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Abstract. In this paper, we present control strategies of a diffusion
process for chemical vapor deposition for metallic bipolar plates.
In the models, we discuss the application of different models to simu-
late the plasma-transport of chemical reactants in the gas-chamber. The
contribution are an optimal control problem based on a PID control to
obtain an homogeneous layering.
We taken into account one- and two-dimensional problems, that are given
with constraints and control functions. A finite element formulation with
adaptive feedback control for time-step selection has been developed for
the diffusion process. The optimization is presented with efficient algo-
rithms.
Numerical experiments are discussed with respect to the diffusion pro-
cesses of the macro-scopic model.
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1 Introduction

We motivate our studying on simulating a low-temperature low-pressure plasma
that can be found in CVD (chemical vapor deposition) processes. In the last
years, due to the research in producing high temperature films by depositing
of low pressure processes have increased. The interest on standard applications
to TiN and TiC are immense but recently also deposition with new material
classes known as MAX-phases are important. The MAX-phase are nanolayered
terniar metal-carbides or -nitrids, where M is a transition metal, A is an A-group
element (e.g. Al, Ga, In, Si, etc.) and X is C (carbon) or N (nitrid).

We present a model for low temperature and low pressure plasma, that can be
used to implant or deposit thin layers of important materials. The applications
of the implantation of the so called MAX-phases are used in the production of
metallic bipolar plates, where the new metal must be non-corrosion and a good
metallic conductor.
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We present different model of the implantation process. First the process in
the plasma-reactor, that transport the contaminants to the wafer-surface. We
deal with a continuous flow model, while we assume a vacuum and a diffusion
dominated process. Second the process at the wafer-surface is modeled by a
heavy particles problem with underlying drift. This model deals more with the
atomic behavior and we do not allow p = 0.

To solve the model equations we use analytical as also numerical methods.
The analytical solutions are based on the Fourier- or Laplace-Transformation
methods and are not longer discussed.

Numerical methods are described in the context of time and spatial dis-
cretization methods.

For the simulations we apply analytical as also numerical methods to obtain
results to predict the grow of thin layers.

The paper is outlined as follows.
In Section 2 we present our mathematical model and a possible reduced

model for the further approximations.
In Section 3 we discuss the theoretical background for the simulation of CVD

processes.
The optimal control with the PID control approach is discussed in Section

4. The software and program-tools are discussed in Section 5. The numerical
experiments are given in Section 6.

In the contents, that are given in Section 7, we summarize our results.

2 Mathematical Model

In the following, the models are discussed in two directions of far-field and near-
field problems:

1. Reaction-diffusion equations, see [9] (far-field problem);
2. Boltzmann-Lattice equations, see [22] (near-field problem).

The modeling is considered by the Knudsen Number (Kn), which is the ratio of
the mean free path λ over the typical domain size L. For small Knudsen Numbers
Kn ≈ 0.01−1.0, we deal with a Navier-Stokes equation or with the Convection-
Diffusion equation, see [15] and [20], whereas for large Knudsen Numbers Kn ≥
1.0, we deal with a Boltzmann equation, see [21].

2.1 Modeling with partial differential equations

Dynamic processes with modifications in time and and space will be reshaped by
partial differential equations. There is 1.) the pde-formula itself which describes
the physical laws of nature that influence the process and 2.) initial and bound-
ary conditions in which specific characteristics of the process, like boundary
behavior, can be coded.

There are two types of boundary conditions, namely Dirichlet and Neumann
boundary. With the Dirichlet type the exact value of the boundary is known
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however with Neumann boundaries the time derivation of the boundary values
in normal direction is known.
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Dirichlet boundary conditions
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Fig. 1. Dirichlet and Neumann boundary conditions.

2.2 Model for Optimal control of the Layer

We will concentrate us on a continuum model of mass transportation and as-
sume that the energy and momentum is conserved, [Gobbert1996]. Therefore
the continuum flow of the mass can be described as convection-diffusion reac-
tion equation given as:

∂tc −∇D∇c − Rg = 0, in Ω × [0, T ] (1)

c(x, 0) = c0(x), on Ω, (2)
∂c(x,t)

∂n
= c1(x, t), on ∂Ω × [0, T ], (3)

where c is the molar concentration. D is the diffusion and v is the velocity. Rg

is the reaction term between the different concentrations.
We modify our model equation 1 to a control problem with an additionally

right-hand side source:

∂tc −∇D∇c = csource, in Ω × [0, T ] (4)

c(x, 0) = c0(x), on Ω, (5)
∂c(x,t)

∂n
= c1(x, t), on ∂Ω × [0, T ], (6)

where csource(x, t) is a discontinuous or continuous source flow of the concentra-
tion c.

We assume an optimal concentration at the layer :
copt(x, t) where the layer is given as x ∈ Ωlayer

and our constraints are given as :
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csource,min ≤ csource ≤ csource,max

Additionally, we have to solve the minimization problem:

min (J(c, csource)) := 1/2

∫

T

∫

Ωlayer

|c(x, t) − copt(x, t)|2dxdt

+λ/2

∫

T

∫

Ω

|csource(x, t)|2dxdt, (7)

where T is the time period of the process.

Remark 1. We choose the L2-error to control our minimization problem. In the
literature, see [25] and [19], there exists further control-errors, which respect the
time-behavior.

In a first work we only solve the transport equation with UG and try to find
out the optimal control of the sources to obtain the best homogeneous layer.

In a second work we consider the optimal control problem and solve also the
backward problem.

3 Theoretical Background for Simulation of diffusive

CVD Processes

In the following we discuss the approximation methods and errors for the simu-
lation of the CVD processes.

3.1 Approximation and Discretization

For the numerical solutions we need to apply approximation methods, e.g. finite
difference methods and iterative solver methods for the nonlinear differential
equations.

The finite element discretization is based on Ωh the variational boundary
value problem reduces to find uh ∈ Vh satisfying the initial condition uh(0) such
that

∫

Ωh

(∂uh

∂t
vh + D∇uh · ∇vh

)

dx = 0, (8)

for all vh ∈ Vh, (9)

We define the minimal length of triangle which we get from the spatial discretiza-
tion with ∆x.

This leads to the following linear semidiscretized system of ordinary differ-
ential equations :

M
du∗

dt
+ Au∗ = 0, (10)

where M is the mass and A the M-matrix.
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Fig. 2. Spatial discretization.

Here we have taken into account the CFL-condition (Courant-Friedrichs-
Levy), which is given as

CFL = 2Dmax

∆t

mine∈E ∆x2
e

, (11)

where Dmax is the maximal diffusion parameter, I is the set of the edges of the
discretization. We restrict the CFL-condition to 1, if we use an explicit time-
discretization and can lower the condition, if we use an implicit discretization.

For the explicit time discretization, we apply explicit Euler or Runge-Kutta
methods

We use the explicit lower order Runge-Kutta methods:

0
1
2

1
2

0 1

(12)

Furthermore we use the following Heun method (third order) :
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(13)

The implicit time discretization is done with implicit Euler or Runge-Kutta
methods.

Here, we use the implicit trapezoidal rule:

0

1 1
2

1
2

1
2

1
2

(14)
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Furthermore we use the following Gauss Runge-Kutta method :
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Remark 2. We apply implicit time-discretization methods for the pure diffusion
part, where we apply explicit time-discretization methods for the pure convection
part. Here we have to respect the CLF-condition, see [12].

3.2 Errors and convergence rate

For studying the errors and the convergence-rates in our test example we have
to define the following norm in two space-dimensions:

– Discrete Lmax-norm :

errLmax,∆x,∆t =
p

max
i=1

|cnum(xi, T ) − cref (xi, T )|, (16)

– Discrete L1-norm :

errL1,∆x,∆t =

p
∑

i=1

∆x2|cnum(xi, T )− cref (xi, T )|, (17)

– Discrete L2-norm :

errL2,∆x,∆t =

√

√

√

√

p
∑

i=1

∆x2|cnum(xi, T )− cref (xi, T )|2, (18)

where ∆x is the spatial step of the discretization, ∆t is the time step of the
discretization and T is the end-time of the computation. cnum is the numerical
solution and cref is the reference solution, computed at fine spatial- and time-
grids.

The numerical convergence rate are given as:

– For the spatial error, we define:

ρL2,∆x1,∆x2,∆t =
log(

errL2,∆x1,∆t

errL2,∆x2,∆t
)

log(∆x1

∆x2

)
, (19)

where ∆x1 is the coarse and ∆x2 is the fine spatial grid-step and ∆t is the
time grid step for both results.

– For the time error, we define:

ρL2,∆x,∆t1,∆t2 =
log(

errL2,∆x,∆t1

errL2,∆x,∆t2

)

log(∆t1
∆t2

)
, (20)

where ∆t1 is the coarse and ∆t2 is the fine time-step and ∆x is the spatial
grid step for both results.
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We often use ∆x2 = ∆x1

2 . In this case, we have ρL2,∆x1,∆x2,∆t = ρL2,∆x1,∆t.
Furthermore we will have for fix ∆x1 attention to the ∆t ∈ I = [0, ∆tmax],
which have maximal ρ. Thus we define ArgMax(∆x):

ArgMax(∆x) := argmax
∆t∈I

ρL2,∆x, ∆x
2

,∆t. (21)

4 Optimal Control Methods

Here we discuss the control of a diffusion equation with a feedback based on a
PID-controller.

4.1 Forward Controller (simple P-Controller)

The first controller we discuss is the simple P-controller, see [23]. A first idea to
control linearly the error of the solved PDE.

In the Figure 3 we present the P-controller.

-

6

?

��

Forward Step: Control Step:

Backward Step:

No Yes

Input: C∗ err(Cn, Cn−1, Cn−2) < Tol

Csource = Csource + λ(Cn − Copt)

C∗ = Csource + Cn

Solve PDE: Cn

Fig. 3. P-controller for the solution C.
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Our control problem is given with the control of the error to the optimal
concentration of the layer and correct the source-flux.

∂tc + v∇c −∇D∇c = csource, in Ω × [0, T ] (22)

c(x, 0) = c0(x), on Ω, (23)
∂c(x,t)

∂n
= c1(x, t), on ∂Ω × [0, T ], (24)

where csource(x, t) is a discontinuous or continuous source flow of the concentra-
tion c.

We assume an optimal concentration at the layer :
copt(x, t) where the layer is given as x ∈ Ωlayer

and our constraints are given as :
csource,min ≤ csource ≤ csource,max

Remark 3. Taken into account the hysteresis of the deposition process, we apply
a linear increase of the optimal control with respect to time, see Figure 4.

tdelay t control

Linear optimal constraint 

copt

Fig. 4. Linear constraint copt for the deposition process.
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4.2 PID-Controller

The PID controller is used for controlling temperature, motion, flow and its
available in analog and digital forms, see [23]. The controller helps to get the
output (velocity, temperature, position) in the area of the constraint output, in a
short time, with minimal overshoot, and with small errors. In many applications
the PID controller help to control the output.

We have three elements in the control:
P -Proportional, I - Integral, D - Derivative.

These terms describe three basic mathematical functions applied to the error
signal , error = Coptimal−Ccomputed. This error represents the difference between
the constraint (optimal set) and the computed results in the simulation. The
controller performs the PID mathematical functions on the error and applies
the their sum to a process (motor, heater, etc.).

To tune a system means adjusting three multipliers KP , KI and KD adding
in various amounts of these functions to get the system to behave the way you
want, see [23].

The table below summarizes the PID terms and their effect on a control
system.

- -KI

∫ T

0
err(t)dt

KP · err(T )

KD
d err(t)

dt
[T ]

structure of PID-control

Effect on Control System:
The main influence in a control
loop, KP reduces a large part of
the overall error. reduces the fi-
nal error in a system. Summing
even a small error over time
produces a drive signal large
enough to move the system to-
ward a smaller error. Counter-
acts the KP and KI terms when
the output changes quickly. This
helps reduce overshoot and ring-
ing.

Table 1. PID-Control.

Initialization of the PID-controller:
The algorithm of the initialization of the PID-control, i.e. search KP , KI , KD,

is given as :
Initialization of the PID-controller, see [25] with the following algorithm:

Algorithm 1 1.) We initialism the P-controller : KI = 0.0, KD = 0.0.
2.) The amplifying factor KP is increased till we reached the permanent os-

cillations as a stability boundary of the closed control system.
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3.) We obtain for KP the critical value KP,crit..
4.) The period-length of the permanent oscillation is given as Tcrit.
5.) We obtain the next parameters with :

Controller KP Tn Tv

P 0.5KP,crit.

PI 0.45KP,crit. 0.85Tcrit

PID 0.6KP,crit. 0.5Tcrit 0.12Tcrit

Table 2. Heuristic derivation of the control-parameters.

Further we compute the rest parameters as. KI = KP /Tn, KD = KP /Tv,
see [16].

4.3 Adaptive Time-control

Often the heuristic assumptions of the PID-parameters are to coarse.
One can improve the method by applying an adaptive step-size control.
We discuss the step-size control with respect to our underlying error, that is

given by the computed and optimal output of our differential equation.
Based on the adaptive control we can benefit to accelerate the control prob-

lem.
According to Hairer and Wanner [11], we apply the automatic control prob-

lem with a PID controller.
The automatically step-size is given as, see [23].

∆tn+1 =

(

en−1

en

)KP
(

tol

en

)KI
(

e2
n−1

enen−2

)KD

∆tn, (25)

where tol is the tolerance, en is the error of the quantities of interest in time
step ∆t.

We can control the step-size with respect to our heuristically computed KP ,
KI and KD parameters.

Initialization of the adaptive control:

Algorithm 2 1.) Define Tolerance, Min and Max of the concentration
2.) Apply the parameters : KP , KD, KI form a first run
3.) Optimize the computations with a first feedback.
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5 Software and Program-Tools

Matlab-functions We use the Matlab-toolbox for the time- and spatial dis-
cretizations, where we have a finite element method with P1-elements and an
implicit Euler method for the time-discretization.

matlab
function

description enhancement

parabolic solve parabolic pde (heat equa-
tion)

In the future we plan to
use academical code to
compute the pde-solutions
(e.g. θ-method). Further-
more we will use Cos-
mol/Femlab.

pdetool matlab toolbox to create the
geometry of the FEM-structure
and the boundary conditions

We have also implemented
an alternative mesh, with
orthogonal triangles. Mat-
lab always uses equilateral
triangles.

refine This function refines the geom-
etry of the mesh. All triangles,
were replaced with four new tri-
angles.

For convergence rate cal-
culations we must guar-
antee that the geometry
near the points, which are
changed in the backward
step (source), are similar.

guide matlab toolbox to create graphi-
cal user interfaces (gui)

DEPOSIT-PID toolbox The PID-controller is also programmed in Matlab.
Our combined code is given in the DEPOSIT-PID toolbox and described in
the following. The DEPOSIT-PID toolbox is manipulated by a graphical user
interface, by which simulation- and control-models are chosen and corresponding
parameters can be manually adjusted.

The objective is to simulate the diffusion and deposition of the vapor in the
apparatus and to obtain the optimal vapor concentration at the measuring point.

We can divide the process into three phases, namely forward step, control
step, backward step, that have a cyclic repetition. In the forward step the diffu-
sion takes place, which can be simulated by a time-step of the heat equation.

After that, in the control step, the actual concentration at the under bound-
ary (0,−1) can be measured (shown by computed in the graph) and compared
with the optimal value (shown by optimal).

The control step is followed by the backward step: From the error in control
step and the control model the optimal alteration of the source can be computed.
The vapor flows through the source point (0, 0) in the apparatus and this value
is shown by the SourceOutput in the graph. This will be simulated through
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the addition of SourceOutput to actual concentration at the source point (see
following figure). Further, as a simplification, we set the concentration at the
under boundary to zero, because it is here that the gas transforms into solid
matter.
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Fig. 5. Backward step.

In Section 4 we introduced some fundamentals in order to control the appa-
ratus. The models and corresponding parameters can be altered by the Gui.

The Layout of the DEPOSIT-PID gui

1 Short time plot (2D) of computed, optimal and Source Output
2 Long time plot (2D)
3 Listbox with names parameters

3a Textbox with actual value of the parameter chosen in [3]
3b Textbox to change the value of the parameter chosen in [3]
4 Listbox with names parameters

4a Textbox with actual value of the parameter chosen in [4]
4b Textbox to change the value of the parameter chosen in [4]
5 3D plot of distribution
6 3D grid plot of distribution
7 Listbox with names of parameters

7a Checkbox with actual value of the parameter chosen in [7]
8 Push button: Save
9 Push button: Reset

10 Radio button: Start
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Fig. 6. Layout of the DEPOSIT-PID Gui .

KONTOOL Another software-tool KONTOOL is programmed to compute the
numerical convergence rates of the applications. The software-tool has imple-
mented the errors and convergence rates defined in Section 3.2. An error-analysis
based on successive refinement of space and time is done and the resulting errors
and convergence rates are computed. Optimal convergence rates with respect to
balance the time- and spatial-grids are calculated, see Algorithm 3.

Remark 4. The software-tool can be modified and applied to arbitrary spatial-
and time-discretization methods. The interface of KONTOOL needs at least
the parameters of the spatial and time grid and the starting parameters of the
underlying methods.
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?
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?

?

?

-

-

Input

and time dis.(∆t, ∆x, n)

Parameter for spartial

Spartial dis. of the grid

Time dis.
Time step ∆t

Spartial Step ∆x

Spartial dis.

Convergence rate

Convergence Diagram

Output

∆x/2 till ∆x/n

∆t increase

The algorithm of the compu-
tation of the numerical conver-
gence tableau :

Algorithm 3 1.) We compute
reference solutions. a.) numeri-
cally : fine time and spatial steps
or b.) analytically (if there exists
an analytical solution)
2.) We apply one spatial dis-
cretization of step ∆x and ap-
ply all time discretization with
steps ∆t, where the coarsest ∆t
is given by the CFL condition
or till first non-numerical re-
sults as oscillations. We com-
pute the error cnum−cref in the
L2-norm.
3.) We continue the next fine
spatial steps, e.g. ∆x/2.
4.) We compute the convergence
tableau with time and space.

Table 3. Convergence Diagram Tool.

In the next section we discuss the numerical experiments.

6 Experiment for the plasma reactor

In this section, we present our numerical experiments for the CVD processes in
a plasma reactor.

6.1 Simulation of a diffusion equation with analytical solution
(Neumann boundary conditions)

Here we simulate a diffusion equation with Neumann boundary conditions and
right hand side 0. Our control problem has only the forward problem to solve
and we consider the accuracy of our simulations.

We have the following equation :

∂tc − β2(∂xx + ∂yy)c = 0, in Ω × [0, T ] (26)

c(x, y, 0) = cos(2x) + cos(2y), on Ω, (27)

∂nc(x, y, t) = 0, on ∂Ω × [0, T ], (28)
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where c is the molar concentration. Ω = [−1, 1]× [−1, 1] and t ∈ (0, T ). D = β2

is the diffusion parameter of the diffusion equation and f(t) is the right hand
side or diffusion source.

We have the following analytical solution :

cana(x, y, t) = sin(2) +

∞
∑

n=1

An exp(−β2n2π2t)(cos(nπx) + cos(nπy)), (29)

where An = (−1)n −4 sin(2)
n2π2−4 . We apply the diffusion coefficient D = 0.01 resp.

β = 0.1. We obtain the following result after time T = 12.0, see Figure 7:
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Fig. 7. 2D experiment of the diffusion equation at the end-time T = 12.0, β = 0.1.



16

We see that for large ∆x the numerical solution converge faster to the stable
constant endsolution (offset) than solution for smaller ∆x and the analytical
solution. The error between the constant analytical endsolution (offset, sin(2) =
0.9093) is also greater than for smaller ∆x.

The L2-error is given in the following Table 4

∆x offset(analy.) max(num.) min(num.) L1-error L2-error

0.20 0.909297426826 0.902108407643 0.902108381295 7.189e − 3 5.17e − 5
0.10 0.909297426826 0.907514994036 0.907514987008 1.782e − 3 3.18e − 6
0.05 0.909297426826 0.908858511500 0.908858509666 4.389e − 4 1.93e − 7

Table 4. Offset convergence (∆t = 0.1, T imestep = 100, β = 0.61644).

Remark 5. We test for the pure diffusion equation our underlying discretization
methods and apply finite elements for the spatial discretization and implicit
Runge-Kutta methods for the time discretization. In the results we obtain de-
creasing errors for the different time- and spatial steps.
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6.2 Simulation of an optimal control of a diffusion equation with
heuristic choise of the control parameters

Here we simulate a first example of a diffusion equation and control the concen-
trations in the deposition process.
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Fig. 8. 2D experiment of the diffusion equation and control of a single point.

We have the following equation :

∂tc −∇D∇c = f(t), in Ω × [0, T ], (30)

c(x, 0) = c0(x), on Ω, (31)
∂c(x,t)

∂n
= c1(x, t), on ∂Ω × [0, T ], (32)

where c is the molar concentration. D is the diffusion parameter of the diffusion
equation and f(t) is the right hand side or diffusion source. We have the following
constraint : coptimal(xpoint, ypoint) = 0.5, where (xpoint, ypoint) is the control
point in our domain. The parameters are given as : D = 0.01 and f(t) = at + b,
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so we deal with a linear source, a = 0.2 and b = 0.1 are constants. In the next
tests we propose the 3 possibilities to control the optimal temperature

– P-Control with constant source
– PID-Control with constant source
– PID-Control with Linear source

The results with for the control methods are given in Figure 8.

6.3 Preliminary remark for simulations for the convergence order

To determine the function ArgMax, firstly we have to determine a practicable
interval I for

ArgMax(∆x) := argmax
∆t∈I

ρL2,∆x, ∆x
2

,∆t. (33)

One possibility is the Interval

ICFL := (0, ∆tCLF ], (34)

with ∆tCFL := ∆s2

2Dmax
from the CFL-condition. In the experiments we find

another interval, where the convergence rate function is relative stable convex:

Istable := (0, ∆tstable], (35)

where

∆tstable := max
∆t

{ρ : (0, ∆t) → IR is convex}. (36)

It is clear that we can in Istable take some restrictions to a subinterval Isub :=
[∆tsmin, ∆tsmax] ⊂ Istable, when we know that is some ∆t ∈ Isub with ρ(∆t) >
ρ(∆tsmin), ρ(∆tsmax).

The function of the numerical convergence rate is discrete in the spatial
discretization variable ∆x since we get a finer discretization with a bisection of
∆x. With a finer discretization, a triangle is replaced by four sub-triangles.

In the temporal discretization variable ∆t we are in contrast not restricted
to such conditions and ∆x could be chosen to any arbitrary value above 0. To
get a first glance, we have selected the methods of bisection. Subsequently, we
consider finer discretizations in intervals which are of special interest.
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6.4 Simulations for the convergence order

We consider the convergence rate ρ as a function in dependence of ∆x and
∆t. This function also depends on some parameters for instance the diffusion
coefficient D and the control parameter λ. We now present the results of two
chosen experiments. For the first experiment the parameters are D = 0.1 and
λ = 1, while we increase the propagation velocity in such a way that we increase
D to 1 for the second experiment.

∆x ∆t err = |unum,∆x,∆t − unum,fine∆x,∆t| Convergence
Rate

0.1 0.1 0.077007 3.2531
0.1 0.05 0.016153 4.0077
0.1 0.025 0.0020085 3.9447
0.1 0.0125 0.00026087 1.8276
0.1 0.00625 0.00014699 0

0.05 0.1 0.27873 2.8591
0.05 0.05 0.076833 3.7481
0.05 0.025 0.011437 4.052
0.05 0.0125 0.001379 3.7776
0.05 0.00625 0.00020111 0

0.025 0.1 0.6564 2.4552
0.025 0.05 0.23939 3.2449
0.025 0.025 0.050505 4.008
0.025 0.0125 0.0062781 3.9999
0.025 0.00625 0.00078482 0

0.0125 0.1 1.04 2.1424
0.0125 0.05 0.4711 2.7173
0.0125 0.025 0.14327 3.7251
0.0125 0.0125 0.021668 4.0516
0.0125 0.00625 0.0026133 0

0.00625 0.1 1.2092 1.586
0.00625 0.05 0.80554 2.4179
0.00625 0.025 0.30148 3.2179
0.00625 0.0125 0.064803 4.005
0.00625 0.00625 0.0080726 0

Table 5. Numerical results for the P-controller for different spatial steps with D = 0.1
and λ = 1.0 as P-value for the controller.

We observe that for instance in the case of spatial discretization ∆x = 0.05
and x = 0.25 the maximal convergence rate lies between ∆t = 0.05 and ∆t =
0.0125. The maximum itself lies close to 0.025. To determine the precise value
of ∆t = ArgMax(∆x) we refine our method in these interesting intervals.
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Fig. 9. ρ for a P-Controller, D=0.1.

In the plot we observe that there is a relatively stable convex area starting
at 0. This area then switches over to an area with strong fluctuations. We now
compare the stable area with the CFL-condition. The area where CFL < 1
lies in the stable convex area of the function (∆tCFL < ∆tstable). For ∆x =
0.05, D = 0.1 the CFL-area ends at ∆tCFL = 0.0125, the stable convex area
range to about ∆tstable = 0.2. For our convergence diagram we try to find for
every ∆x the value ∆t where the convergence rate becomes maximal (ArgMax).
It is clear that we only use ∆t at which the convergence rate function is stable:
∆t < ∆tstable.

0.0125 0.025 0.05 0.1
0.01

0.1

0.2

0.8
1

Maximal convergence rate (P−Con,λ=1,D=0.1)

∆ x

∆ 
t

We can see in the loglog-plot
ArgMax(∆x) linear depen-
dence.

∆x ArgMax −log(Max)
.10000 .65000 0.62
.05000 .19000 2.4
.02500 0.04 4.64
.01250 .01000 6.64

This table show for ∆x = 0.1,
0.05, 0.025, 0.0125 the associ-
ated ∆t, which have maximal
convergence rate (ArgMax).

Table 6. Convergence Diagram (KONTOOL).
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Fig. 10. ρ for a P-Controller, D=1.

0.0125 0.025 0.05 0.1

0.01

0.1
Maximal convergence rate (P−Con, λ=1, D=1

∆ x

∆ 
t

The loglog-plot ArgMax(∆x)
with linear dependence.

∆x ArgMax −log(Max)
.10000 0.0700 3.84
.05000 0.0170 5.88
.02500 0.0040 7.97
.01250 0.0010 9.97

This table show for ∆x = 0.1,
0.05, 0.025, 0.0125 the associ-
ated ∆t, which have maximal
convergence rate (ArgMax).

Table 7. Convergence Diagram (KONTOOL).
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Remark 6. The experiment shows the linear convergence rate of the P-controller
with different λ values. So we obtain a stable method with respect to the P -
controller. In the examples, we apply heuristic methods to derive the control
parameters for the P- and PID-controller. We show that we have reached the
linear order of the underlying finite element discretization method. We have
higher control errors if we did not compute the correct control parameters and
the numerical errors are smaller, than our control error. To prohibut this problem
we have to compute in the next example the control parameters by a feedback
equation, see [24].
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6.5 Simulation of an optimal control of a diffusion equation with
adaptive control

In the second example we simulate the diffusion equation and control the tem-
perature with and adaptive control based on a PID controller, see [23].

We have the following equation :

∂tc −∇D∇c = f(t), in Ω × [0, T ] (37)

c(x, t) = c0(x), on Ω, (38)
∂c(x,t)

∂n
= c1(x, t), on ∂Ω × [0, T ], (39)

where c is the molar concentration. D is the diffusion parameter of the diffusion
equation and f(t) is the right hand side or source.

We have the following constraint :
coptimal(xpoint, ypoint) = 0.5
where (xpoint, ypoint) = (0,−1) is the control point in our domain.
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PID: ∆ t=0.1
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Fig. 11. 2D experiment with and without the adaptive time-step control.

The automatically step-size is given as, see [23].

∆tn+1 =

(

en−1

en

)KP
(

tol

en

)KI
(

e2
n−1

enen−2

)KD

∆tn, (40)
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Fig. 12. Adaptive PID with modified parameters.

where tol = 1 is the tolerance, en is the error of the quantities of interest in time
step ∆t.
The errors are given as

en =
||un − un−1||

||un||
, (41)

where un is the result at time-step tn.
The parameters are given as : D = 0.1, Pkrit = 15, Tkrit = 5, ∆t (PID-

Control) , tol = 1 (adaptive PID-Control) ∆tmax = 0.1 (adaptive PID-Control),
∆tmin = 0.01 (adaptive PID-Control) (see Figure 11).

Furthermore we change the parameter tol = 1 to tol = 0.1 and ∆tmin = 0.01
to ∆tmin = 0.0001 (see Figure 12).

Remark 7. In the Figures 11 and 12, we see an oscillating time interval at the
beginning of the automatically step-size control. In the first experiments, we did
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only taken into account a previous heuristically computation of the control pa-
rameters KP , KI and KD before the step-size control for the whole time-interval
0, T . The optimal control parameters are given to the whole time-interval 0, T .
A modified algorithm to compute the control parameters for the initialization
time-interval 0, tbegin and the whole time-interval 0, T overcome the oscillation
problems.

A modified automatically step-size control, which minimize the oscillations
is given in the following Algorithm 4.

Algorithm 4 1.) We compute the reference control parameters KP,global, KI,global

and KD,global for the time-interval 0, T .
2.) We apply the automatically step-size control for the global control param-

eters with tolglobal, ∆tmax,global and ∆tmin,global, which can by chosen large.
3.) We stop the computation till we reach the optimal solution and mark

remember the time toszill.
4.) We compute the local control parameters KP,local, KI,local and KD,local

for the time-interval 0, toszill.
5.) We restart the computation with the local control parameters and smaller

step-size parameters tollocal, ∆tmax,local and ∆tmin,locall till we reach toszill and
continue the computation with the global parameters.

6.) We stop the computation if we reach t = T . If we obtain also high oscil-
lation with the local parameters, we refine the local interval and goto step 3.).

Remark 8. The modified automatically step-size control taken into account the
local behavior of the control problem. We could adapt the control parameters
KP , KI and KD with respect to the local time-intervals. This modified algorithm
considers a local time behavior more accurate and reduces oscillations at the
initialization process.

7 Conclusions and Discussions

We present a continuous or kinetic model, due to the fare field or near field effect
of our deposition process. We discuss the PID-controller to automatize our de-
position process. Due to heuristic methods of deriving the PID parameters, we
discuss an aposteriori error estimates to automatize the time-stepping methods.
A modified automatically step-size control is discussed and will be considered for
future applications. For the mesoscopic scale model we discussed different exper-
iments and their convergence rates. Further numerical examples are presented
to discuss the influence of near-continuum regime at the thin film. In future, we
will analyze the validity of the models with physical experiments.
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