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Abstract. In this paper, we present modeling and simulation for phys-
ical vapor deposition for metallic bipolar plates.
In the models, we discuss the application of different models to simulate
the transport of chemical reactions of the gas species in the gas-chamber.
The so called sputter process is an extremely sensitive process to deposit
thin layers to metallic plates.

We taken into account lower order models to obtain first results with
respect to the gas fluxes and the kinetics in the chamber.
The model equations can be treated analytically in some circumstances
and complicate multi-dimensional models are solved numerically with a
software-packages (UG unstructed grids, see [2]).
Because of multi-scaling and multi-physical behavior of the models, we
discuss adapted schemes to solve more accurate in the different domains
and scales.
The results are discussed with physical experiments to give a valid model
for the assumed growth of thin layers.
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1 Introduction

We motivate our studying on simulating a thin film deposition process that can
be done with PVD (physical vapor deposition) processes. In the last years, the
research of producing thin films to metallic plates have been increased. Novel
deposition methods are low temperature and low pressure processes, that can be
controlled by an underlying plasma, see [3], [1]. One of the interests on standard
applications to TiN and TiC are immense but recently also deposition processes
with new material classes known as MAX-phases are important. The MAX-phase
are nanolayered terniar metal-carbides or -nitrids, where M is a transition metal,
A is an A-group element (e.g. Al, Ga, In, Si, etc.) and X is C (carbon) or N
(nitride). Such materials with nanolayed MAX-phase films can be used in the
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production of metallic bipolar plates, where the new thin film is at least non-
corrosive and a metallic conductor.

We present models, that can be used to control flow and transport of gaseous
species to the deposition layer, see [1] and [21].

We deal with a continuous flow model, while we assume a vacuum and dif-
fusion dominated process. The models can be solved with convection-diffusion
equations. Further, we deal with kinetic models to understand the material fluxes
in the PVD processes, see [3].

To solve the model equations, we use analytical as also numerical methods
to be efficient as possible in the solver process, see [13].

To be precise, for numerical methods, we apply finite volume discretizations
for the spatial terms and the backward Euler method or Crank-Nicolson method
for the time discretization.

To couple analytical and numerical solvers together, we apply operator split-
ting methods, as effective coupling schemes. Such splitting methods can be seen
as microscopic decoupling schemes to understand complicate mixed physical ef-
fects, e.g. flux streams of the species, reactions between the species and retarda-
tion processes. This can be helped to discuss each dominant physical effect in a
separate decoupled model, see [14].

The paper is outlined as follows.
In section 2 we present our mathematical model and a possible reduced model

for the further approximations. To solve our model equations, we apply various
analytical and numerical methods, which are presented in Section 3. The decom-
position methods to separate the singular and non-singular reaction systems are
explained in Section 4. The numerical experiments are given in Section 5.

In the contents, that are given in Section 6, we summarize our results.

2 Mathematical Model

In the following, the models are discussed in two directions of far-field and near-
field problems:

1. Reaction-diffusion equations, see [15] (far-field problem);
2. Boltzmann-Lattice equations, see [21] (near-field problem).

The modeling is considered by the Knudsen Number (Kn), which is the ratio of
the mean free path λ over the typical domain size L. For small Knudsen Numbers
Kn ≈ 0.01−1.0, we deal with a Navier-Stokes equation or with the Convection-
Diffusion equation, see [16] and [18], whereas for large Knudsen Numbers Kn ≥
1.0, we deal with a Boltzmann equation, see [19].

2.1 Model for Small Knudsen Numbers (Far Field Model)

When gas transport is physically more complex because of combined flows in
three dimensions, the fundamental equations of fluid dynamics become the start-
ing point of the analysis. For our models with small Knudsen numbers, we can
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assume a continuum flow, and the fluid equations can be treated with a Navier-
Stokes or especially with a convection-diffusion equation.

Three basic equations describe the conservation of mass, momentum and
energy, that are sufficient to describe the gas transport in the reactors, see [19].

1. Continuity : The conservation of mass require that the net rate of the mass
accumulation in a region be equal to the difference between the inflow and
outflow rate.

2. Navier-Stokes : Momentum conservation requires that the net rate of mo-
mentum accumulation in a region be equal to the difference between the in
and out rate of the momentum, plus the sum of the forces acting on the
system.

3. Energy : The rate of accumulation of internal an kinetic energy in a region
is equal to the net rate of internal and kinetic energy in by convection, plus
the net rate of heat flow by conduction, minus the rate of work done by the
fluid.

We will concentrate us to the conservation of mass and assume that the energy
and momentum is conserved, see [15]. Therefore the continuum flow can be
described as convection-diffusion equation given as:

∂
∂tc + ∇F − Rg = 0, in Ω × [0, T ] (1)

F = −D∇c,

c(x, t) = c0(x), on Ω, (2)

c(x, t) = c1(x, t), on ∂Ω × [0, T ], (3)

where c is the molar concentration and F the flux of the species. D is the
diffusivity matrix and Rg is the reaction term. The initial value is given as c0

and we assume a Dirichlet Boundary with the function c1(x, t) sufficient smooth.

2.2 Model for Large Knudsen Numbers (Near Field Model)

The model assumes that the heavy particles can be described with a dynamical
fluid model, where the elastic collisions define the dynamics and few inelastic
collisions are, among other reasons, responsible for the chemical reactions.

To describe the individual mass densities as well as the global momentum
and the global energy as dynamic conservation quantities of the system, corre-
sponding conservation equations are derived from Boltzmann equations.

The individual character of each species is considered by mass-conservation
equations and the so-called difference equations.

The Boltzmann equation for heavy particles (ions and neutral elements) is now
given as

∂

∂t
ns +

∂

∂r
· (nsu + nscs) = Q(s)

n , (4)
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∂

∂t
ρu +

∂

∂r
·
(

ρuu + nTI − τ∗
)

=

N
∑

s=1

qsns

〈

E
〉

,

∂

∂t
E∗

tot +
∂

∂r
·
(

E∗

totu + q∗ + nTu − τ∗ · u
)

=
N
∑

s=1

qsns (u + cs) ·
〈

E
〉

− Q
(e)
E,inel,

where ρ denotes the mass density, u is the velocity, and T the temperature of
the ions. E∗

tot is the total energy of the heavy particles. ns is the particle density
of heavy particle species s. q∗ is the heat flux of the heavy particle system. τ∗

is the viscous stress of the heavy particle system. E is the electric field and QE

is the energy conservation.

Further the production terms are Q
(s)
n =

∑

r asignkα,rnαnr with the rate
coefficients kα,r.

We have drift diffusion for heavy particles in the following fluxes. The dis-
sipative fluxes of the impulse and energy balance are linear combinations of
gene-realized forces,

q ∗ = λE

〈

E
〉

− λ
∂

∂r
T −

N
∑

s=1

N
∑

α=1

λ(α,s)
n

1

ns

∂

∂r
nα,

τ∗ = −η

(

∂

∂r
u +

(

∂

∂r
u

)⊤

−
2

3

(

∂

∂r
· u

)

I

)

,

E∗

tot =
N
∑

s=1

1/2ρsc
2
s + 1/2ρu2 + 3/2nT.

where λ is the thermal diffusion transport coefficient. T is the temperature, n is
the particle density.

Diffusion of the species are underlying to the given plasma and described by
the following equations

∂
∂tns + ∂

∂r · (nsu + nscs) = Q
(s)
n ,

cs = µs

〈

E
〉

− d
(s)
T

∂
∂rT −

∑N
α=1 D

( α,s)
n

1
ns

∂
∂rnα.

The density of the species are dynamical values and the species transport and
mass transport are underlying to the following constraint conditions:

∑

s msns = ρ,
∑

s nsmscs = 0.

where ms is the mass of the heavy particle, ns is the density of the heavy particle,
cs is the difference velocity of the heavy particle.
Field Model
The plasma transport equations are maxwell equations and are coupled with a
field. They are given as

1

µ0
∇× Bdyn = −eneue + j̃ext, (5)
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∇ · Bdyn = 0, (6)

∇× E = −
∂

∂t
Bdyn, (7)

where B is the magnetic field and E is the electric field.

2.3 Simplified Model for Large Knudsen Numbers (Near Field
Model)

For the numerical analysis and for the computational results, we reduce the com-
plex model and derive a system of coupled Boltzmann and diffusion equations.

We need the following assumptions:

q ∗ = −λ
∂

∂r
T,

τ∗ = 0,

E∗

tot = 3/2nT,

Q
(e)
E,inel = const,

and obtain a system of equations:

∂

∂t
ρ +

∂

∂r
· (ρu) = 0,

∂

∂t
ρu +

∂

∂r
·
(

ρuu + nTI
)

=

N
∑

s=1

qsns

〈

E
〉

,

∂

∂t
3/2nT +

∂

∂r
·

(

3/2nTu + λ
∂

∂r
T + nTu

)

=

N
∑

s=1

qsns (u + cs) ·
〈

E
〉

− Q
(e)
E,inel .

Remark 1. We obtain three coupled equations for the density, velocity and the
temperature of the plasma. The equations are strong coupled and a decomposi-
tion can be done in the discretized form.

3 Discretization methods

In this section, we deal with the discretization methods that we use to discretize
ODE and PDE systems.

3.1 Analytical Solution to the systems of ordinary differential
equations of first order

The following ODE system is given :

dc

dt
= A c(t) + b(t) , (8)
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where c(t = t0) = c0.
We assume the matrix A is constant and non-singular. Further we assume

that b(t) is a smooth function of t.
For the solution, we obtain the method of integrating factor and to a trans-

formation to eigenvalues.
We have

c(t) = chomo(t) + cp(t) , (9)

where c(t = t0) = c0.
For the homogeneous part we have:

chomo(t) = Wc exp(Λ(t − t0))c̃ , (10)

where c̃ = W−1
c c0 and

exp(Λ(t − t0)) =











exp(λ1(t − t0)) 0 . . . 0
0 exp(λ2(t − t0)) . . . 0

0 0
. . . 0

0 0 . . . exp(λn(t − t0))











,(11)

For the inhomogeneous part we have:

cp(t) = Wc exp(Λ(t))u(t) , (12)

where u(t) =
∫ t

t0
(exp(Λ(t)))−1W−1

c b(t)dt and the integration can be done ap-

proximately with an numerical integration method, e.g. [22].
We obtain the solution :

c(t) = Wc exp(Λ(t − t0))W
−1
c c0 (13)

+Wc exp(Λ(t))u(t) ,

where c0 is the initial condition.

Remark 2. The solution can be used if we have non-singular matrices, or if the
reactants have a successor. Otherwise we obtain fast numerical solvers.

3.2 Numerical Methods to ODEs

Here we introduce our numerical methods, which we apply to solve the under-
lying ODE’s for their singular reaction matrix with det(A) = 0.

We apply the following methods :
We use the implicit trapezoidal rule

0
1 1

2
1
2

1
2

1
2

(14)
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Further we use the following implicit Runge-Kutta methods :
Lobatto IIIA

0 0 0 0
1
2

5
24

1
3 − 1

24
1 1

6
2
3 − 1

6
1
6

2
3 − 1

6

(15)

Remark 3. We can also apply integration methods for the right hand side.

3.3 Numerical Methods to the PDEs

We consider the numerical treatment of the advection equation takes the form,

R φ∂tu + ∇ · (vu) = 0, (t, x) ∈ [0, T ]× Ω , (16)

u(0, x) = U1(0, x) , x ∈ ∂Ω , (17)

u(t, x) = U2(t, x) , (t, x) ∈ [0, T ]× ∂ΩDirich , (18)

The initial conditions are given by U(0, x) and u(t, γ) is explicitly given for t > 0
at the inflow boundary γ ∈ ∂inΩ, where ∂inΩ := {x ∈ ∂Ω, n · v < 0}. We have
∂Ωin ∪ ΩDirich = ∂Ω. The exact solution of (16) can be defined directly using
the so called “forward tracking” form of characteristics curves. If the solution
of (16) is known for some time point t0 ≥ 0 and for some point y ∈ Ω ∪ ∂inΩ,
then u remains constant for t ≥ t0 along the characteristic curve X = X(t), i.e.,
u(t, X(t)) = u(t0, y) and

X(t) = X(t; t0, y) = y +

t
∫

t0

v(X(s))

R(X(s))φ(X(s))
ds . (19)

The characteristic curve X(t) starts at time t = t0 in the point y, i.e. X(t0; t0, y) =
y, and it is tracked forward in time for t > t0. Of course, one can obtain that
X(t) 6∈ Ω, i.e., the characteristic curve can leave the domain Ω through ∂outΩ.

Consequently, one has that u(t, X(t; t0, y)) = U(t0, y), where the function
U(0, y) is given for t0 = 0 and y ∈ Ω by initial conditions (16) and for t0 > 0
and y ∈ ∂inΩ by the inflow boundary conditions (16).

The solution u(t, x) of (16) can be expressed also in a “backward tracking”
form that is more suitable for a direct formulation of discretization schemes.
Concretely, for any characteristic curve X = X(t) = X(t; s, Y ) that is defined
in a forward manner, i.e., X(s; s, Y ) = Y and t ≥ s, one obtains the curve
Y = Y (s) = Y (s; t, x) that is defined in a backward manner, i.e., Y (t; t, X) = X
and s ≤ t. If we express Y as function of t0 for t0 ≤ t, one obtains from (19)

Y (t0) = Y (t0; t, x) = x −

t
∫

t0

v(X(s))

R(X(s))φ(X(s))
ds (20)
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and one has u(t, x) = u(t0, Y (t0)).
To simplify out treatment of inflow boundary conditions, we suppose that

U(t, γ) = Un+1/2 ≡ const for γ ∈ ∂inΩ and t ∈ [tn, tn+1). Moreover, we define
formally for any γ ∈ ∂inΩ and t0 ∈ [tn, tn+1] that Y (s; t0, γ) ≡ Y (t0; t0, γ) for
tn ≤ s ≤ t0.

In [12], the so called “flux-based (modified) method of characteristics” was
described that can be viewed as an extension of standard finite volume methods
(FVMs)). The standard FVM for differential equation (16) takes the form

|Ωj |Rj φj un+1
j = |Ωj |Rj φj un

j −
∑

k

tn+1
∫

tn

∫

Γjk

nj(γ) · v(γ)u(t, γ) dγdt , (21)

The idea of flux-based method of characteristics is to apply the substitution
u(t, γ) = u(tn, Y (tn; t, γ)) in (21).

Particularly, for the integration variable t ∈ (tn, tn+1) and for each point
γ ∈ ∂outΩj , the characteristic curves Y (s) are tracked backward starting in γ
at s = t and finishing in s = tn. One must reach a point Y = Y (tn) such
that Y ∈ ∂inΩ or Y ∈ Ω. In the first case, u(tn, Y ) is given by the inflow
concentration U(tn, Y ) = Un, in the latter one by u(tn, Y ).

The integral in right hand side of (21) can be solved exactly for one-dimensional
case with general initial and boundary conditions, see e.g. [20]. For general 2D or
3D case, a numerical approximation of u(t0, Y (t0)), respectively of Y (t0), shall
be used.

4 Splitting methods

The following splitting methods of first order are described. We consider the
following ordinary linear differential equations:

∂tc(t) = A c(t) + B c(t) , (22)

where the initial-conditions are given as cn = c(tn). The operators A and B are
assumed to be bounded linear operators in the Banach-space X with A, B : X →
X . In applications the operators corresponds to the physical operators, e.g. the
convection- and the diffusion-operator.

The operator-splitting method is introduced as a method which solve two
equation-parts sequentially, with respect to initial conditions. The method is
given as following

∂c∗(t)

∂t
= Ac∗(t) , with c∗(tn) = cn , (23)

∂c∗∗(t)

∂t
= Bc∗∗(t) , with c∗∗(tn) = c∗(tn+1) .

where the time-step is given as τn = tn+1− tn. The solution of the equation (22)
is cn+1 = c∗∗(tn+1).
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The splitting-error of the method is derived with Taylor-expansion, cf. [10].
We obtain the global error as

ρn =
1

τ
(exp(τn(A + B)) − exp(τnB) exp(τnA)) c(tn)

=
1

2
τn[A, B] c(tn) + O((τn)2) . (24)

where [A, B] := AB−BA is the commutator of A and B. We get an error O(τn)
if the operators A and B do not commute, otherwise the method is exact.

4.1 Splitting with respect to the numerical and analytical methods

Here we present a splitting method with respect to the numerical and analytical
methods for the differential equations.

Often an analytical method can be used to solve more efficient parts of the
full equation system, see [10].

The other part can more efficiently solved by numerical methods.
In our following example, we split a system of ODE’s with respect to an

analytical method (transformation to an eigenvalue problem) and a numerical
method (Trapezoidal rule).

We deal with the following system of ODE’s :

dc

dt
= Mc, (25)

c(0) = c0, (26)

where c = (c1, . . . , cn)t is the solution vector of the ODE system.
The reaction matrix M is given as:

M = M1 + M2 . (27)

where M is the full matrix of the ODE system and M1 the part of the analytical
method, where M2 is the part of the numerical method.

So det(M1) 6= 0 and det(M2) = 0, that means for the M1 matrix we can
obtain a transformation to an eigenvalue equations, where for M2 we can not use
the transformation to an eigenvalue problem and apply the numerical methods.

Our algorithm is given as:

Algorithm 1 1.) Split the reaction matrix M : M1 : Matrix with non zero
eigenvalues, M2 : Matrix with zero eigenvalues

2.) Compute the equation part

dc̃

dt
= M1c̃, (28)

c̃(0) = c̃0, (29)

with the analytical method, see section 3.
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3.) Compute the equation part

dĉ

dt
= M2ĉ, (30)

ĉ(0) = ĉ0, (31)

with the numerical method, see section 3.
4.) The result is given as :
c = (c̃, ĉ).

In the next section we discuss the numerical experiments.

5 Experiment for the sputter process

In the following we present the various sputter processes.

5.1 Sputter Reactions

In the following experiments we discuss the reaction models of the sputter pro-
cess.

Experiment 1: High Energy Level In this model one assumes a high energy
level for the sputtering process. Based on the work of [3].

In the next experiment we deal with the following reaction scheme:

The initial conditions are given with ctot,0 = 1.0 and cA,0 = cB,0 = csurface,0 =
0 and we can deal with the following reaction equations:

dctot

dt
= −ctot, (32)

dcA

dt
= 0.95ctot − 0.1cA, (33)

dcB

dt
= 0.095cB − 0.05cB, (34)

dcsurface

dt
= 0.05ctot + 0.005cA + 0.05cB, (35)

where the total particle densities is given as ctot, the single particles are given
as cA and cB and the surface particle density is given as csurface.

As a result of the computation we show the figure 1. Additionally we present
the hysteresis of ca and csurface in Figure 2.
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Remark 4. The model can be used to have an overview to horizontal gas flows
across the thin layer. We can compute the growth rate depending on the amount
of the velocity and diffusion. The simulations are done with Maple and Mathe-
matica.

Experiment 2: Low Energy Sputtering In the next experiment we deal
with a lower energy level and assume the resting of the molecules to a later time
at the target layer. For the low energy sputtering we assume a reaction schemes
given in [3]:

The initial conditions are given with utot,0 = 1.0 and u1,0 = u2,0 = u3,0 =
usurface,0 = ulost = 0 and we can deal with the following reaction equations:

dutot

dt
= −utot + 0.05u2, (36)

du1

dt
= 0.58utot − 0.9u1, (37)

du2

dt
= 0.42utot − u2, (38)

du3

dt
= 0.95u2 − u3, (39)

dusurface

dt
= 0.9u1 + 0.4u3, (40)

dulost

dt
= 0.6u3. (41)

As a result of the computation we get the graphs shown in Figure 3. We present
the hysteresis of u1 and u3 in Figure 4.

Experiment 3: Energy level with precursor gas or offsets In this model
one assumes a energy level and a precursor gas for the sputtering process. Based
on the work of [3].

In the next experiment we deal with the following reaction:
The initial conditions are given with c1,0 = 1.0 and c2,0 = 0.1 and we deal with
the following reaction equations:

dc1

dt
= −0.01c1 + 0.001, (42)

dc2

dt
= −0.1c2 + 0.01c1 + 0.002. (43)
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As a result of the computation we get the graphs shown in the Figures 5 and 6.

By changing the reaction coefficients we get the following reaction:
The initial conditions are given with c1,0 = 1.0 and c2,0 = 0.1 and we get the

following reaction equations:

dc1

dt
= −0.5c1 + 0.02, (44)

dc2

dt
= −0.8c2 + 0.5c1 + 0.01. (45)

As a result of the computation we get the graphs shown in the figures 7.

Remark 5. In the model we assume a homogeneous and inhomogeneous reaction.
Because of the small offset of the inhomogeneous reaction, we nearly obtain the
same results.

Experiment 4: Energy level with precursor gas and linear offsets In
this model one assumes an energy level and a precursor gas for the sputtering
process. Based on the work of [3]. Here we have a linear offset for the precursor
gases.

We can also analyze a variation of this reaction where we have an time
dependent inhomogeneous part. The reaction is then given with:

The initial conditions are given with c1,0 = 1.0 and c2,0 = 0.1 and we can
deal with the following reaction equations:

dc1

dt
= −0.01c1 + 0.001t, (46)

dc2

dt
= −0.1c2 + 0.002t. (47)

As a result of the computation we get the graphs shown in 8.
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Remark 6. In the model we assume a homogeneous and inhomogeneous reaction.
Because of the small offset of the inhomogeneous reaction, we nearly obtain the
same results.

5.2 Reactive Sputtering Process

A simple model of reactive sputtering described by [1], can describe the un-
derstanding of the hysteresis and other properties of the reactive sputtering
deposition.

We have the following equations:

ntarget∂tθtarget = iΓrsr(1 − θtarget) − Γiγcθtarget + (48)

Γiγcθsubstrate t ∈ (0, T ), (49)

nsubstrate∂tθsubstrate = iΓrsr(1 − θsubstrate) + Γiγcθtarget
At

As
− (50)

Γiγmθsubstrate
At

As
t ∈ (0, T ), (51)

∂tNr = Γrsr((1 − θtarget)At + (1 − θsubstrate)As), (52)

Γsput = Γi(γmθsubstrate + γcθtarget), (53)

where θtarget and θsubstrate are the fraction of the target and substrate areas,
which is covered by the compound film. γm and γc be the yields for sputtering
the metal and the compound from the target.

We have Γi and Γr the incident ion and reactive gas molecule fluxes. sr the
sticking coefficient of a reactive molecule on the metal part of the target. Further
At and As are the target and the substrate areas.

The total number of reactive gas molecules per second that are consumed to
form the compound deposited on the substrate is Nr.

The target sputtering flux is Γsput.
For our experiments we use the following parameters, while we variate the

parameters Γrsr, Γrγc, Γrγm:

nt = ns = 1,

i = 1,

At = 0.25,

As = 0.75,

where the starting conditions are given with θtarget, 0 = 1.0 and θsubstrate, 0 =
0.1.

First experiment: In our first experiment the variable parameters are given
with:

Γrsr = 0.1

Γrγc = 0.07

Γrγm = 0.05
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We get the following simplified system of ODE’s:

∂tθtarget = −0.17θtarget + 0.05θsubstrate + 0.1, t ∈ (0, T ), (54)

∂tθsubstrate = −
0.35

3
θsubstrate) +

0.07

3
θtarget + 0.1, t ∈ (0, T ), (55)

∂tNr = −0.025θtarget − 0.075θsubstrate + 0.1, t ∈ (0, T ), (56)

Γsput = 0.07θtarget) + 0.05θsubstrate, t ∈ (0, T ). (57)

For the solving of the equations we apply the eigenvalue transformation.
We present the hysteresises of θtarget with θsubstrate, ∂tNr with Γsput and

Nr with Γsput in the Figures 9, 10 and 11.
For solving the coupled equations we apply our algorithm 1.

Second experiment: In our second experiment the variable parameters are
given with:

Γrsr = 0.05,

Γrγc = 0.02,

Γrγm = 0.1.

We get the following simplified system of ODE’s:

∂tθtarget = −0.07θtarget + 0.1θsubstrate + 0.05, t ∈ (0, T ), (58)

∂tθsubstrate = −
0.25

3
θsubstrate) +

0.02

3
θtarget + 0.05, t ∈ (0, T ), (59)

∂tNr = −0.0125θtarget − 0.0375θsubstrate + 0.05, t ∈ (0, T ), (60)

Γsput = 0.02θtarget) + 0.1θsubstrate, t ∈ (0, T ). (61)

For the solving of the equations we apply the eigenvalue transformation.
We present the hysteresises of θtarget with θsubstrate, ∂tNr with Γsput and

Nr with Γsput in the Figures 12, 13 and 14.
For solving the coupled equations we apply our algorithm 1.

Third experiment: In our third experiment the variable parameters are given
with:

Γrsr = 0.05,

Γrγc = 0.1,

Γrγm = 0.02.

We get the following simplified system of ODE’s:

∂tθtarget = −0.15θtarget + 0.02θsubstrate + 0.05, t ∈ (0, T ), (62)
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∂tθsubstrate = −
0.17

3
θsubstrate) +

0.1

3
θtarget + 0.05, t ∈ (0, T ), (63)

∂tNr = −0.0125θtarget − 0.0375θsubstrate + 0.05, t ∈ (0, T ), (64)

Γsput = 0.1θtarget) + 0.02θsubstrate, t ∈ (0, T ). (65)

For the solving of the equations we apply the eigenvalue transformation.
We present the hysteresises of θtarget with θsubstrate, ∂tNr with Γsput and

Nr with Γsput in the Figures 15, 16 and 17.
For solving the coupled equations we apply our algorithm 1.

5.3 Sputtering Process with Convection-Diffusion-Reaction
Equation

We can describe our model with continuum equations. Since we want to model
the flow very close to the wafer surface, we assume additionally that the flow is
dominated by diffusion.

We have the following equation to simulate a first PVD process or sputtering
process.

∂tu + v · ∇u = uin(t) in Ω × (0, T ), (66)

u0(x, y) = 0 on Ω,

∂tu(x, y, 0) = u1(x, y) = 0,

u(x, y, t) = 0 on Γ1,

v
∂u

∂n
= uout on Γ2,

where the constant inflow source is given as uin(t) and we move the source with
respect to the time. So we obtain a sharp step by step processing of different
plasma rays. The bottom boundary Γ2 is the outflow boundary, whereas the rest
of the boundary Γ1 is a Dirichlet boundary.

We discretize the spatial terms with finite volume methods and apply the
BDF method for the time discretization.

Our time steps are given in the Courant number and we apply solver methods
that are based on different grid levels, e.g. multi-grid methods.

Figure 18, we present the different phases for the flow field in a simplified
sputter process in 2D. To discuss the deposition rates at the metallic bipolar
plate, we present in Figure 18 also the growth rate of the flux model in 2D.

Remark 7. The model can be used to have an overview to vertical gas flows and
the amount of sublimated concentration to the thin film. We can compute the
growth rate depending on the outflow of the gas concentration. The simulations
are done with Mathematica and numerically with UG.

6 Conclusions and Discussions

We present a continuous model, due to a fare field and near field idea for a flow
field in a PVD apparatus. Based on different models we can predict the flow of
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the reacting chemicals on the different scales of the chemical reactor. For the
mesoscopic scale model, we discuss the discretization and solver methods. We
contribute a coupling algorithm to mix analytical and numerical solutions in our
models. Such schemes have benefits in computations and improve the accuracy.
Numerical examples are presented to discuss the influence of near-continuum
regime at the thin film. The modeling of various inflow sources can describe the
growth of the thin-film at the wafer. In future, we will analyze the validity of
the models with physical experiments.

References

1. S. Berg and T. Nyberg. Fundamental understanding and modeling of reactive

sputtering processes. Thin Solid Films, 476, 215-230, 2005.
2. P. Bastian, K. Birken, K. Eckstein, K. Johannsen, S. Lang, N. Neuss, and H. Rentz-

Reichert. UG - a flexible software toolbox for solving partial differential equations.
Computing and Visualization in Science, 1(1):27–40, 1997.

3. D.J. Christie. Target material pathways model for high power pulsed magnetron

sputtering. J.Vac.Sci. Technology, 23:2, 330-335, 2005.
4. I. Farago, and Agnes Havasi. On the convergence and local splitting error of dif-
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Fig. 6. 1D experiment of the heavy particle transport.green: c1, red: c2
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Fig. 8. 1D experiment of the heavy particle transport.green: c1, red: c2
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Fig. 10. first experiment: hysteresis of ∂tNr (c1) with Γsput (c2)
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Fig. 12. second experiment: hysteresis of θtarget (c1) with θsubstrate (c2)
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Fig. 13. second experiment: hysteresis of ∂tNr (c1) with Γsput (c2)
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Fig. 14. second experiment: hysteresis of Nr (c1) with Γsput (c2)
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Fig. 15. third experiment: hysteresis of θtarget (c1) with θsubstrate (c2)
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Fig. 18. 2D experiment of the apparatus with a sputtering source at 3 different time
levels (Initial, Start and Flux Positions) and growth of the thin film at the wafer surface
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7 Appendix

7.1 Matlab-Code for experiment 1

put
A = [-1,0,0; 0.95,-0.1,0; 0,0.095,-0.05 ];
yo = [1; 0; 0];
to = 0.0;
tf = 10.0;
n = max(size(A));
% compute eigenvalues and eigenvectors
[wcol, lambdac] = eig(A);
wcolinv = inv(wcol);
% set up discretized solution grid
npoints = 1000;
c0 = 0;
dt = (tf-to)/npoints;
for i = 1:1:npoints+1
tp(i) = (i-1)*dt +to;
end
% calculate solution
explambda = zeros(n,n);
yp = zeros(n,npoints);
cp = zeros(1,npoints);
for i = 1:1:npoints+1
for j = 1:n
explambda(j,j) = exp(lambdac(j,j)*(tp(i) - to) );
end
yp(:,i) = wcol*explambda*wcolinv*yo;
if(i¿1)
cp(1,i) = c0 + (1/2)*dt*0.05*y1 + (1/2)*dt*0.05*yp(1,i) + (1/2)*dt*0.005*y2
+ (1/2)*dt*0.005*yp(2,i) + (1/2)*dt*0.05*y3 + (1/2)*dt*0.05*yp(3,i);
c0 = cp(1,i);
end
y1 = yp(1,i);
y2 = yp(2,i);
y3 = yp(3,i);
end
%plot
for j = 1:1:4
if (j==1)
plot (tp,yp(j,:),’g-’), xlabel( ’t’ ), ylabel ( ’y’ )
elseif (j==2)
plot (tp,yp(j,:),’r-’), xlabel( ’t’ ), ylabel ( ’y’ )
elseif (j==3)
plot (tp,yp(j,:),’b-’), xlabel( ’t’ ), ylabel ( ’y’ )
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elseif (j==4)
plot (tp,cp(1,:),’m-’), xlabel( ’t’ ), ylabel ( ’y’ )
end
hold on
end
hold off

7.2 Matlab-Code for experiment 2

put
A = [ -1, 0, 0.05, 0; 0.58, -0.9, 0, 0; 0.42, 0, -1, 0; 0, 0, 0.95, -1 ];
yo = [1;0;0;0];
to = 0.0;
tf = 10.0;
n = max(size(A));
c0=0;
cl0=0;
% compute eigenvalues and eigenvectors

wcol,lambdac
= eig(A);
wcolinv = inv(wcol);
% set up discretized solution grid
npoints = 1000;
dt = (tf-to)/npoints;
for i = 1:1:npoints+1
tp(i) = (i-1)*dt +to;
end
% calculate solution
explambda = zeros(n,n);
yp = zeros(n,npoints);
cp = zeros(1,npoints);
cl = zeros(1,npoints);
for i = 1:1:npoints+1
for j = 1:n
explambda(j,j) = exp(lambdac(j,j)*(tp(i) - to) );
end
yp(:,i) = wcol*explambda*wcolinv*yo;
if(i¿1)
cp(1,i)=c0 + (1/2)*dt*0.9*u1 + (1/2)*dt*0.9*yp(2,i) + (1/2)*dt*0.4*u3 + (1/2)*dt*0.4*yp(4,i);
c0=cp(1,i);
cl(1,i)=cl0 + (1/2)*dt*0.6*u3 + (1/2)*dt*0.6*yp(4,i);
cl0=cl(1,i);
end
u1=yp(2,i);
u3=yp(4,i);
end
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% plot
for j = 1:1:(n+2)
if (j==1)
plot (tp,yp(j,:),’g-’), xlabel( ’t’ ), ylabel ( ’y’ )
elseif (j==2)
plot (tp,yp(j,:),’r-’), xlabel( ’t’ ), ylabel ( ’y’ )
elseif (j==3)
plot (tp,yp(j,:),’b-’), xlabel( ’t’ ), ylabel ( ’y’ )
elseif (j==4)
plot (tp,yp(j,:),’y-’), xlabel( ’t’ ), ylabel ( ’y’ )
elseif (j==5)
plot (tp,cp(1,:),’m-’), xlabel( ’t’ ), ylabel ( ’y’ )
elseif (j==6)
plot (tp,cl(1,:),’k’), xlabel( ’t’ ), ylabel ( ’y’ )
end
hold on
end
hold off

7.3 Matlab-Code for experiment 3

put
A = [ -0.01, 0; 0.01, -0.1];
yo = [1; 0.1];
to = 0.0;
tf = 10.0;
n = max(size(A));
b = [0.001; 0.002];
% compute eigenvalues and eigenvectors

wcol,lambdac
= eig(A);
wcolinv = inv(wcol);
% set up discretized solution grid
npoints = 1000;
dt = (tf-to)/npoints;
for i = 1:1:npoints+1
tp(i) = (i-1)*dt +to;
end
% calculate solution
explambda = zeros(n,n);
explambda2 = zeros(n,n);
yp = zeros(n,npoints);
u = zeros(n,npoints);
tlast = 0;
for i = 1:1:npoints+1
for j = 1:n
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explambda(j,j) = exp( lambdac(j,j)*(tp(i) - to) );
explambda1(j,j) = exp(-lambdac(j,j)*tlast);
explambda2(j,j) = exp(-lambdac(j,j)*tp(i));
end
if(i greater 1)
u(:,i) = u1 + (1/2)*dt*explambda1*wcolinv*b(:,1) + (1/2)*dt*explambda2*wcolinv*b(:,1);
yp(:,i) = wcol*explambda*wcolinv*yo + wcol*exp(lambdac(j,j)*tp(i))*u(:,i);
end
u1 = u(:,i);
tlast = tp(i);
end
% plot
for j = 1:1:n
if (j==1)
plot (tp,yp(j,:),’g-’), xlabel( ’t’ ), ylabel ( ’y’ )
elseif (j==2)
plot (tp,yp(j,:),’r-’), xlabel( ’t’ ), ylabel ( ’y’ )
end
hold on
end
hold off

7.4 Matlab-Code for experiment 4

put
A = [ -0.01, 0; 0.01, -0.1];
yo = [1; 0.1];
to = 0.0;
tf = 10.0;
n = max(size(A));
b = [0.001; 0.002];
% compute eigenvalues and eigenvectors

wcol,lambdac
= eig(A);
wcolinv = inv(wcol);
% set up discretized solution grid
npoints = 1000;
dt = (tf-to)/npoints;
for i = 1:1:npoints+1
tp(i) = (i-1)*dt +to;
end
% calculate solution
explambda = zeros(n,n);
explambda2 = zeros(n,n);
yp = zeros(n,npoints);
u = zeros(n,npoints);
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tlast = 0;
for i = 1:1:npoints+1
for j = 1:n
explambda(j,j) = exp( lambdac(j,j)*(tp(i) - to) );
explambda1(j,j) = exp(-lambdac(j,j)*tlast);
explambda2(j,j) = exp(-lambdac(j,j)*tp(i));
end
if(i greater than 1)
u(:,i) = u1 + (1/2)*dt*explambda1*wcolinv*(b(:,1)*(tlast))
+ (1/2)*dt*explambda2*wcolinv*(b(:,1)*(tp(i)));
yp(:,i) = wcol*explambda*wcolinv*yo + wcol*exp(lambdac(j,j)*tp(i))*u(:,i);
end
u1 = u(:,i);
tlast = tp(i);
end
%plot
for j = 1:1:n
if (j==1)
plot (tp,yp(j,:),’g-’), xlabel( ’t’ ), ylabel ( ’y’ )
elseif (j==2)
plot (tp,yp(j,:),’r-’), xlabel( ’t’ ), ylabel ( ’y’ )
end
hold on
end
hold off


