . . , m} such that J ≡ I(x) holds for some sequence

of x = xk
F+

→ x̄. If Ξ = {∅}, condition (4.16) holds trivially.

Theorem 4.7. S is calm at (0, x̄) if and only if

For all J ∈ Ξ, there is some uJ ∈ X satisfying Dgi(x̄)uJ < 0 ∀i ∈ J. ♦ (4.16)

Proof. By Prop. 3.4, verifying (proper) calmness means to find ε, λ > 0 such that, for each
x ∈ B(x̄, ε) ∩ F+, there is some x′ such that

f(x′) + λd(x′, x) < f(x). (4.17)

Necessity of (4.16): Inequality (4.17) yields d(x′, x) → 0 as x → x̄ and

gi(x
′) − gi(x)

d(x′, x)
≤ f(x′) − gi(x)

d(x′, x)
< −λ ∀i ∈ I(x). (4.18)

Recalling gi ∈ C1 and setting ux,x′ = x′−x
d(x′,x) we have, if ε < ε0(λ) is small enough,

∣

∣

∣

∣

gi(x
′) − gi(x)

d(x′, x)
− Dgi(y)ux,x′

∣

∣

∣

∣

< 1
2λ ∀i ∈ I(x) ∀y ∈ B(x̄, ε). (4.19)

Decreasing ε once more if necessary, also I(x) = J ∈ Ξ has to hold. So we can assign, to each
J ∈ Ξ, some descent direction uJ for all gi (i ∈ J), by setting uJ = ux,x′ with arbitrarily fixed
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x = x̂ ∈ B(x̄, ε) ∩ F+ satisfying I(x̂) = J and with any related x′, assigned to x̂. This still
yields, due to (4.18) and (4.19),

Dgi(y)uJ < −1
2λ ∀i ∈ J ∀y ∈ B(x̄, ε). (4.20)

Thus (4.16) is necessary for calmness.
Sufficiency of (4.16): For x ∈ F+ near x̄, I(x) coincides with some J ∈ Ξ and (4.16) implies

λ := −1
2 max

J ∈ Ξ
max
i∈J

Dgi(x̄)uJ > 0.

Thus, for verifying (4.17), it suffices to choose x′ = x + tx uJ with small tx > 0 since the
inequalities gj(x) < f(x) if j /∈ J remain true for x′ if tx is small enough.

Recalling that only sequences (3.4) are essential, Thm. 4.7 still holds if, given any c > 0, only
sequences x → x̄ with 0 < f(x) < c d(x, x̄) are taken into account for defining the index sets
J of Ξ.

Remark 4.8. There is a is formally similar statement, namely Thm. 3 in [21] for X = IRn:
S is calm at (0, x̄) if, at x̄, the Abadie Constraint Qualification (i.e., system S(0) and its
linearization have the same contingent cone; we refer to [35] for this condition) and (4.16)
hold true. In [21] however, the family Ξ consists of all J such that J ≡ {i | gi(ξk) = 0} holds
for certain ξk → x̄, ξk ∈ bdS(0) \ {x̄}. In addition, as noted in [32], then condition (4.16) is
very strong and even not necessary for linear systems, consider

Example 2. S(p) = {x ∈ IR2 | x1 ≤ p1, −x1 ≤ p2}. ♦

Equivalent conditions: Clearly, condition (4.16) also means

If J ∈ Ξ then SJ(p) = {x | gJ(x) ≤ pJ} obeys the Aubin property at (0J , x̄). (4.21)

For the piecewise C1 maximum function f and X = IRn, this can be written in terms of
several generalized derivatives of f at x ∈ F+ near x̄.

With Clarke’s subdifferential and the directional derivative at x ∈ F+ [7], it holds ∂cf(x) =
conv{Dgi(x) | i ∈ I(x)} and f ′(x; u) = max {〈x∗, u〉 | x∗ ∈ ∂cf(x)}. Thus (4.16) is also
equivalent to the existence of some γ > 0 such that, for x ∈ F+ near x̄, it holds (3.18), i.e.,

inf
‖u‖=1

f ′(x; u) ≤ −γ or in dual formulation inf
x∗∈∂cf(x)

‖x∗‖ ≥ γ. (4.22)

The procedures S2 and S3: To characterize calmness via S2 and S3, the relative slack

σi(x) = f(x)−1 (f(x) − gi(x)) if x ∈ F+ (4.23)

can be used in order to rewrite S3 in Thm. 4.6, as in [32], in form of a proper algorithm which
claims to solve, in each step, linear inequalities with arguments in a ball:

Beginning with λ1 = 1 and any x1, stop if xk /∈ F+.

Otherwise find u ∈ B such that Dgi(xk)u ≤ λ−1
k σi(xk) − λk ∀i.

If u exists put xk+1 = xk + λkf(xk)u, λk+1 = λk else xk+1 = xk, λk+1 = 1
2λk.

(4.24)

Theorem 4.9. S (4.13) is calm at (0, x̄) iff there are positive α and β such that, for all
initial points x1 ∈ B(x̄, α), it follows λk ≥ β for procedure (4.24). ♦

Proof. Outline of the proof: The detailed proof in [32] makes use of the fact that, for the max-
imum f (4.14) under consideration, condition (4.1) can be written, with new λ > 0 and x′ =
x + tu, u ∈ B, t > 0 as

t−1(gi(x + tu) − gi(x)) ≤ (λ′)−1 σi(x) − λ′ ∀i, λ′f(x) ≤ t ≤ (λ′)−1f(x); (4.25)

and conversely. Specifying t = λ′f(x) this leads to the (equivalent) calmness characterization

∃λ > 0 : ∀x ∈ F+near x̄, some ux ∈ B fulfills Dgi(x)ux ≤ λ−1σi(x) − λ ∀i. (4.26)
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Remark 4.10. Based on (4.26) and method (4.24), another calmness condition can be imposed:
Given xk → x̄ in F+, put I0{xk} = {i | limk→∞ σi(xk) = 0}, and let Ξ0 denote the family of
all J ⊂ {1, . . . , m} such that J ≡ I0{xk} holds for such a sequence. With Ξ0 ⊃ Ξ in place of
Ξ, then Theorem 4.7 holds again, cf. [19]. ♦

Finally, by the same arguments as under Thm. 4.13 below, it follows from λk → 0 that the
sequence, generated by algorithm (4.24) with any initial point x1 having a bounded level set
S(x1), converges to some x̂ with 0 ∈ ∂cf(x̂).

4.2 Hoelder calm C2 systems, q = 1
2
.

We consider Sh(p) = {x ∈ IRn | hi(x) ≤ pi, i = 1, . . . , m} at (0, x̄), suppose h(x̄) = 0, h ∈ C2

and use the notations (4.15) with

gi =
√

max{0, hi}, f = max
i

gi and H = max
i

hi.

Now, calmness of Sh for q = 1
2 and (proper) calmness of the level sets to f coincide. Since

h ∈ C2, the contingent derivative C(∂cH)(x̄, x∗) can be determined [40], [29]. It depends
linearly on Dh(x̄) and D2h(x̄) only. If 0 ∈ ∂cH(x̄), now injectivity of C(∂cH) at (x̄, 0) plays
a role. Setting

|DH(x)| = dist( 0, conv{ Dhi(x) | i ∈ I(x)} ) = min { ‖x∗‖ | x∗ ∈ ∂cH(x) },

this injectivity requires nothing but the existence of some K > 0 such that

|DH(x)| ≥ K‖x − x̄‖ for x near x̄. (4.27)

In particular, (4.27) holds if all Hessians D2hi(x̄) are positive definite. For m = 1, (4.27)
requires just regularity of D2H(x̄).

Theorem 4.11. Using the above notations, Sh is calm at (0, x̄) with q = 1
2 if 0 /∈ ∂cH(x̄) or

if (otherwise) the contingent derivative C(∂cH) is injective at (x̄, 0). ♦

Put h ≡ 0 in order to see that the condition is not a necessary one.

Proof. If 0 /∈ ∂cH(x̄) even the (proper) Aubin property is satisfied for Sh. Hence let 0 ∈
∂cH(x̄). We investigate (proper) calmness for the level sets to f at (0, x̄) via the calmness
criterion (4.17). By Corollary 3.5, it suffices to consider only x → x̄ such that 0 < f(x) <
‖x− x̄‖. Because all gi, i ∈ I(x) are C1 near x ∈ F+ with Dgi = 1

2Dhi/f , we may first notice
that calmness holds true if there is some λ > 0 such that

some ux ∈ bdB fulfills
Dhi(x)

2f(x)
ux ≤ −2λ ∀i ∈ I(x) if x ∈ F+ near x̄. (4.28)

Indeed, (4.28) yields for sufficiently small t = tx > 0 (since
√

r is concave),

gi(x + tux) ≤ gi(x) + t
Dhi(x)

2f(x)
ux + oi,x(t) < f(x) − λt ∀i ∈ I(x)

and implies (4.17). On the other hand, (4.28) is equivalent to

|DH(x)| ≥ 4λf(x) if x ∈ F+ near x̄.

Because of ‖x − x̄‖ > f(x), so already

|DH(x)| ≥ 4λ ‖x − x̄‖ if x ∈ F+ near x̄ (4.29)

is sufficient for calmness. The latter follows with 0 < λ < K/4 from (4.27).
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4.3 Procedure S3 for Hoelder calm C2 and C1,1 level sets

We study the case of f ∈ C2(IRn, IR) in order to demonstrate possible concrete steps of
procedure S3 to find some ξ such that f(ξ) ≤ 0 and d(ξ, x1) ≤ Lmax{0, f(x1)}q. Clearly, we
have to start near a zero x̄ of f and, as long as f(xk) > 0, to find some xk+1 satisfying

(i) λk d(xk+1, xk) ≤ f(xk)
q, (ii) f(xk+1) ≤ (1 − λk) f(xk) (4.30)

or to decrease λk := 1
2λk. If Df(x̄) 6= 0 even the Aubin property holds trivially. Hence let

Df(x̄) = 0. Additionally, suppose the Hessian D2f(x̄) to be regular.

Lemma 4.12. Under these assumptions, calmness with q = 1
2 is satisfied. The steps of S3

can be realized (for small λk) by using any u ∈ B with Df(xk)u ≤ −ρ ‖Df(xk)‖ for fixed
ρ ∈ (0, 1) and setting

xk+1 = xk + tu, t = λq
k f(xk)

q. ♦ (4.31)

Proof. Calmness [q] already follows from Thm. 4.11. By our hypotheses, there are δ, c, C > 0
such that, for xk near x̄, t > 0 and ‖u‖ ≤ 1,

f(xk) = f(xk) − f(x̄) ≤ C ‖xk − x̄‖2, (4.32)

f(xk + tu) − f(xk) = t Df(xk)u + ou,k(t) where |ou,k(t)| ≤ c t2. (4.33)

‖Df(xk)‖ ≥ δ‖xk − x̄‖. (4.34)

By (4.31), condition (4.30)(i) holds true, and (4.30)(ii) becomes

t Df(xk)u + ou,k(t) ≤ −λkf(xk),

which is ensured if λq
k f(xk)

q Df(xk)u + cλ2q
k f(xk)

2q ≤ −λkf(xk), i.e.,

Df(xk)u ≤ − ( λ1−q
k f(xk)

1−q + cλk
q f(xk)

q ) = −√
λk (1 + c)

√

f(xk). (4.35)

Taking (4.32) into account, (4.35) holds under the stronger condition

Df(xk)u ≤ −
√

λk (1 + c)
√

C ‖xk − x̄‖. (4.36)

By (4.34), our specified u ∈ B satisfies Df(xk)u ≤ −ρ ‖Df(xk)‖ ≤ −ρ δ‖xk − x̄‖. Thus,
(4.36) holds if

√
λk ≤ ρ δ [ (1 + c)

√
C ]−1. In consequence, the steps of S3 can be realized in

the given manner and λk will not vanish. Hence Thm. 4.6 implies calmness [q], too.

Explicitly, our settings allow to put, for the essential steps of S3,

xk+1 = xk − λq
k f(xk)

q Df(xk) ‖Df(xk)‖−1, q = 1
2 . (4.37)

Switching from q = 1 to q = 1
2 (i.e. changing the stepsize rule) is possible according to the

given estimates. For instance, choose any γ > 0 and apply S3 and (4.37) with q = 1 as long
as ‖Df(xk)‖ ≥ γ and with q = 1

2 otherwise.

Applying Newton steps ? By the supposed regularity of D2f(x̄), the point x̄ is a regular
zero of the gradient g = Df , and Newton steps for solving g = 0 are locally well-defined.
Though Newton’s method finds very fast an element in S(0), the computed zero may be too
far from the initial point in order to verify calmness [q] of S by procedure S3.

Example 3. Let f = x1x2. Given q ∈ (0, 1] put x = (s, sm) where s > 0 is small and m fulfills
m + 1 > 1/q. Each Newton step, applied to the linear function g = Df , leads us to xk+1 =
x̄ = 0. Since, for fixed β > 0 and small s > 0, we have βd(x̄, x) ≈ βs > sq(m+1) = f(x)q, the
estimate (4.30)(i) cannot hold for all sufficiently small λk > 0 and x near x̄. In other words,
inf λk ≥ β > 0 is not true for all initial points of the form x1 = (s, sm) in (4.12). ♦
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The case of f ∈ C1,1(IRn, IR):
We applied f ∈ C2 only for obtaining (4.32), (4.33) and (4.34). These properties are still
ensured if Df is locally Lipschitz, i.e., for so-called C1,1 functions. Then (4.32) and (4.33)
remain valid without additional assumptions. To obtain (4.34) (for some δ > 0) it suffices
to suppose that the contingent derivative CDf(x̄) of Df at x̄ is injectiv, which replaces
regularity of the Hessian D2f(x̄).

4.4 Arbitrary initial points

Next let us start S3 at any point (p1, x1) ∈ gphS. If λk ≥ λ > 0 does not vanish, we have

(pk, xk) → (π, ξ) ∈ gphS, ξ ∈ B(x1, L‖p1 − π‖q)

by Lemma 4.1. Otherwise, it holds λk ↓ 0 and with F = S−1,

0 < (1 − λk) ‖pk − π‖ ≤ inf
p

{ ‖p − π‖ | p ∈ F ( B(xk, λ−1
k ‖pk − π‖q) ) } (4.38)

where pk realizes the infimum up to error λk‖pk−π‖. We discuss this situation for our standard
level sets under additional assumptions. The subsequent constant L depends on λ and q as
in Lemma 4.1, L = [ λ (1 − θq) ]−1 where θ = 1 − λ.

Theorem 4.13. Let S (1.3) be given on a reflexive B-space X, 0 < q ≤ 1, π = 0 and
S(f(x1)) be bounded. Then, procedure S3, with start at x1 and pk = f(xk), determines some
ξ ∈ S(0) ∩ B(x1, L |f(x1)|q) if λk ≥ λ > 0. Otherwise, the sequence {xk} has a weak
accumulation point x̂ which fulfills 0 ≤ f(x̂) ≤ f(x1) and is stationary in the following sense:
There are points zk such that d(zk, xk) → 0 and

lim inf
k→∞

inf
‖u‖=1

D−f(zk; u) ≥ 0 ( i.e., Df(x̂) = 0 if f ∈ C1(IRn, IR) ). ♦ (4.39)

Proof. By Lemma 4.1, we have to assume that λk → 0. Condition (4.38) yields

0 < (1 − λk) f(xk) ≤ inf { f(x) | x ∈ B(xk, λ−1
k f(xk)

q) }. (4.40)

Applying Ekeland’s principle to f and xk ∈ Xk := B(xk, λ−1
k f(xk)

q) with

εE := εk = λkf(xk) and αE := αk = rk λ−1
k f(xk)

q, 0 < rk < 1,

formula (3.12) ensures the existence of zk ∈ B(xk, αk) ⊂ intXk such that (1−λk) f(xk) ≤
f(zk) ≤ f(xk) and, since εE/αE = ρk := r−1

k λ2
k f(xk)

1−q,

f(x′) + ρk d(x′, zk) ≥ f(zk) ∀ x′ ∈ Xk. (4.41)

Setting rk = λ
3/2
k we obtain that both ρk =

√
λk f(xk)

1−q and αk =
√

λk f(xk)
q are vanishing

(recall 0 < q ≤ 1). This implies d(zk, xk) → 0. Finally, condition (4.39) follows from ρk → 0
and (4.41). Since S(f(x1)) is bounded and X is a reflexive, now xk, zk are bounded and there
exists a common weak accumulation point x̂ of xk and zk in X.

The assumption of boundedness for S(f(x1)) is natural for many applications, but cannot
deleted.

Example 4. For f = ex, q = 1 and rk = λ
3/2
k , (4.41) yields Df(zk) ≤

√
λk and xk, zk ≤

ln(
√

λk) → −∞. Hence convergence is not guaranteed if S(f(x1)) is unbounded. ♦
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Let us add two consequences of the theorem.

Computing feasible points:

Clearly, if a stationary point x̂ as in Thm. 4.13 cannot exist (e.g., if f is convex on IRn

and inf f < 0) then λk cannot vanish and procedure S3 determines necessarily some point
ξ = limxk ∈ S(0) ∩ B(x1, L|f(x1)|q). For more details, if f is a maximum of C1 functions,
we refer to section 4.1 where we considered concrete steps of S3 under (4.24) by applying the
relative slack (q = 1).

Computing stationary points in optimization problems:

Let
f = max{ rg0, g1, ..., gm} (4.42)

for any r > 0 and functions gi ∈ C1(IRn, IR) of an optimization problem

min {g0(x) | x ∈ IRn, gi(x) ≤ 0; i = 1, ..., m} (4.43)

with optimal value v > 0. Evidently, under solvability, v > 0 can be arranged by replacing
g0 with g0 + C where C is a big constant. Then, because of S(0) = ∅, the first case cannot
happen in Thm. 4.13 . In consequence, the obtained point x̂ now satisfies by (4.39)

max i∈I0 Dgi(x̂)u ≥ 0 ∀u ∈ IRn where
i ∈ I0 if (i > 0 and gi(x̂) = f(x̂) or (i = 0 and rg0(x̂) = f(x̂).

Now apply standard arguments of optimization: Firstly ( by the Farkas Lemma ) the origin
is a nontrivial and non-negative linear combination of the active gradients

0 =
∑

i∈I0

γiDgi(x̂) where γi ≥ 0 and
∑

i∈I0

γi > 0.

If 0 /∈ I0 or γ0 = 0, so x̂ is stationary for the constraint function f−0 = maxi>0 gi. Provided
this was excluded by a regularity condition (like some extended MFCQ, imposed also for points
outside the feasible set, i.e., 0 /∈ ∂f c

−0(x) for f−0(x) ≥ 0 in terms of Clarke’s subdifferential
or alternatively by convexity along with a Slater point as above), it follows via γ0 > 0 that x̂
satisfies the Lagrange condition and is a stationary point of the penalty problem

min
x∈IRn

g0(x) +
1

r

∑

i>0

max{0, gi(x)}. (4.44)

For its well-known relations to Karush-Kuhn-Tucker points under calmness of the constraints
we refer to [7]. We only mention that, under calmness of the constraints at a local solution x̂
of (4.43), x̂ is also a local solution of (4.44) whenever r > 0 is small enough. This yields

Corollary 4.14. If both the level set S(f(x1)) to (4.42) is bounded and an extended MFCQ
holds on S(f(x1)) then procedure S3 (with any 0 < q ≤ 1) determines a stationary point x̂ to
problem (4.43) whenever r is sufficiently small.

Since we study a maximum of C1 functions, the concrete simple steps of S3 under (4.24)
(which require to solve linear inequalities only) can be again applied.

Using the more general assumptions of Thm. 4.13, the point x̂ can be similarly interpreted
as a (weak) limit of approximations (due to the involved Ekeland term ρd(x′, z)) of such
penalty points. If all Dgi are even weakly continuous, x̂ has the same properties as just
mentioned for x ∈ IRn.
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Even for non-convex problems in IRn, the point x̂ is not necessarily a stationary point in
the usual sense (2.4); consider the origin for f(x) = min{x, x2}. In terms of subdifferentials
and for X = IRn, one only obtains the weak optimality condition that the origin belongs to
the so-called limiting Fréchet subdifferential of f at x̂.
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