
Transport and Chemical Reaction:

Characteristics Method and Splitting Methods

Jürgen Geiser and Asgar Jamneshan

November 11, 2008

Abstract

In this paper we present computational schemes for solving transport

and chemical reaction processes. The model is based on a convection-

diffusion-reaction equation which models our fluid dynamics of the depo-

sition process. For the spatial discretization we combine characteristics

methods for the advection equations and use finite volume methods for

the diffusion equation. The reaction parts are solved analytically and the

solutions are embedded into the spatial discretized advection parts. We

present decomposition methods in time to couple the different scales of

the multi-component transport equations. The different time-scales are

coupled by transfer-operators and we discuss a multi-scale solver. In the

numerical experiments we present a microscopic model for partical trans-

port. The accuracy of the methods are discussed.

Keywords: Chemical vapor deposition, multi-scale problem, characteristics
method, splitting method.
AMS subject classifications. 35K25, 35K20, 74S10, 70G65.

1 Introduction

We motivate our studies by replacing high-costly real-life simulations by numer-
ical expreminets for low-temperature, low-pressure plasma that can be found in
CVD (chemical vapor deposition) processes. Recently, the industrial produc-
tion of high-temperature films by deposition of low-pressure, low-temperature
processes have increased. The interest in standard applications to TiN and TiC
are immense. However recently, deposition with new material classes known as
MAX-phases become important, too. The MAX-phase are nanolayered terniar
metal-carbides or -nitrids, where M is a transition metal, A is an A-group ele-
ment (e.g. Al, Ga, In, Si, etc.) and X is C (carbon) or N (nitrid). In this paper
we discuss a microscopic model that take into account the particle’s transport
and kinetics. We apply mass-conservation of particles, see [24]. From the math-
ematical point of view we combine characteristics methods with decomposition
methods and resolve each particle with respect to the transport and the reaction
scale, see [1], [13].

1

2 MATHEMATICAL MODEL 2

This paper is outlined as follows. In section 2 we present our mathematical
model and a possible reduced model for further approximations. In section 3 we
discuss the time and spatial discretization methods. The splitting methods are
discussed in section 4; here we also present the coupling ideas for different codes.
The numerical experiments are given in Section 5. In Section 6 we summarize
our results.

2 Mathematical Model

We will concentrate on conservation of mass and will assume that energy and
momentum is conserved, see [10]. Therefore the continuum flow and the kinetics
can be described as a convection-diffusion-reaction equation given as:

∂t ci + ∇ · (vici − Di∇ci) = − λiici +
m

∑

k=1,k 6=i

λikck , (1)

i = 1, . . . , m ,

ci(x, t) = ci,0(x), on Ω, (2)

ci(x, t) = ci,1(x, t), on ∂Ω × [0, T], (3)

where c = (c1, . . . , cm)t is the molar concentration of the species and vi =
(vi1, . . . , vim)t the flux of the species. Di ∈ IRm× IRm is the constant diffusivity
matrix. The kinetic term is given by the reaction-rates λ11 . . . , λmm. The initial
value is given as ci,0 = (c1,0, . . . , cm,0)

t and we assume a Dirichlet Boundary with
a function c1(x, t) sufficiently smooth.

3 Discretization and Solver methods

In what follows we discuss spatial discretization methods for one particle and
for multi-particle equations that are modeled with advection and a system of
advection equations respectively.

3.1 Finite volume methods

To solve the remaining advection-reaction part of (26) by finite volume methods,
we consider a mesh of nonempty, non-intersecting finite volumes Ωj ⊂ Ω that
cover Ω. We assume that Ωj , j = 1, . . . , N are polygonal (consequently, Ω must
be polygonal, too).

To simplify the notation, we concentrate on (26) and we write:

(∂tci + λiici) + ∇ · (vici) = Q , (4)

where Q =
∑m

k=1,k 6=i λikck.

3 DISCRETIZATION AND SOLVER METHODS 3

Integrating (4) over Ωj and some time interval (tn, tn+1), we obtain

∫

Ωj

ci(t
n+1) =

∫

Ωj

ci(t
n) −

tn+1
∫

tn

∫

∂Ωj

nj · vi ci +

tn+1
∫

tn

∫

Ωj

(Q − λiici) , (5)

where nj is the unit normal vector with respect to the boundary ∂Ωj of Ωj . For
simplicity we skipped the integration variables in (5).

Finally, we denote by cn
j the average concentration of u at t = tn in Ωj , i.e.

cn
ij :=

1

|Ωj |

∫

Ωj

ci(t
n, x) dx , (6)

where |Ωj | denotes the volume of Ωj . We can define the average values cn+1
j in

the same manner as we did in (6).
Using the assumptions and notations from above, we can rewrite (5) in a

discrete form:

|Ωj | c
n+1
ij = |Ωj | c

n
ij −

∑

k

tn+1
∫

tn

∫

Γjk

nj · vi ci +

tn+1
∫

tn

∫

Ωj

(Q − λiici) , (7)

where the index k is considered only for neighbors Ωk of Ωj with common
surfaces, i.e. Γjk := ∂Ωj ∩ ∂Ωk. Note that here the subscripts j and k are
related to the finite volume mesh.

Remark 1 We have discretized the advaction-reaction equation with respect to
the transport model in a conservative form, e.g. to respect the local mass balance.
This discretization method can be reformulated in charactersitics methods and
we can add the reaction term as a further function, see [18].

3.2 Numerical solution of the advection equation

If no reactions are considered in (4), the remaining i-th advection equation can
be discussed independently and we have the following form:

∂tci + ∇ · (vici) = 0 , (8)

i = 1, . . . , m. (9)

The initial conditions are given by (26), and u(t, γ) is explicitly given for t > 0
at the inflow boundary γ ∈ ∂inΩ by (26).

The exact solution of (8) can be directly found using the so-called forward
tracking form of characteristic curves. If the solution of (8) is known at some
time point t0 ≥ 0 and some point y ∈ Ω ∪ ∂inΩ, then u remains constant for

3 DISCRETIZATION AND SOLVER METHODS 4

t ≥ t0 along the characteristic curve X = X(t), i.e. u(t, X(t)) = u(t0, y) and

X(t) = X(t; t0, y) = y +

t
∫

t0

vi(X(s)) ds , (10)

i = 1, . . . , m. (11)

The characteristic curve X(t) starts at time t = t0 from the point y, i.e.
X(t0; t0, y) = y, and it is forward in time for t > t0. Of course, we may find
that X(t) 6∈ Ω, i.e. the characteristic curve may leave the domain Ω through
∂outΩ.

Consequently, we have ci(t, X(t; t0, y)) = Ci(t0, y), where the function Ci(0, y)
is given for t0 = 0 and y ∈ Ω by the initial conditions in (26), and for t0 > 0
and y ∈ ∂inΩ by the inflow boundary conditions (26).

The solution ci(t, x) of (8) can also be expressed in a “backward track-
ing” form which is more suitable for a direct formulation of the discretization
schemes. Consequently, for any characteristic curve X = X(t) = X(t; s, Y)
that is defined in a forward manner, i.e. X(s; s, Y) = Y and t ≥ s, we obtain
the curve Y = Y (s) = Y (s; t, x), which is defined in a backward manner, i.e.
Y (t; t, X) = X and s ≤ t. If we express Y as function of t0 for t0 ≤ t, we obtain
from (10):

Y (t0) = Y (t0; t, x) = x −

t
∫

t0

vi(X(s)) ds , (12)

and we have ci(t, x) = ci(t0, Y (t0)).
To simplify our treatment of the inflow boundary conditions, we suppose

that U(t, γ) = Un+1/2 ≡ const for γ ∈ ∂inΩ and t ∈ [tn, tn+1). Moreover, we
formally define for any γ ∈ ∂inΩ and t0 ∈ [tn, tn+1] Y (s; t0, γ) ≡ Y (t0; t0, γ) for
tn ≤ s ≤ t0. Using (7), the standard FVM for differential equation (8), we can
reformulate the characteristics method as, see [23]:

|Ωj | c
n+1
ij = |Ωj | c

n
ij −

∑

k

tn+1
∫

tn

∫

Γjk

nj(γ) · vi(γ) ci(t, γ) dγdt , (13)

i = 1, . . . , m. (14)

A flux-based method of characteristics, see [23], applies the substitution ci(t, γ) =
ci(t

n, Y (tn; t, γ)) to (13).
For the integration variable t ∈ (tn, tn+1) and for each point γ ∈ ∂outΩj the

characteristic curves Y (s) are tracked backward starting at γ at s = t and ending
at s = tn. We must reach a point Y = Y (tn) such that Y ∈ ∂inΩ or Y ∈ Ω.
In the first case u(tn, Y) is given by the inflow concentration U(tn, Y) = Un; in
the latter it is given by u(tn, Y).

The integral in the right-hand side of (13) can be solved exactly for the one-
dimensional case with general initial and boundary conditions, see [23]. For the

3 DISCRETIZATION AND SOLVER METHODS 5

general 2D or 3D case a numerical approximation of u(t0, Y (t0)) with respect
to Y (t0) shall be used.

3.3 Analytical Solution to a system of ordinay differential
equations of first order

In this section we deal with the reaction part of equation 26.
The following ODE system is given:

dc

dt
= Φ c(t) + b(t) , (15)

where c(t = t0) = c0.
We assume the matrix Φ to be constant and non-singular. Furthermore

we assume the matrix to be a M-matrix in order to obtain positive and real
eigenvalues which are necessary to obtain real eigenvectors, see [16] and [17].

The matix Φ is given as:

Φ =











λ11 λ12 . . . λ1m

λ21 λ22 . . . λ2m

...
...

. . .
...

λm1 λm2 . . . λmm











, (16)

Furthermore we assume b(t) to be a smooth function of t.
We solve the equation (15) analytically by using an eigenvalue tranformation

of the matrix (16). This method decouples the equations in m independent parts
which can be integrated separately.

We have

c(t) = chomo(t) + cp(t) , (17)

where c(t = t0) = c0.
For the homogeneous part we have:

chomo(t) = Wc exp(Λ(t − t0))c̃ , (18)

where c̃ = W−1
c c0, Λ is the eigenvalue matrix and

exp(Λ(t − t0)) =











exp(λ1(t − t0)) 0 . . . 0
0 exp(λ2(t − t0)) . . . 0

0 0
. . . 0

0 0 . . . exp(λn(t − t0))











. (19)

For the inhomogeneous part we have:

cp(t) = Wc exp(Λ(t))u(t) , (20)

3 DISCRETIZATION AND SOLVER METHODS 6

where u(t) =
∫ t

t0
(exp(Λ(t)))−1W−1

c b(t)dt and the integration can be approxi-

mated with a numerical integration method, e.g. [25].
We obtain the following solution:

c(t) = Wc exp(Λ(t − t0))W
−1
c c0 (21)

+Wc exp(Λ(t))u(t) ,

where c0 is the initial condition.

Remark 2 The solution is useful if we have non-singular matrices or if the
reactants have a successor. Otherwise we obtain fast numerical solvers.

3.4 Numerical Methods for ODEs

Here we introduce numerical methods which we apply to solve the singular
reaction matrix of the underlying ODEs with det(Φ) = 0.

We use the following methods:
We use the implicit trapezoidal rule

0
1 1

2
1
2

1
2

1
2

(22)

Furthermore, we use the following implicit Runge-Kutta methods:
Lobatto IIIA

0 0 0 0
1
2

5
24

1
3 − 1

24
1 1

6
2
3 − 1

6
1
6

2
3 − 1

6

(23)

Remark 3 We can also apply integration methods for the right hand side.

3.5 Computation of mass conservation

It is important that the numerical methods do not violate physical laws, see
[19].

In our special model this signifies that the mass of the gaseous concentration
in the apparatus has to be conserved during the transport, see [18]. To control
this behaviour, we have to calculate the following equation:

n
∑

i=1

∫

Ω

ci(s, t) , (24)

where n is the number of species, Ω is the spatial-domain and t ∈ [0, T] is a
predefined time-point.

4 SPLITTING METHODS 7

To obtain the total mass through all time-intervalls, we have to calculate:

n
∑

i=1

∫ T

0

∫

Ω

ci(s, t) ds dt, (25)

where n is the number of species, Ω is the spatial-domain and [0, T] is the time
domain.

Often the physical behaviour of higher moments with respect to the mass is
important for the conservation and we have to compute:

n
∑

i=1

∫

Ω

s ci(s, t) , (26)

where n is the number of species, Ω is the spatial-domain and t ∈ [0, T] is a
predefined time-point.

Remark 4 The finite volume and finite difference methods conserve mass, see
[18]. The analytical computation and the operator splitting methods, too.

4 Splitting Methods

4.1 Splitting methods of first order for linear equations
(A-B-splitting)

First we describe the simplest operator-splitting, the so-called sequential split-
ting, for the following system of ordinary linear differential equations:

∂tc(t) = A c(t) + B c(t) , t ∈ (0, T), c(0) = c0, (27)

where the initial value c0 is given and A and B are assumed to be bounded
operators in a Banach-space. For example, we could also discretize the spatial
variable and get operators (matrices) in an ODE context. Hence, they can be
considered as bounded operators.

The sequential operator-splitting method is introduced as a method for solv-
ing two sub-problems sequentially on sub-intervals [tn, tn+1], where n = 0, 1,
. . . , N − 1 and tN = T . The different sub-problems are connected via the ini-
tial conditions. This means that we replace the original problem (27) with the
sub-problems

∂c∗(t)

∂t
= Ac∗(t) , with c∗(tn) = cn , (28)

∂c∗∗(t)

∂t
= Bc∗∗(t) , with c∗∗(tn) = c∗(tn+1) ,

for n = 0, . . . , N − 1, where c0 = c0 is given from (27). The approximated split
solution at the point t = tn+1 is defined as cn+1 = c∗∗(tn+1).

4 SPLITTING METHODS 8

Clearly, the change of the original problem with the sub-problems usually
results in some error, called splitting error. The splitting error of the sequential
splitting method can be derived as follows (cf. e.g.[8]):

ρn =
1

τ
(exp(τn(A + B)) − exp(τnB) exp(τnA)) c(tn)

=
1

2
τn[A, B] c(tn) + O(τ2

n) . (29)

where the splitting time-step is defined as τn = tn+1−tn and [A, B] := AB−BA
is the commutator of A and B. Consequently, the splitting error is O(τn) when
the operators A and B do not commute, otherwise the method is exact. Hence,
by definition, the sequential splitting is called first order splitting method.

In the next subsection we present the iterative-splitting method.

4.2 Iterative splitting method

The following algorithm is based on the iteration with fixed splitting discretiza-
tion step-size τ . On the time interval [tn, tn+1] we solve the following sub-
problems consecutively for i = 0, 2, . . . 2m. (cf. [14] and [6].):

∂ci(t)

∂t
= Aci(t) + Bci−1(t), with ci(t

n) = cn (30)

∂ci+1(t)

∂t
= Aci(t) + Bci+1(t), with ci+1(t

n) = cn , (31)

where c0(t
n) = c0 , c−1 = 0 and cn is the known split approximation at time-

level t = tn. The split approximation at time-level t = tn+1 is defined as
cn+1 = c2m+1(t

n+1). (Clearly, the function ci+1(t) depends on the interval
[tn, tn+1] too, but, for the sake of simplicity, we omit the dependence on n in
our notation.)

In the following we will analyze the convergence and the rate of convergence
of the method (30)–(31) for m tends to infinity for the linear operators A, B :
X → X, where we assume that these operators and their sum are generators
of the C0 semi-groups. We emphasize that these operators aren’t necessarily
bounded so the convergence is examined in a general Banach space setting.

4.3 Iterative splitting method with embedded Multigrid
methods

The following algorithm is based on embedding the multigrid method in the op-
erator splitting method. The iteration is done with fixed splitting discretization
step-size τ . On the time interval [tn, tn+1] we solve the following sub-problems
consecutively for i = 0, 2, . . .2m. (cf. [14] and [6].):

4 SPLITTING METHODS 9

∂ci(t)

∂t
= Aci(t) + P lA−lB Bci−1(t), with ci(t

n) = cn (32)

∂ci+1(t)

∂t
= RlA−lB Aci(t) + Bci+1(t), with ci+1(t

n) = cn , (33)

where c0(t
n) = cn , c−1 = 0 and cn is the known split approximation at time-

level t = tn. We assume A to be the fine spatial discretized operator on level lA
and B to be the coarse discretized operator on level lB.

The operators are coupled by the restriction and prolongation operators:

Acoarse = RlA−lBA, (34)

Bfine = P lA−lBB, (35)

where R is the restriction and P the prolongation operator.

Theorem 1 Let us consider the abstract Cauchy problem in a Banach space X

∂tc(t) = Ac(t) + P lA−lB Bc(t), 0 < t ≤ T

c(0) = c0

(36)

where A, P lA−lBB, A + P lA−lBB : X → X are given linear operators being
generators of the C0-semi-group and c0 ∈ X is a given element. Then the
iteration process (32)–(33) is convergent and the rate of convergence is of higher
order.

Proof 1 We assume A + P lA−lBB ∈ L(X) and assume a generator of a uni-
formly continuous semi-group, hence the problem (36) has a unique solution
c(t) = exp((A + P lA−lBB)t)c0.

Let us consider the iteration (30)–(31) on the sub-interval [tn, tn+1]. For the
local error function ei(t) = c(t) − ci(t) we have the relations

∂tei(t) = Aei(t) + P lA−lBBei−1(t), t ∈ (tn, tn+1],

ei(t
n) = 0,

(37)

and
∂tei+1(t) = RlA−lB Aei(t) + Bei+1(t), t ∈ (tn, tn+1],

ei+1(t
n) = 0,

(38)

for m = 0, 2, 4, . . ., with e0(0) = 0 and e−1(t) = c(t). In the following we use
the notations X2 for the product space X×X endowed with the norm ‖(u, v)‖ =
max{‖u‖, ‖v‖} (u, v ∈ X). The elements Ei(t), Fi(t) ∈ X2 and the linear
operator A : X2 → X2 are defined as follows

Ei(t) =

[

ei(t)
ei+1(t)

]

, Fi(t) =

[

P lA−lBBei−1(t)
0

]

, A =

[

A 0
RlA−lBA B

]

.

(39)

4 SPLITTING METHODS 10

Then using the notations (39), the relations (37) and (38) can be written in the
form

∂tEi(t) = AEi(t) + Fi(t), t ∈ (tn, tn+1],

Ei(t
n) = 0.

(40)

Due to our assumptions, A is a generator of the one-parameter C0-semi-group
(expAt)t≥0, hence using the variations of constants formula, the solution to the
abstract Cauchy problem (40) with homogeneous initial condition can be written
as

Ei(t) =

∫ t

tn

exp(A(t − s))Fi(s)ds, t ∈ [tn, tn+1]. (41)

(See, e.g. [4].) Hence, using the denotation

‖Ei‖∞ = supt∈[tn,tn+1] ‖Ei(t)‖ , (42)

we have

‖Ei‖(t) ≤ ‖Fi‖∞

∫ t

tn

‖exp(A(t − s))‖ds

= ‖B‖‖ei−1‖

∫ t

tn

‖exp(A(t − s))‖ds, t ∈ [tn, tn+1].

(43)

Since (A(t))t≥0 is a semi-group, the so called growth estimation

‖ exp(At)‖ ≤ K exp(ωt), t ≥ 0, (44)

holds with some numbers K ≥ 0 and ω ∈ IR, cf. [4].

• Assume that (A(t))t≥0 is a bounded or a exponentially stable semi-group,
i.e. (44), holds with some ω ≤ 0. Then obviously the estimate

‖ exp(At)‖ ≤ K, t ≥ 0, (45)

holds, and hence, on base of (43) we have the relation

‖Ei‖(t) ≤ K‖P lA−lBB‖τn‖ei−1‖, t ∈ [tn, tn+1]. (46)

• Assume that (expAt)t≥0 has an exponential growth with some ω > 0.
Using (44), we have

∫ t

tn

‖exp(A(t − s))‖ds ≤ Kω(t), t ∈ [tn, tn+1], (47)

where

Kω(t) =
K

ω
(exp(ω(t − tn)) − 1) , t ∈ [tn, tn+1]. (48)

Hence

Kω(t) ≤
K

ω
(exp(ωτn) − 1) = Kτn + O(τ2

n). (49)

4 SPLITTING METHODS 11

The estimations (46) and (49) result in

‖Ei‖∞ = K‖P lA−lB‖‖B‖τn‖ei−1‖ + O(τ2
n). (50)

Taking into account the definition of Ei and the norm ‖ · ‖∞, we obtain

‖ei‖ = K‖P lA−lB‖‖B‖τn‖ei−1‖ + O(τ2
n), (51)

and hence
‖ei+1‖ = K1τ

2
n‖ei−1‖ + O(τ3

n), (52)

which proves our statement.

In the next subsection we present the used time-discretization methods.

4.4 Prolongation and Restriction Operators

Transfer operators are used in multigrid methods to interpolate the solutions
between each grid. They can be generated on the basis of usual central formulas
of weighting and linear interpolation to restriction and prolongation. In the
quite natural elliptic problems with smooth coefficients it can be done by [12].
It is not so evident in our case with hyprerbolic equations where discontinuous
solutions with shocks arise often, see [21].

For such problems we apply the linear interpolation operators:

P = 1/2[121]t,

R = 1/4[121],

A more stable process can be applied by the mixed contral upwind-transfer
where we take into account the spectrum of the matrices:

P : fi = Fi/2,

fi+1 = βiFi/2 + (1 − βi)Fi/2+1,

βi = (qi+1(qi+2 − qi) + 1)/2,

R : Fi/2 := αifi−1 + (1 − αi)fi + αifi+1,

αi = (1 − qi)/4,

where

P : fi = Fi/2,

fi+1 = βiFi/2 + (1 − βi)Fi/2+1,

βi = (qi+1(qi+2 − qi) + 1)/2,

R : Fi/2 := αifi−1 + (1 − αi)fi + αifi+1,

αi = (1 − qi)/4,

4 SPLITTING METHODS 12

qi−1 = qi = 1, if CFLi, CFLi−1 ≤ 1, and ci−1 > ci + ǫ

qi−1 = qi = 1, if CFLi, CFLi−1 ≥ 1, and ci > ci−1 + ǫ

qi = 0, otherwise

q0 = qI = 1,

where qi is our shock indicator function and is based on the CFL condition. If
we are on a shock, we apply 1, otherwise we have 0.

4.5 Iterative Solvers: Waveform Relaxation

A method to solve large coupled differential equations is the waveform relaxation
scheme.

The iterative method was discussed in [26], [15] and [11]. There exist Gauss-
or Jacobian schemes for the method which help to decouple the schemes more
or less effective.

We deal with the following ordinary differential equation or assume a semi-
discretized partial differential equation:

ut = f(u, t), in (0, T) ,

u(0) = v0

where u = (u1, . . . , um)t and f(u, t) = (f1(u, t), . . . , fm(u, t))t.
We apply the Waveform-Relaxation method for i = 0, 1, . . .m and obtain:

∂u1,i(x, t)

∂t
= f1(u1,i, u2,i−1, . . . , um,i−1) with u1,i(t

n) = u1(t
n) (53)

∂u2,i(x, t)

∂t
= f2(u1,i−1, u2,i, u3,i−1 . . . , um,i−1) with u2,i(t

n) = u2(t
n)(54)

...
∂um,i(x, t)

∂t
= f2(u1,i−1, . . . , um−1,i−1, um,i) with um,i(t

n) = um(tn)(55)

where for the initialization of the first step we have u1,−1(t) = u1(t
n), . . . , um,−1(t) =

um(tn).
We reduce the system of equations to a system of two equations and the

method is reformulated in our iterative splitting methods.
So we deal with:

∂u1

∂t
= f11(u1, t) + f12(u2, t), in (0, T) , (56)

∂u2

∂t
= f21(u1, t) + f22(u2, t), in (0, T) , (57)

u(0) = v0 (58)

where u = (u1, u2)
t.

5 NUMERICAL EXPERIMENTS: MICROSCOPIC MODELS 13

We have the following operator equation:

∂u

∂t
= A(u) + B(u), in (0, T) , (59)

u(0) = v0 (60)

where the operators are given as

A(u) =

(

f11(u1)
f21(u1)

)

(61)

B(u) =

(

f12(u2)
f22(u2)

)

(62)

The iterative splitting method as Waveform-Relaxation method is written
for i = 0, 1, . . .m as:

∂ui

∂t
= A(u1,i, u2,i−1) + B(u1,i−1, u2,i) (63)

with u1,i(t
n) = u1(t

n) and u2,i(t
n) = u2(t

n)

where for the initialization of the first step we have u1,−1(t) = u1(t
n), u2,−1(t) =

u2(t
n).

5 Numerical Experiments: Microscopic models

In this section we deal with the microscopic models. We deal in a first model
with the pure reaction case of the heavy particles and in a next model with the
transport and reaction of such particles.

5.1 One dimensional particle model: Reaction model

The reaction of the heavy particles are given in the following equations:

∂tu1 = −λ1 u1 + λ2 u2 + . . . + λm um in Ω × (0, T) , (64)

... (65)

∂tum = λ1 u1 + λ2 u2 + . . . − λm um in Ω × (0, T) , (66)

u(0) = (c1, . . . , cm) ∈ Ω , (67)

where the initial conditions are given with u(0) and the reversible and irre-
versible reactions are given with the matrix:

Λ =













λ1,1 . . . λn,1

λ1,2
. . . λn,2

...
. . .

...
λ1,n . . . λn,n













(68)

u(0) = (c1, . . . , c5) ∈ Ω , (69)

5 NUMERICAL EXPERIMENTS: MICROSCOPIC MODELS 14

Reactions with 5 particles
In the next experiment we deal with 5 particles. The equation is given as:

∂tu = Λu , in × (0, T) , (70)

u(0) = (c1, . . . , c5) , (71)

where we have Λ as reaction matrix of the species.
The parameters are given as:

Λ =













−(λ12 + λ13 + λ14 + λ15) . . . λ51

λ12
. . . λ52

...
. . .

...
λ15 . . . −(λ51 + λ52 + λ53 + λ54)













(72)

u(0) = (c1, . . . , c5) ∈ Ω , (73)

For example:

Λ =













−1.4 0.1 0.1 0.8 0.1
0.2 −2.1 0.7 0.9 0.2
0.3 0.8 −2.6 0.1 0.3
0.2 0.9 0.9 −2.0 0.4
0.7 0.3 0.9 0.2 −1.0













(74)

u(0) = (0.2, 0.2, 0.2, 0.2, 0.2) (75)

We have the following results, see Figures 1 and 2:
Reactions with 10 particles
To deal with more realistic reaction schemes we present here the next exper-

iment with 10 particles. The equation is given as:

∂tu = Λu , in × (0, T) , (76)

u(0) = (c1, . . . , c10) , (77)

where we have Λ as reaction matrix of the species.
The parameters are given as:

Λ =













λ1,1 . . . λ10,1

λ1,2
. . . λ10,2

...
. . .

...
λ1,10 . . . λ10,10













(78)

u(0) = (c1, . . . , c10) ∈ Ω , (79)

For example:

5 NUMERICAL EXPERIMENTS: MICROSCOPIC MODELS 15

0 2 4 6 8 10
0.1

0.15

0.2

0.25

0.3

0.35

t

y

Figure 1: Results of the reaction of 5 species.

Λ =

































−1.7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 −1.7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 −1.7 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 −1.7 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 −1.7 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 −1.7 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 −1.7 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 −1.7 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 −1.7 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 −0.9

































(80)

u(0) = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1) (81)

We have the following results, see Figures 3 and 4:

5.2 Heavy particle Model: Tranport Model

In this model we deal with a transport model of particles. We assume that they
are uncoupled and assume different velocities:

∂tu1 = −v1 ∂xu1 in Ω × (0, T) , (82)

... (83)

5 NUMERICAL EXPERIMENTS: MICROSCOPIC MODELS 16

Figure 2: The reaction scheme of the 5 species.

∂tun = −vn ∂xun in Ω × (0, T) , (84)

u(0) = (c1, . . . , cm) ∈ Ω , (85)

To solve the uncoupled problem we can apply for each equation a characteris-
tics method. For the separate grids we obtain the best results for the individual
CFL conditions:

CFL = vi∆t
∆xi

where we assume a fix time-step ∆t and obtain the individual mesh-sizes:
∆xi = vi∆t
Here we present an example of transport of five particles with the following

velocities:
v1 = 1, v2 = 1

2 , v3 = 1
4 , v4 = 1

8 , v5 = 1
16

We obtain the following results, see Figures 5, 6, 7, 8 and 9:

5.3 Heavy-Particle Model (One-dimensional velocity)

For the heavy particle model we have a drift velocity for all the particles in the
system and an additionally particle velocity for each particle in the system. We
assume an average velocity for the particles in the system.

We have the following particle system:

∂tu + v u = Λu in Ω × (0, T) , (86)

u0(x) = u(x, 0) on Ω , (87)

u(x, t) = 0 on ∂Ω × (0, T) , (88)

5 NUMERICAL EXPERIMENTS: MICROSCOPIC MODELS 17

0 2 4 6 8 10
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

y

Figure 3: Results of the reaction of 10 species. Example 1.

where c = c1, . . . , m is the solution of the transport-reaction equation. The
velocity vector is given as v = (v1, . . . , vm)t and the reaction matrix is given as:

Λ =













λ11 . . . λm1

λ12
. . . λm2

...
. . .

...
λ1m . . . λmm













, (89)

where the constant reaction rates are λ11, . . . , λmm. The analytical solution for
the reaction is given in the appendix.

5.3.1 Heavy-Particle Model: Two Particles (One-dimensional veloc-
ity)

First we simulate a two component flow:
v1 = 1.0, v2 = 0.5
The reaction matrix is given as in the appendix. We apply the following

splitting method:

∂c1(t)

∂t
= Ac, with c1(t

n) = cn (90)

∂c2(t)

∂t
= Bc2(t), with c2(t

n) = cn+1
1 , (91)

5 NUMERICAL EXPERIMENTS: MICROSCOPIC MODELS 18

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

t

y

Figure 4: Results of the reaction of 10 species. Example 2

where the matrix A is the spatial discretized matrix and matrix B the reaction
matrix. All the spatial discretized matrices are prolongated to the finest scale.
We apply the linear prolongation and restriction operators, see 4.

We have the following results, see Figures 10 and 11:

5.3.2 Heavy-Particle Model: Three Particles (One-dimensional ve-
locity)

We simulate a three component flow:
v1 = 1.0, v2 = 0.5, v3 = 0.25
The reaction matrix is given as in the appendix. We apply the following

splitting method:

∂c1(t)

∂t
= Ac, with c1(t

n) = cn (92)

∂c2(t)

∂t
= Bc2(t), with c2(t

n) = cn+1
1 , (93)

where the matrix A is the spatial discretized matrix and matrix B the reaction
matrix. All the spatial discretized matrices are prolongated to the finest scale.
We apply the linear prolongation and restriction operators, see 4.

We have the following results; see Figures 12, 13 and 14:

6 CONCLUSIONS AND DISCUSSIONS 19

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Figure 5: Graph of first particle

6 Conclusions and Discussions

We presented a continuous or kinetic model relative to the fare field or near
field effect. Based on the different scale models we could predict the flow of the
reacting chemicals on the scale of the chemical reactor. For the mesoscopic scale
model we discussed the discretization and solver methods. Numercial examples
were presented to discuss the influence of a near-continuum regime at the thin
film. The modelling of various inflow sources could describe the growth of the
thin-film at the wafer. In future we will analyze the validity of the models with
physical experiments.

References

[1] G. Adomian. Solving Frontier Problems of Physics: The Decomposition
Method. Kluwer Academic Publishers, Dordrecht, 1994.

[2] I. Farago, and Agnes Havasi. On the convergence and local splitting error
of different splitting schemes. Eötvös Lorand University, Budapest, 2004.

[3] P. Csomós, I. Faragó and A. Havasi. Weighted sequential splittings and
their analysis. Comput. Math. Appl., (to appear)

[4] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution
Equations. Springer, New York, 2000.

REFERENCES 20

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Figure 6: Graph of second particle

[5] I. Farago. Splitting methods for abstract Cauchy problems. Lect. Notes
Comp.Sci. 3401, Springer Verlag, Berlin, 2005, pp. 35-45

[6] I. Farago, J. Geiser. Iterative Operator-Splitting methods for Linear Prob-
lems. Preprint No. 1043 of the Weierstrass Institute for Applied Analysis
and Stochastics, Berlin, Germany, June 2005.

[7] J. Geiser. Numerical Simulation of a Model for Transport and Reaction of
Radionuclides. Proceedings of the Large Scale Scientific Computations of
Engineering and Environmental Problems, Sozopol, Bulgaria, 2001.

[8] J. Geiser. Gekoppelte Diskretisierungsverfahren für Systeme von
Konvektions-Dispersions-Diffusions-Reaktionsgleichungen. Doktor-Arbeit,
Universität Heidelberg, 2003.

[9] J. Geiser. Discretization methods with analytical solutions for convection-
diffusion-dispersion-reaction-equations and applications. Journal of Engi-
neering Mathematics, published online, Oktober 2006.

[10] M.K. Gobbert and C.A. Ringhofer. An asymptotic analysis for a model of
chemical vapor deposition on a microstructured surface. SIAM Journal on
Applied Mathematics, 58, 737–752, 1998.

[11] J. Janssen. Acceleration of waveform relaxation methods for linear ordinary
and partial differential equations. PhD thesis, K.U.Leuven, Belgium, 1997.

REFERENCES 21

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Figure 7: Graph of third particle

[12] W. Hackbusch. Multi-Gird Methods and Applications. Springer-Verlag,
Berlin, Heidelberg, 1985.

[13] W. Hundsdorfer and J.G. Verwer. Numerical solution of time-dependent
advection-diffusion-reaction equations, SpringerVerlag, Berlin, New York,
Heidelberg, 2003.

[14] J. Kanney, C. Miller, and C.T. Kelley. Convergence of iterative split-
operator approaches for approximating nonlinear reactive transport prob-
lems. Advances in Water Resources, 26:247–261, 2003.

[15] J. Kaye and A. Sangiovanni-Vincentelli. Solution of piecewise linear or-
dinary differential equations using waveform relaxation and Laplace trans-
forms. Proc. Int. Conf. on Circ. and Comp., New York, 1982.

[16] M. Kamat and D. Keffer. An analytical theory for diffusion of fluids in
crystalline nanoporous materials. Mol. Phys., 101(10), 1399-1412, 2003.

[17] D. Keffer. An analytical method for solving systems of linear n-th order
ODEs. self-contained lecture, University of Tennessee, Knoxville, June
1999.

[18] R.J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge
Texts in Applied Mathematics , Cambridge University Press, 2002.

REFERENCES 22

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Figure 8: Graph of fourth particle

[19] M.A. Lieberman and A.J. Lichtenberg. Principle of Plasma Discharges
and Materials Processing. Wiley-Interscience, AA John Wiley & Sons, Inc
Publication, Second edition, 2005.

[20] Chr. Lubich. A variational splitting integrator for quantum molecular dy-
namics. Report, 2003.

[21] R.H. Ni. A Multiple grid scheme for solving the Euler equations. Proc.
AIAA 5th Computational Fluid Dynamics Conf., Palo Alto, Paper No.
81-0132, 257–264, 1981.

[22] M. Ohring. Materials Science of Thin Films. Academic Press, San Diego,
New York, Boston, London, Second edition, 2002.

[23] P.J. Roache. A flux-based modified method of characteristics. Int. J. Numer.
Methods Fluids, 12:12591275, 1992.

[24] T.K. Senega and R.P. Brinkmann. A multi-component transport model
for non-equilibrium low-temperature low-pressure plasmas. J. Phys. D:
Appl.Phys., 39, 1606–1618, 2006.

[25] J. Stoer and R. Burlisch. Introduction to numerical analysis. Springer
verlag, New York, 1993.

[26] S. Vandewalle. Parallel Multigrid Waveform Relaxation for Parabolic Prob-
lems. Teubner Skripten zur Numerik, B.G. Teubner Stuttgart, 1993.

7 APPENDIX 23

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Figure 9: Graph of fifth particle

7 Appendix

7.1 Matlab Commands

In this section we introduce some basic Matlab commands that are useful for
solving numerically differential equations that we are dealing with.

Vectors and Matrices

The basic data type in Matlab is an n-dimensional array of double precision
numbers. The following commands show how to enter numbers, vectors and
matrices, and assign them to variables.

>> a = 2

a =

2

>> x = [1;2;3]

x =

1

2

3

>> A = [1 2 3; 4 5 6; 7 8 9]

7 APPENDIX 24

0
0.5

1

00.20.40.60.81
0

0.5

1

1.5

x

First particle

t

W
1(x

,t)

Figure 10: Result for the first particle.

A =

1 2 3

4 5 6

7 8 9

The following examples show how to access the elements of matrices:

>> A(2,3)

ans =

6

>> A(:,2)

ans =

2

5

8

>> A(3,:)

ans =

7 8 9

To transpose a matrix or a vector use ′:

>> A’

ans =

1 4 7

7 APPENDIX 25

0

0.5

1

00.20.40.60.81

0

0.2

0.4

0.6

0.8

1

x

t

Second particle

W
2(x

,t)

Figure 11: Result for the second particle.

2 5 8

3 6 9

It is often useful, when entering a matrix, to suppress the display; this is
done by ending the line with a semicolon.

Graphs and Plots

The simplest graphs to create are plots of points in the cartesian plane. For
example:

>> x = [1;2;3;4;5];

>> y = [0;.25;3;1.5;2];

>> plot(x,y)

In order to create a graph of a surface in 3-space, it is necessary to evaluate
the function on a regular rectangular grid. This can be done using the meshgrid
command. First, create 1 − D vectors describing the grids in the x- and y-
directions:

>> x = (0 : 2*pi/60 : 2*pi)’;

>> y = (0 : 4*pi/120 : 4*pi)’;

Next, “spread“ these grids into two dimensions using meshgrid :

7 APPENDIX 26

00.20.40.60.81

0

0.5

1

0

0.2

0.4

0.6

0.8

1

x

First Particle

t

W
1(x

,t)

Figure 12: Result for the first particle.

>> [X,Y] = meshgrid(x,y);

The effect of meshgrid is to create a vector X with the x-grid along each
row, and a vector Y with the y-grid along each column. Then, using vectorized
functions and operators, it is easy to evaluate a function z = f(x, y) of two
variables on the rectangular grid:

>> z = cos(X).*cos(2*Y);

Loops

Matlab provides two types of loops, a for-loop and a while-loop. A for-loop
repeats the statements in the loop as the loop index takes on the values in a
given row vector:

>> for i = [1,2,3,4]

i^2

end

The loop must be terminated by end. The while-loop repeats as long as the
given expression is true (nonzero):

>> x = 1;

>> while (1+x) > 1

x = x/2;

7 APPENDIX 27

00.20.40.60.81

0

0.2

0.4

0.6

0.8

1

−0.2

0

0.2

0.4

0.6

0.8

1

x

Second Particle

t

W
2(x

,t)

Figure 13: Result for the second particle.

end

>> x

x =

1.1102e-016

Functions in Matlab

In Matlab the common scientific functions, such as square root, sine, cosine,
tangent, exponential, and logarithm are predefined. Moreover, you can define a
function in an m-file that begins with a line of the following form:

function [output1,output2,...] = cmd_name(input1,input2,...)

Here is a simple example of a function; it computes the function y = sin(x2).
The following commands should be stored in the file myFunction.m (the name
of the function within Matlab is the name of the m-file, without the extension):

function y = myFunction(x)

y = sin(x.^2);

With this function defined, we can now use myFunction just as the built-in
function sin:

>> x = (-pi : 2*pi/100 : pi)’;

>> y = sin(x);

7 APPENDIX 28

00.20.40.60.81

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

Third Particle

t

W
3(x

,t)

Figure 14: Result for the third particle.

>> z = myFunction(x);

>> plot(x,y,’r’,x,z,’b’)

7.2 Matlab Codes

Program-Code for the ODE system

The analytical solver method for the homogeneous ODE-system (5 particles):

k12=0.2;

k13=0.3;

k14=0.2;

k15=0.7;

k21=0.1;

k23=0.8;

k24=0.9;

k25=0.3;

k31=0.1;

k32=0.7;

k34=0.9;

k35=0.9;

k41=0.8;

k42=0.9;

k43=0.1;

7 APPENDIX 29

k45=0.2;

k51=0.1;

k52=0.2;

k53=0.3;

k54=0.4;

A=[(-k12-k13-k14-k15), k21, k31, k41, k51;

k12, (-k21-k23-k24-k25), k32, k42, k52;

k13, k23, (-k31-k32-k34-k35), k43, k53;

k14, k24, k34, (-k41-k42-k43-k45), k54;

k15, k25, k35, k45, (-k51-k52-k53-k54)];

yo=[1.0/5.0; 1.0/5.0; 1.0/5.0; 1.0/5.0; 1.0/5.0;];

to=0.0;

tf=10.0;

n=max(size(A));

[wcol, lambdac]=eig(A);

wcolinv = inv(wcol);

npoints = 1000;

dt = (tf-to)/npoints;

for i = 1:1:npoints+1

tp(i) = (i-1)*dt +to;

end

explambda = zeros(n,n);yp = zeros(n,npoints);

for i = 1:1:npoints+1

for j = 1:n

explambda(j,j) = exp(lambdac(j,j)*(tp(i)-to));

end

yp(:,i) = wcol*explambda*wcolinv*yo;

end

plot(tp, yp(1,:), ’g-’), xlabel(’t’), ylabel (’y’)

hold on

plot(tp, yp(2,:), ’r-’), xlabel(’t’), ylabel (’y’)

hold on

plot(tp, yp(3,:), ’b-’), xlabel(’t’), ylabel (’y’)

hold on

plot(tp, yp(4,:), ’k-’), xlabel(’t’), ylabel (’y’)

hold on

plot(tp, yp(5,:), ’m-’), xlabel(’t’), ylabel (’y’)

hold off

Program-Code for the PDE system

Finite difference method for the PDE-system (5 particles):

function transport_characteristic

for k = 1 : 5

7 APPENDIX 30

l = 1/(2^(k-1)); %faktor

T = 1;

M = 80;

dx = 1/M;

dt = 1/(l*80);

N = floor(T/dt);

mu = l*dt/dx;

U = zeros(N+1,M+1);

for j = 1 : M+1

U(1,j) = phi((j-1)*dx);

end

plot([0:dx:1],U(1,:)); axis([0 1 0 1]); pause

for n = 1 : N

U(n+1,1) = 0;

for j = 2 : M + 1

U(n+1,j) = U(n,j) - mu * (U(n,j) - U(n,j-1));

end

plot([0:dx:1],U(n+1,:)); axis([0 1 0 1]); pause(.1)

end

mesh(0:dx:1,0:dt:T,U); pause

title(’Approximation of u_t + u_x = 0 with finite differences’);

xlabel(’x’); ylabel(’t’); zlabel(’U(x,t)’);

end

function y = phi(x)

if x < .5

y = .5 * (1 + sin(4*pi*x-pi/2));

else

y = 0;

end

Program-Code for the coupled version

PDE and ODE Solver (2 particles):

Program-Code for the coupled version

PDE and ODE Solver (3 particles):

7 APPENDIX 31

function Coupled_3_Particles

%parameters

T = 1;

N = 40;

M = 40;

dt = T/N;

dx_1 = 1/M;

dx_2 = 1/(2*M);

dx_3 = 1/(4*M);function Coupled_2_Particles

%parameters

T = 1;

N = 40;

M = 40;

dt = T/N;

dx_1 = 1/M;

dx_2 = 1/(2*M);

U = zeros(N+1,M+1);

Z = zeros(M+1,(2*M)+1);

V_1 = zeros(N+1,(2*M)+1);

V_2 = zeros(N+1,(2*M)+1);

W_1 = zeros(N+1,(2*M)+1);

W_2 = zeros(N+1,(2*M)+1);

k11=0.25;

k12=0.75;

k21=0.25;

k22=0.75;

A=[-k11, k12; k21, -k22];

mx=max(size(A));

[wcol, lambdac] = eig(A);

wcolinv = inv(wcol);

explambda = zeros(mx,mx);

yp = zeros(mx,mx,N+1);

%reactionmatrix

for i = 1 : N+1

for j = 1 : mx

explambda(j,j) = exp(lambdac(j,j)*((i-1)*dt));

7 APPENDIX 32

end

yp(:,:,i) = wcol*explambda*wcolinv;

end

%prolongation

for i = 1 : M

Z(i,2*i) = 1;

end

for i = 1 : M+1

Z(i,(2*i)-1) = 1;

end

Z(M+1, (2*M)+1) = 1;

%coupling

for j = 1 : M+1

U(1,j) = phi((j-1)*dx_1);

end

V_1 = U*Z;

for j = 1 : (2*M)+1

V_2(1,j) = phi((j-1)*dx_2);

end

for i = 1:2*M+1

W_1(1,i) = V_1(1,i)*yp(1,1,1) + V_2(1,i)*yp(1,2,1);

end

plot([0:dx_2:1],W_1(1,:)); axis([0 1 0 1]); pause(.05)

for i = 1:2*M+1

W_2(1,i) = V_1(1,i)*yp(2,1,1) + V_2(1,i)*yp(2,2,1);

end

plot([0:dx_2:1],W_2(1,:)); axis([0 1 0 1]); pause(.05)

for n = 1:N

U(n+1,1) = 0;

for j = 2:M+1

U(n+1,j) = W_1(n,2*(j-1));

end

7 APPENDIX 33

V_1 = U*Z;

V_2(n+1,1) = 0;

for j = 2 : 2*M+1

V_2(n+1,j) = W_2(n,j-1);

end

for i = 1:2*M+1

W_1(n+1,i) = V_1(n+1,i)*yp(1,1,n+1) + V_2(n+1,i)*yp(1,2,n+1);

end

plot([0:dx_2:1],W_1(n+1,:)); axis([0 1 0 1]); pause(.05)

for i = 1:2*M+1

W_2(n+1,i) = V_1(n+1,i)*yp(2,1,n+1) + V_2(n+1,i)*yp(2,2,n+1);

end

plot([0:dx_2:1],W_2(n+1,:)); axis([0 1 0 1]); pause(.05)

end

%graphics

mesh(0:dx_2:1,0:dt:T,W_1);

title(’First particle’);

xlabel(’x’); ylabel(’t’); zlabel(’W_1(x,t)’); pause

mesh(0:dx_2:1,0:dt:T,W_2);

title(’Second particle’);

xlabel(’x’); ylabel(’t’); zlabel(’W_2(x,t)’);

function y = phi(x)

if 0 <= x <= 1

y = 1;

else

y = 0;

end

U_1 = zeros(N+1,M+1);

U_2 = zeros(N+1,(2*M)+1);

Z_1 = zeros(M+1,(4*M)+1);

Z_2 = zeros((2*M)+1,(4*M)+1);

V_1 = zeros(N+1,(4*M)+1);

V_2 = zeros(N+1,(4*M)+1);

7 APPENDIX 34

V_3 = zeros(N+1,(4*M)+1);

W_1 = zeros(N+1,(4*M)+1);

W_2 = zeros(N+1,(4*M)+1);

W_3 = zeros(N+1,(4*M)+1);

k12=0.5;

k21=0.5;

k13=0.5;

k31=0.5;

k23=0.5;

k32=0.5;

A=[(-k13-k12), k21, k31; k12, (-k21-k23), k32; k13, k23, (-k31-k32)];

mx=max(size(A));

[wcol, lambdac] = eig(A);

wcolinv = inv(wcol);

explambda = zeros(mx,mx);

yp = zeros(mx,mx,N+1);

Y_1 = zeros(1,N+1);

Y_2 = zeros(1,N+1);

%reactionmatrix

for i = 1 : N+1

for j = 1 : mx

explambda(j,j) = exp(lambdac(j,j)*((i-1)*dt));

end

yp(:,:,i) = wcol*explambda*wcolinv;

end

%prolongations

for k = 1:4

for i = 1 : M

Z_1(i,(4*i)-(k-1)) = 1;

end

end

Z_1(M+1, (4*M)+1) = 1;

for k = 1:2

for i = 1 : M

Z_2(i,2*i-(k-1)) = 1;

end

end

7 APPENDIX 35

Z_2((2*M)+1, (4*M)+1) = 1;

%coupling

for j = 1 : M+1

U_1(1,j) = phi((j-1)*dx_1);

end

V_1 = U_1*Z_1;

for j = 1 : (2*M)+1

U_2(1,j) = phi((j-1)*dx_2);

end

V_2 = U_2*Z_2;

for j = 1 : (4*M)+1

V_3(1,j) = phi((j-1)*dx_3);

end

for i = 1:(4*M)+1

W_1(1,i) = V_1(1,i)*yp(1,1,1) + V_2(1,i)*yp(1,2,1) + V_3(1,i)*yp(1,3,1);

end

plot((0:dx_3:1),W_1(1,:)); axis([0 1 0 1]); pause(.05)

for i = 1:(4*M)+1

W_2(1,i) = V_1(1,i)*yp(2,1,1) + V_2(1,i)*yp(2,2,1) + V_3(1,i)*yp(2,3,1);

end

plot((0:dx_3:1),W_2(1,:)); axis([0 1 0 1]); pause(.05)

for i = 1:(4*M)+1

W_3(1,i) = V_1(1,i)*yp(3,1,1) + V_2(1,i)*yp(3,2,1) + V_3(1,i)*yp(3,3,1);

end

plot((0:dx_3:1),W_3(1,:)); axis([0 1 0 1]); pause(.05)

for n = 1:N

U_1(n+1,1) = 0;

for j = 2 : M+1

U_1(n+1,j) = W_1(n,4*(j-1));

end

V_1 = U_1*Z_1;

U_2(n+1,1) = 0;

for j = 2 : 2*M+1

U_2(n+1,j) = W_2(n,2*(j-1));

7 APPENDIX 36

end

V_2 = U_2*Z_2;

V_3(n+1,1) = 0;

for j = 2 : (4*M)+1

V_3(n+1,j) = W_3(n,j-1);

end

for i = 1:(4*M)+1

W_1(n+1,i) = V_1(n+1,i)*yp(1,1,n+1) + V_2(n+1,i)*yp(1,2,n+1) + V_3(n+1,i)*yp(1,3,n+1);

end

plot((0:dx_3:1),W_1(n+1,:)); axis([0 1 0 1]); pause(.05)

for i = 1:(4*M)+1

W_2(n+1,i) = V_1(n+1,i)*yp(2,1,n+1) + V_2(n+1,i)*yp(2,2,n+1) + V_3(n+1,i)*yp(2,3,n+1);

end

plot((0:dx_3:1),W_2(n+1,:)); axis([0 1 0 1]); pause(.05)

for i = 1:(4*M)+1

W_3(n+1,i) = V_1(n+1,i)*yp(3,1,n+1) + V_2(n+1,i)*yp(3,2,n+1) + V_3(n+1,i)*yp(3,3,n+1);

end

plot((0:dx_3:1),W_3(n+1,:)); axis([0 1 0 1]); pause(.05)

end

%graphics

mesh(0:dx_3:1,0:dt:T,W_1(:,:));

title(’First Particle’);

xlabel(’x’); ylabel(’t’); zlabel(’W_1(x,t)’); pause

mesh(0:dx_3:1,0:dt:T,W_2(:,:));

title(’Second Particle’);

xlabel(’x’); ylabel(’t’); zlabel(’W_2(x,t)’); pause

mesh(0:dx_3:1,0:dt:T,W_3(:,:));

title(’Third Particle’);

xlabel(’x’); ylabel(’t’); zlabel(’W_3(x,t)’);

%mass-conservation

for j = 1 : N+1

Y_1(1,j) = dx_1*1/2*(sum(V_1(j,1:4*M)) + sum(V_1(j,2:4*M+1))) + dx_2*1/2*(sum(V_2(j,1:

7 APPENDIX 37

end

Y_1

sum(Y_1(1,1:N+1))

for j = 1 : N+1

Y_2(1,j) = dx_1*1/2*(sum(W_1(j,1:4*M)) + sum(W_1(j,2:4*M+1))) + dx_2*1/2*(sum(W_2(j,1:

end

Y_2

sum(Y_2(1,1:N+1))

function y = phi(x)

if 0 <= x <= 1

y = 1;

else

y = 0;

end

