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Abstract. We introduce a solver method for mobile and immobile trans-
port regions. The motivation is driven by deposition processes based on
chemical vapor problems.
We analyze the coupled transport-reaction equation with mobile and
immobile areas.
We apply analytical methods, such as Laplace-transformation, and for
the numerical methods we apply Godunov’s scheme, see [17] and [23].
The method is based numerically on flux-based characteristic methods
and is an attractive alternative to the classical higher-order TVD meth-
ods, see [18]. In this article we will focus on the derivation of the an-
alytical solutions for general and special solutions of the characteristic
methods, that are embedded into a finite volume method.
At the end of the article we illustrate the higher-order method for differ-
ent benchmark problems. Finally the method is proposed with realistic
results.
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1 Introduction

We study real-life problems in the direction of deposition processes given by
transport and reaction models.

The modeling is based an a homogenization of the underlying media, see [3]
and [4].

The equations are coupled with the reaction terms and are presented as
follows.

∂tRiui + ∇ · v ui = −λi Ri ui + λi−1 Ri−1 ui−1 (1)

+β(−ui + gi) in Ω × (0, T ) ,
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ui,0(x) = ui(x, 0) on Ω , (2)

∂tRigi = −λi Ri gi + λi−1 Ri−1 gi−1 (3)

+β(−gi + ui) in Ω × (0, T ) ,

gi,0(x) = gi(x, 0) on Ω , (4)

i = 1, . . . ,m ,

where m is the number of equations and i is the index of each component. The
unknown mobile concentrations ui = ui(x, t) are considered in Ω×(0, T ) ⊂ IRn×
IR+, where n is the spatial dimension. The unknown immobile concentrations
gi = gi(x, t) are considered in Ω × (0, T ) ⊂ IRn × IR+, where n is the spatial
dimension. The retardation factors Ri are constant and Ri ≥ 0. The kinetic part
is given by the factors λi. They are constant and λi ≥ 0. For the initialization of
the kinetic part, we set λ0 = 0. The kinetic part is linear and irreversible, so the
successors have only one predecessor. The initial conditions are given for each
component i as constants or linear impulses. For the boundary conditions we
have trivial inflow and outflow conditions with ui = 0 at the inflow boundary.
The transport part is given by the velocity v ∈ IRn and is piecewise constant,
see [13] and [14]. The exchange between the mobile and immobile part is given
by β.

The paper is organized as follows. One of the main contributions are the
one-dimensional analytical solutions. The application for reaction equations are
described in section 2. In section 3, the construction of the analytical solutions
for the convection reaction equations in different situations is presented. The
discretization method, based on embedded analytical solutions to finite vol-
ume schemes is discussed in section 4. The verification of the new discretization
method in various numerical examples is performed in section 5. At the end of
this paper we introduce future works.

2 Analytical solutions for reaction equation

In the next section we deal with the following system with piecewise constant
velocities for the coupled transport in one dimension. The equation is given as

Ri∂tui = −Riλiui +Ri−1λi−1ui−1 , (5)

for i = 1, . . . ,m, whereas m denotes the number of equations. The unknowns
ui = ui(x, t) denote the contaminant concentrations. They are reacting with
constant rates λi and Ri are the retardation factors.

We assume a irreversible form of a decay chain, e.g. λ0 = 0, and for each
contaminant given single source terms λi−1ui−1.

The analytical solutions for equal retardation factors can be found in [31].
We enlarge the solutions for different retardation factors and special initial con-
ditions.

c1(t) = c01 exp(−λ1t), (6)



3

ci(t) = c0i exp(−λit) (7)

+

i−1
∑

m=1

c0m
Rm

Ri
(

i−1
∏

j=m

λj)

i
∑

m=1

exp(−λjt)
∏i

k=m,k 6=j(λk − λj)

where c(0) = (c01, . . . , c0i)
t are the initial condition. We assume i components.

Definition 1. We define for the products and summations:
1.)
∏i

j=m aj = 1 for m = 1, i = 0,
otherwise we use the notation.
2.)
∑i

j=m aj = 0 for m = 1, i = 0,
otherwise we use the notation.

Remark 1. For reversible reaction processes, there exists also analytical solu-
tions, see [7]. For such solutions, we have to solve a coupled linear equation
system.

3 Analytical solutions for convection-reaction equation

In the following we construct the solutions for the convection-reaction equations
in different initial conditions and coupled situations.

3.1 Piecewise-constant and piecewise-linear initial conditions

In the next section we deal with the following system with piecewise constant
velocities for coupled transport in one dimension. The equation is given as

∂tui + vi∂xui = −λiui + λi−1ui−1 , (8)

for i = 1, . . . ,m, whereas m denotes the number of equations. The unknowns
ui = ui(x, t) denote the contaminant concentrations. They are transported with
constant (and in general different) velocities vi and decay with constant reaction
rates λi. The spatiotemporal domain is given by (0,∞) × (0, T ).

We assume a simple (irreversible) form of a decay chain, e.g. λ0 = 0, and
for each contaminant given single source terms λi−1ui−1. For simplification, we
assume that vi > 0 for i = 1, . . . ,m. The case vi < 0 can be treated analogously.
Owing to (8), all velocities vi must have the same sign and must be piecewise
constant for the cell i. Furthermore we do not allow piecewise equal parameters
for the case vi = vi−1 and λi = λi−1, for i = 2, . . . ,m . In special solutions we
will allow these cases.

The analytical solutions for equal retardation factors can be found in [31].
We enlarge the solutions for different retardation factors and special initial con-
ditions.

We will derive the analytical solutions with piecewise linear initial conditions,
but all other piecewise polynomial functions could be derived as shown in the
following.
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For the boundary conditions we use zero concentrations at the inflow bound-
ary x = 0. The initial conditions are defined for x ∈ (0, 1),

u1(x, 0) =

{

ax+ b , x ∈ (0, 1)
0 , otherwise

,

ui(x, 0) = 0 , i = 2, . . . ,m ,

(9)

where a and b are arbitrary constants.
We use the Laplace transformation for the translation of the partial differen-

tial equation to the ordinary differential equation. The transformations for this
case are given in [6], [16] and [19].

In equation (8) we apply the Laplace transformation given in [1] and [5]. For
that we need to define the transformed function û = û(s, t):

ûi(s, t) :=

∞
∫

0

ui(x, t) e
−sx dx . (10)

From (8), the functions ûi satisfy the transformed equations

∂tû1 = − (λ1 + sv1) û1 , (11)

∂tûi = − (λi + svi) ûi + λi−1ûi−1 , (12)

and the transformed initial conditions for s ∈ (0,∞),

û1(s, 0) =

(

a

s2
+
b

s

)

(1 − e−s) +
a

s
e−s , (13)

ûi(s, 0) = 0 , i = 2, . . . ,m . (14)

We denote for further solutions:

Λi =

i−1
∏

j=1

λj . (15)

The equation (12) is solved with the solution methods for the ordinary dif-
ferential equation, described in [16], and the more general case is presented in
[6].

Thus we find the exact solution of (11) and (12):

û1 = û1(s, 0) e−(λ1+sv1) t , (16)

for i = 2, . . . ,m ,

ûi = û1(s, 0) Λi

i
∑

j=1

e−(λj+svj)t
i
∏

k=1

k 6=j

(s(vk − vj) + λk − λj)
−1

. (17)
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The analytical solution in (17) can have a singular point for a single value
of s. Nevertheless, this causes no difficulties when we apply the inverse Laplace
transformation and thus we do not need to discuss this issue any further.

To obtain the exact solution of (8), we must apply the inverse Laplace trans-
formation on (11). For that we have to apply some algebraic manipulations.

For the first case, let us assume that vj 6= vk and λj 6= λk for j 6= k and
∀j, k = 1, . . . ,m. Then we can denote

λkj = λjk :=
λj − λk

vj − vk
. (18)

Furthermore, for the next transformation, we require that the values λjk are
different for each pair of indices j and k.

The factors Λj,i with λj 6= λk for j 6= k and the factor Λjk,i with λjk 6= λjl

for k 6= l are given by

Λj,i =







i
∏

k=1

k 6=j

1

λk − λj






, Λjk,i =









i
∏

l=1

l 6=j
l 6=k

λjl

λjl − λjk









, (19)

where we have the following assumptions:

1. vj 6= vk ∀j, k = 1, . . . ,m, for j 6= k , (20)

2. λj 6= λk ∀j, k = 1, . . . ,m, for j 6= k , (21)

3. λjk 6= λjl ∀j, k, l = 1, . . . ,m, for j 6= k ∧ j 6= l ∧ k 6= l, (22)

4. vj 6= vk and λj 6= λk ∀j, k = 1, . . . ,m, for j 6= k . (23)

From (19), the last term in (17) for a given index j can be rewritten in the
following form,

i
∏

k=1

k 6=j

(s(vk − vj) + λk − λj)
−1

= Λj,i

i
∑

k=1

k 6=j

λjk

s+ λjk
Λjk,i . (24)

From (13), adopted in (16) and (17), the standard inverse Laplace transformation
can be used and the solution ui for (8) is given by

u1(x, t) = exp(−λ1t)







0 , 0 ≤ x < v1t

a(x− v1t) + b , v1t ≤ x < v1t+ 1
0 , v1t+ 1 ≤ x

, (25)

ui(x, t) = Λi







i
∑

j=1

exp(−λjt)Λj,i

i
∑

k=1

k 6=j

Λjk,iAjk






, (26)
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Ajk =











































0 , 0 ≤ x < vjt

a(x− vjt)
+(b− a

λjk
)(1 − exp(−λjk(x − vjt))) , vjt ≤ x < vjt+ 1

(b− a
λjk

+ a) exp(−λjk(x− vjt− 1))

−(b− a
λjk

) exp(−λjk(x− vjt)) , vjt+ 1 ≤ x

. (27)

Often the critical solutions are to delicate to compute, while influences of
the exp-functions are problematic in the higher-order accuracy. Here we propose
two methods:

1.) Decay Chains with decay length till six:

u1(x, t) = exp(−λ1t)







0 , 0 ≤ x < v1t

a(x− v1t) + b , v1t ≤ x < v1t+ 1
0 , v1t+ 1 ≤ x

, (28)

ui(x, t) = Λi







i
∑

j=i−6

exp(−λjt)Λj,i

i
∑

k=i−6

k 6=j

Λjk,iAjk






, (29)

Ajk =











































0 , 0 ≤ x < vjt

a(x− vjt)
+(b− a

λjk
)(1 − exp(−λjk(x − vjt))) , vjt ≤ x < vjt+ 1

(b− a
λjk

+ a) exp(−λjk(x− vjt− 1))

−(b− a
λjk

) exp(−λjk(x− vjt)) , vjt+ 1 ≤ x

. (30)

2.) Improved Decay Chains with decay length till five and with explicit
skipped components :

Often the first component is very dominant and one could not skip this
component, so one skip the less dominant components instead.

Here we propose a selective idea to skip the non-dominant chain members,
if an acceleration is necessary.

u1(x, t) = exp(−λ1t)







0 , 0 ≤ x < v1t

a(x− v1t) + b , v1t ≤ x < v1t+ 1
0 , v1t+ 1 ≤ x

, (31)

ui(x, t) = Λi







i
∑

j=1,j /∈I

exp(−λjt)Λj,i

i
∑

k=1,k/∈I
k 6=j

Λjk,iAjk






, (32)
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Ajk =











































0 , 0 ≤ x < vjt

a(x− vjt)
+(b− a

λjk
)(1 − exp(−λjk(x − vjt))) , vjt ≤ x < vjt+ 1

(b− a
λjk

+ a) exp(−λjk(x− vjt− 1))

−(b− a
λjk

) exp(−λjk(x− vjt)) , vjt+ 1 ≤ x

. (33)

where I is the set of the non-dominant chain members, e.g. I = {2, 3, 6} etc.

3.) Optimized solution with respect to the denominator problem:

Because of the numerical computation for the analytical solution we have
derived an improved notation for the equations (25)-(27) and therefore avoid
numerical instabilities.

The improved solutions, cf. [13], with the new notation are given as

ui(x, t) = Λi

i
∑

j=1

(

Lj,i +

i
∑

k>j







Mjk,i , vj < vk

Mkj,i , vk < vj

0 , otherwise

)

, (34)

with i = 2, . . . ,m ,

where the factors Lj,i and Mjk,i are defined as:

Lj,i :=























exp(−λjt) Λj,i

(

a(x − vjt) + b

−a
∑i

k=1

k 6=j

1
λjk

)

, vjt ≤ x ≤ vjt+ 1

0 , otherwise

, (35)

Mjk,i :=







Λj,i Λjk,i gjk , vjt ≤ x ≤ vkt

Λj,i Λjk,i hjk , vjt+ 1 ≤ x ≤ vkt+ 1
0 , otherwise

, (36)

and the factors gjk and hjk are given as

gjk := −(b−
a

λjk
) exp(−λjt) exp(−λjk(x − vjt)) , (37)

hjk := (b −
a

λjk
+ a) exp(−λjt) exp(−λjk(x− vjt− 1)) . (38)

Remark 2. The analytical solutions of (8) of large components is often very del-
icate and require plenty of exp-functions. Therefore simplifications can be done
with respect to dominant components in the decay chain and improved nota-
tions to avoid numerical instabilities. In numerical examples, one can verify that
5-6 successor components will be enough accurate to obtain machine precision
results.
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3.2 Piecewise linear components with all initial conditions

We deal with the following system with piecewise constant velocities for the
coupled transport in one dimension. The equation is given as

∂tui + vi∂xui = −λiui + λi−1ui−1 , (39)

for i = 1, . . . ,m, whereas m denotes the number of equations. The unknowns
ui = ui(x, t) denote the contaminant concentrations. They are transported with
constant (and in general different) velocities vi and decay with constant reaction
rates λi. The spatiotemporal domain is given by (0,∞) × (0, T ).

We assume a simple (irreversible) form of a decay chain, e.g. λ0 = 0, and
for each contaminant given single source terms λi−1ui−1. For simplification, we
assume that vi > 0 for i = 1, . . . ,m. The case vi < 0 can be treated analogously.
Owing to (39), all velocities vi must have the same sign and must be piecewise
constant for the cell i. Furthermore we do not allow piecewise equal parameters
for the case vi = vi−1 and λi = λi−1, for i = 2, . . . ,m . In special solutions we
will allow these cases.

The analytical solutions for equal retardation factors can be found in [31].
We enlarge the solutions for different retardation factors and special initial con-
ditions.

We will derive the analytical solutions with piecewise linear initial conditions,
but all other piecewise polynomial functions could be derived as shown in the
following.

For the boundary conditions we use zero concentrations at the inflow bound-
ary x = 0. The initial conditions are defined for x ∈ (0, 1),

up(x, 0) =

{

bpx+ cp , x ∈ (0, 1)
0 , otherwise

p = 1, . . . ,m , (40)

where bp and cp are arbitrary constants for p = 1, . . . ,m.
We use the Laplace transformation for the translation of the partial differen-

tial equation to the ordinary differential equation. The transformations for this
cases are given in [6], [16] and [19].

In equation (39) we apply the Laplace transformation given in [1] and [5].
For that we need to define the transformed function û = û(s, t):

ûp(s, t) :=

∞
∫

0

up(x, t) e
−sx dx . (41)

From (39), the functions ûi satisfy the transformed equations

∂tû1 = − (λ1 + sv1) û1 , (42)

∂tûi = − (λi + svi) ûi + λi−1ûi−1 , (43)

i = 1, . . . ,m ,
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and the transformed initial conditions for s ∈ (0,∞),

ûp(s, 0) =

(

bp

s2
+
cp

s

)

(1 − e−s)

+(
bp

s
) e−s , p = 1, . . . ,m . (44)

We denote for further solutions:

Λi,p =

i−1
∏

j=p

λj . (45)

The equations (42) and (43) are solved with the solution methods for the
ordinary differential equation, described in [16], and the more general case is
presented in [6].

Thus we find the exact solution of (42) and (43):

û1 = û1(s, 0)e−(λ1+sv1)t, (46)

ûi = ûi(s, 0)e−(λi+svi)t (47)

+
i−1
∑

p=1

ûp(s, 0) Λi,p

i
∑

j=p

e−(λj+svj)t
i
∏

k=p
k 6=j

(s(vk − vj) + λk − λj)
−1

for i = 2, . . . ,m,

The analytical solution in (46)-(47) can have a singular point for a single value
of s. Nevertheless, this causes no difficulties when we apply the inverse Laplace
transformation and thus we do not need to discuss this issue any further.

To obtain the exact solution of (42) and (43), we must apply the inverse
Laplace transformation. For that we have to apply some algebraic manipulations.

For the first case, let us assume that vj 6= vk and λj 6= λk for j 6= k and
∀j, k = 1, . . . ,m. Then we can denote

λkj = λjk :=
λj − λk

vj − vk
. (48)

Furthermore, for the next transformation, we require that the values λjk are
different for each pair of indices j and k.

The factors Λj,i with λj 6= λk for j 6= k and the factor Λjk,i with λjk 6= λjl

for k 6= l are given by

Λj,i,p =







i
∏

k=p
k 6=j

1

λk − λj






, Λjk,i,p =









i
∏

l=p
l 6=j
l 6=k

λjl

λjl − λjk









, (49)

where we have the following assumptions:

1. vj 6= vk ∀j, k = 1, . . . ,m, for j 6= k , (50)
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2. λj 6= λk ∀j, k = 1, . . . ,m, for j 6= k , (51)

3. λjk 6= λjl ∀j, k, l = 1, . . . ,m, for j 6= k ∧ j 6= l ∧ k 6= l, (52)

4. vj 6= vk and λj 6= λk ∀j, k = 1, . . . ,m, for j 6= k . (53)

From (49), the last term in (46) and (47) for a given index j can be rewritten
in the following form,

i
∏

k=p
k 6=j

(s(vk − vj) + λk − λj)
−1 = Λj,i,p

i
∑

k=p
k 6=j

λjk

s+ λjk
Λjk,i,p . (54)

From (44) adopted in (46) and (47), the standard inverse Laplace transformation
can be used and the solution ui for (39) is given by

u1(x, t) = exp(−λ1t)







0 , 0 ≤ x < v1t

a1(x− v1t) + b1 , v1t ≤ x < v1t+ 1
0 , v1t+ 1 ≤ x

, (55)

ui(x, t) = exp(−λit)







0 , 0 ≤ x < v1t

ai(x− vit) + bi , vit ≤ x < vit+ 1
0 , vit+ 1 ≤ x

,

=

i−1
∑

p=1

Λi,p







i
∑

j=p

exp(−λjt)Λj,i,p

i
∑

k=p
k 6=j

Λjk,i,pAjk,p






, (56)

Ajk,p =











































0 , 0 ≤ x < vjt

bp(x− vjt)

+(cp −
bp

λjk
)(1 − exp(−λjk(x− vjt))) , vjt ≤ x < vjt+ 1

(cp −
bp

λjk
+ bp) exp(−λjk(x− vjt− 1))

−(cp −
bp

λjk
) exp(−λjk(x− vjt)) , vjt+ 1 ≤ x

, (57)

with i = 2, . . . ,m.

Optimized solution with respect to the denominator problem:

Because of the numerical computation for the analytical solution we have
derived an improved notation, cf. [13]. The analytical solutions with the new
notation are given as:

u1(x, t) = exp(−λ1t)







0 , 0 ≤ x < v1t

a1(x− v1t) + b1 , v1t ≤ x < v1t+ 1
0 , v1t+ 1 ≤ x

, (58)

ui(x, t) = exp(−λit)







0 , 0 ≤ x < v1t

ai(x− vit) + bi , vit ≤ x < vit+ 1
0 , vit+ 1 ≤ x

,
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+
i−1
∑

p=1

Λi,p

i
∑

j=p

(

Lj,i,p +
i
∑

k>j







Mjk,i,p , vj < vk

Mkj,i,p , vk < vj

0 , otherwise

)

, (59)

with i = 2, . . . ,m ,

where the factors Lj,i,p and Mjk,i,p are defined as:

Lj,i,p :=























exp(−λjt) Λj,i,p

(

bp(x− vjt) + cp

−
∑i

k=p
k 6=j

1
λjk

bp

λjk

)

, vjt ≤ x ≤ vjt+ 1

0 , otherwise

, (60)

Mjk,i,p :=







Λj,i,p Λjk,i,p gjk,p , vjt ≤ x ≤ vkt

Λj,i,p Λjk,i,p hjk,p , vjt+ 1 ≤ x ≤ vkt+ 1
0 , otherwise

, (61)

and the factors gjk,p and hjk,p are given as

gjk,p := −(cp −
bp

λjk
) exp(−λjt) exp(−λjk(x− vjt− 1)) , (62)

hjk,p := (cp −
bp

λjk
+ bp) exp(−λjt) exp(−λjk(x− vjt)) . (63)

Remark 3. The analytical solutions of (39) with their initial conditions (40) are
used to design discretization methods with embedded analytical support func-
tions, see ideas in [17] and [32]. For more efficient computations, simplifications
can be done with respect to dominant components in the decay chain and im-
proved notations to avoid numerical instabilities.

In the next section we derive the analytical solution for general initial con-
ditions.

3.3 General initial conditions for piecewise linear

convection-reaction equations

To generalize our initial conditions we combine the subsection 3.1 and 3.2.
The equation is given as

Ri∂tui + vi∂xui = −Riλiui +Ri−1λi−1ui−1 , (64)

for i = 1, . . . ,m, whereas m denotes the number of equations. The unknowns
ui = ui(x, t) denote the contaminant concentrations. They are transported with
constant (and, in general, different) velocities vi and decay with constant reaction
rates λi. The spatiotemporal domain is given by (0,∞) × (0, T ). Further, Ri is
the retardation factor that respects the acceleration or restriction of the time
scales.
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We have the same assumptions as in the previous sections.
For the boundary conditions we use zero concentrations at the inflow bound-

ary x = 0. The initial conditions are defined for x ∈ (0, 1),

up(x, 0) =

{
∑Q

q=1 bp,qx+ cp,q , x ∈ [xq, xq+1]

0 , otherwise
(65)

p = 1, . . . ,m , (66)

where bp,q and cp,q are arbitrary constants of the piecewise quadratic function
and [xq , xq+1] is the interval of the function, Q is the number of intervals.

We use the Laplace transformation for the translation of the partial differen-
tial equation to the ordinary differential equation. The transformations for this
case are given in [6], [16] and [19].

In equation (64) we apply the Laplace transformation given in [1] and [5].
For that we need to define the transformed function û = û(s, t):

ûi(s, t) :=

∞
∫

0

ui(x, t) e
−sx dx . (67)

From (64), the functions ûi satisfy the transformed equations

∂tû1 = − (λ1 + sv1) û1 , (68)

∂tûi = − (λi + svi) ûi + λi−1ûi−1 , (69)

and the transformed initial conditions for s ∈ (0,∞),

ûp(s, 0) =

Q
∑

q=1

(

(

bp,q

s2
+
cp,q

s

)

(1 − e−s)) (70)

+(
bp,q

s
) e−s) ,

p = 1, . . . ,m . (71)

We denote for further solutions:

Λi,p =
i−1
∏

j=p

λj . (72)

Equation (68)-(69) is solved with the solution methods for the ordinary dif-
ferential equation, described in [16], and the more general case is presented in
[6].

Thus we find the exact solution of (68)-(69):

û1 = û1(s, 0) exp(−(λ1 + sv1)t), (73)

ûi = ûi(s, 0) exp(−(λi + svi)t)

+
i−1
∑

p=1

ûp(s, 0) Λi,p

i
∑

j=p

e−(λj+svj)t
i
∏

k=p
k 6=j

(s(vk − vj) + λk − λj)
−1

, (74)

for i = 1, . . . ,m.
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The analytical solution in (73)-(74) can have a singular point for a single value
of s. Nevertheless, this causes no difficulties when we apply the inverse Laplace
transformation and thus we do not need to discuss this issue any further.

To obtain the exact solution of (68)-(69), we must apply the inverse Laplace
transformation on (73)-(74). For that we have to apply some algebraic manipu-
lations.

For the first case, let us assume that vj 6= vk and λj 6= λk for j 6= k and
∀j, k = 1, . . . ,m. Then we can denote

λkj = λjk :=
λj − λk

vj − vk
. (75)

Furthermore, for the next transformation, we require that the values λjk are
different for each pair of indices j and k.

The factors Λj,i with λj 6= λk for j 6= k and the factor Λjk,i with λjk 6= λjl

for k 6= l are given by

Λj,i,p =







i
∏

k=p
k 6=j

1

λk − λj






, Λjk,i,p =









i
∏

l=p
l 6=j
l 6=k

λjl

λjl − λjk









, (76)

where we have the following assumptions:

1. vj 6= vk ∀j, k = 1, . . . ,m, for j 6= k , (77)

2. λj 6= λk ∀j, k = 1, . . . ,m, for j 6= k , (78)

3. λjk 6= λjl ∀j, k, l = 1, . . . ,m, for j 6= k ∧ j 6= l ∧ k 6= l, (79)

4. vj 6= vk and λj 6= λk ∀j, k = 1, . . . ,m, for j 6= k . (80)

From (76), the last term in (73)-(74) for a given index j can be rewritten in
the following form,

i
∏

k=p
k 6=j

(s(vk − vj) + λk − λj)
−1 = Λj,i,p

i
∑

k=p
k 6=j

λjk

s+ λjk
Λjk,i,p . (81)

From (70) adopted in (68) and (69), the standard inverse Laplace transformation
can be used and the solution ui for (67) is given by

u1(x, t) = exp(−λ1t)

Q
∑

q=1







0 , 0 ≤ x < v1t+ xq

b1,q(x− v1t) + c1,q , v1t+ xq ≤ x < v1t+ xq+1

0 , v1t+ xq+1 ≤ x

,(82)

ui(x, t) = exp(−λit)

Q
∑

q=1







0 , 0 ≤ x < vit+ xq

bi,q(x− v1t) + ci,q , vit+ xq ≤ x < vit+ xq+1

0 , vit+ xq+1 ≤ x

,(83)
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+
i−1
∑

p=1

Λi,p







i
∑

j=p

exp(−λjt)Λj,i,p

i
∑

k=p
k 6=j

Λjk,i,pAjk,p






, (84)

Ajk,p =

Q
∑

q=1



































































0 , 0 ≤ x < vjt+ xq

bi,q(x− (vjt+ xi))

+(ci,q −
bi,q

λjk
)

·(1 − exp(−λjk(x− (vjt+ xq)))) , vjt+ xq ≤ x < vjt+ xq+1

(ci,q −
bi,q

λjk
+ bi,q)

· exp(−λjk(x− (vjt+ xq+1)))

−(ci,q −
bi,q

λjk
)

· exp(−λjk(x− (vjt+ xq))) , vjt+ xq+1 ≤ x

with i = 2, . . . ,m.

where Q is the number of piecewise linear intervals.

Remark 4. Here, we have derived analytical solutions of (64) with general initial
conditions (65) that are used to verify numerical results or design discretization
methods with embedded analytical support functions, see [17] and [32]. Modi-
fications of the solutions can be done respecting to dominant components and
improved notations to stabilize the numerical computations.

3.4 Solution for the mobile and immobile parts

Here we construct semi-analytical solutions for the mobile and immobile parts.
We deal with the equations:

∂tui + vi∂xui = −λiui + λi−1ui−1 + β(−ui + gi) , (85)

∂tgi = −λigi + λi−1gi−1 + β(−gi + ui) , (86)

We propose a splitting method to decouple the mobile and the immobile
parts of the equations.

We set A as the operator for the mobile part and B as the operator for the
immobile part.

The following iteration scheme solves the problem.

The iterative time-splitting method

The following algorithm is based on the iteration with fixed splitting dis-
cretization step-size τ . On the time interval [tn, tn+1] we solve the following
sub-problems consecutively for j = 0, 2, . . .2m.

∂Uj(x, t)

∂t
= AUj(x, t) + BUj−1(x, t), with Uj(t

n) = Un (87)
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U0(x, t
n) = Un , U−1 = 0,

and Uj(x, t) = Uj−1(x, t) = u1 , on ∂Ω × (0, T ) ,

∂Uj+1(x, t)

∂t
= AUj(x, t) + BUj+1(x, t), (88)

with Uj+1(x, t
n) = Un ,

and Uj(x, t) = Uj−1(x, t) = U1 , on ∂Ω × (0, T ) ,

where Un = (u, g)t is the vector of the mobile and immobile solutions and is the
known split approximation at the time level t = tn (see [8]).

Remark 5. We can generalize the iterative-splitting method to a multi-iterative
splitting method by introducing new splitting operators, e.g. spatial operators.
Then we obtain multi-indices to control the splitting process. Each iterative
splitting method can be solved independently, while connecting with further
steps to the multi-splitting methods. In the following we introduce the multi-
iterative-splitting method for a combined time-space-splitting method.

3.5 Computation of the mass for the discretization method

An application of the analytical solutions is the calculation of mass in an one-
dimensional cell at time point t.

The integration of the analytical solutions is called mass. The integration is
realized over the unit integral and afterwards in the application scaled on the
mass of the finite volume cell.

The mass, that remains in the interval after a time point is calculated, as well
as the mass that flowed out of the interval. The first mass mi1, called residual
mass, is calculated over the interval (0, 1), and the second mass mi2, called
outflowing mass, is calculated over the interval (1,∞). The index i denotes the
component, where i = 1, . . . ,m.

We use the following approach to derive the mass:

– Calculating the residual mass in the interval (0, 1).
– Calculating the total mass in the interval (0,∞).
– Calculating the outflowing mass in the interval (1,∞).

Subsequently, the mass is calculated step by step.
The integration over the intervals can be simplified by use of additive notation

of the solution from equation (8). The notation is given by:

ui(x, t) =
i
∑

j=1

uij(x, t), (89)

uij(x, t) = Λi

(

exp(−λjt) Λj,i

i
∑

k=1

k 6=j

Λjk,iAjk

)

.
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The functions Λi, Λj,i, and Λjk,i are declared in equations (25), (26), and (27).

Subsequently, for the sake of simplicity the functions are written as mi1(t) =
mi1 and mi2(t) = mi2, respectively.

Afterwards the mass mi1 is calculated over the interval (0, 1). The intervals
are ascertained for the domains of sub-equation (89). With this the integration
boundaries are declared for every component j in the interval (vjt, 1).

The integration is done in the subsequent equation in the space variable x.

3.6 Calculation of the residual mass

We now consider the calculation of mass that remains in the interval (0, 1).

Case i = 1:

m11 = exp(−λ1t)

∫ 1

v1t

(a(x− v1t) + b) dx

= exp(−λ1t)(a
(1 − v1t)

2

2
+ b(1 − v1t)). (90)

Case i = 2, . . . ,m:

mi1 =

∫ 1

0

ui(x, t)dx =

∫ 1

mini
k=1

{vkt}

ui(x, t) dx (91)

=

∫ 1

mini
k=1

{vkt}

i
∑

j=1

uij(x, t) dx

=

i
∑

j=1

(

∫ 1

vjt

uij(x, t) dx)

= Λi

(

i
∑

j=1

exp(−λjt)Λj,i

i
∑

k=1

k 6=j

Λjk,i

·

∫ 1

vjt

(

a(x− vjt) + (b −
a

λjk
)(1 − exp(−λjk(x− vjt)))

)

)

dx

= Λi

(

i
∑

j=1

exp(−λjt)Λj,i

i
∑

k=1

k 6=j

Λjk,i

·

(

a
(1 − vjt)

2

2

+(b−
a

λjk
)((1 − vjt) +

1

λjk
(exp(−λjk(1 − vjt)) − 1))

)

)

.

A further reformulation is realized for the notation depending on the interval.
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Equation (91) is subdivided into four sub-equations, which are ordered ac-
cording to the factors 1, 1

λjk
, 1

λ2

jk

, and exp(·). After rearrangement the following

four sub-equations appear:

mi1 = mi11
+mi12

+mi13
+mi14

, (92)

mi11
= Λi

(

i
∑

j=1

exp(−λjt) Λj,i

i
∑

k=1

k 6=j

Λjk,i

·

(

a
(1 − vjt)

2

2
+ b(1 − vjt)

))

, (93)

mi12
= Λi

(

i
∑

j=1

exp(−λjt) Λj,i

i
∑

k=1

k 6=j

Λjk,i

·

(

− a
1

λjk
(1 − vjt) − b

1

λjk

))

, (94)

mi13
= Λi

(

i
∑

j=1

exp(−λjt) Λj,i

i
∑

k=1

k 6=j

Λjk,i
a

λ2
jk

)

, (95)

mi14
= Λi

(

i
∑

j=1

exp(−λjt) Λj,i

i
∑

k=1

k 6=j

Λjk,i

· (b −
a

λjk
)

1

λjk
exp(−λjk(1 − vjt))

)

. (96)

From the additivity of the terms a remodeling can be realized.
Subsequently equations (93) – (96) are simplified.

Equations (93) – (95) are also simplified as follows:

mi11
= Λi

(

i
∑

j=1

exp(−λjt) Λj,i

·

(

a
(1 − vjt)

2

2
+ b(1 − vjt)

) i
∑

k=1

k 6=j

Λjk,i

)

(97)

= Λi

(

i
∑

j=1

exp(−λjt) Λj,i

(

a
(1 − vjt)

2

2
+ b(1 − vjt)

)

)

,

mi12
= Λi

(

i
∑

j=1

exp(−λjt) Λj,i

·

(

− a(1 − vjt) − b

) i
∑

k=1

k 6=j

Λjk,i
1

λjk

)

(98)
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= Λi

(

i
∑

j=1

exp(−λjt) Λj,i

(

− a(1 − vjt) − b

) i
∑

k=1

k 6=j

λjk

)

,

mi13
= Λi

(

i
∑

j=1

exp(−λjt) Λj,i a

i
∑

k=1

k 6=j

Λjk,i
1

λ2
jk

)

(99)

= Λi

(

i
∑

j=1

exp(−λjt) Λj,i a

i
∑

k=1

k 6=j

(
1

λjk

i
∑

l≥k
l 6=j

1

λjl

)

.

Sub-equations (97) and (98) can be simplified using

i
∑

k=1

k 6=j

(

i
∏

l=1

l 6=k
l 6=j

λjl

λjl − λjk
) = 1, (100)

i
∑

k=1

k 6=j

(
i
∏

l=1

l 6=k
l 6=j

λjl

λjl − λjk
)

1

λjk
=

i
∑

k=1

k 6=j

1

λjk
. (101)

For equation (99) we use the following remodeling:

i
∑

k=1

k 6=j

(
i
∏

l=1

l 6=k
l 6=j

λjl

λjl − λjk
)

1

λ2
jk

=
i
∑

k=1

k 6=j

(
1

λjk

i
∑

l≥k
l 6=j

1

λjl
), (102)

and the proof of the equality can be realized by induction.
Subsequently, equation (96) is simplified by remodeling into symmetrical

terms that pairwise cancel themselves out.
There holds the following notation for equation (96):

mi14
=

i−1
∏

j=1

λj

i
∑

j=1

i
∑

k=1

k 6=j

Fjk

=

i−1
∏

j=1

λj

i
∑

j=1

i
∑

k>j

(Fjk + Fkj). (103)

Factor Fjk is given as:

Fjk = exp(−λjt)(

i
∏

k=1

k 6=j

1

λk − λj
)(

i
∏

l=1

l 6=k
l 6=j

λjl

λjl − λjk
) (104)

· (b−
a

λjk
)

1

λjk
exp(−λjk(1 − vjt)),
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where factor Fkj emerges by interchange of the indices j and k.
Subsequently we simplify equation (103). The pairwise factors Fjk and Fkj

can be eliminated by

Fjk + Fkj = 0 , (105)

with j = 1, . . . , i and k > j.

Then there holds for term mi14
:

mi14
= 0. (106)

The proof of equation (105) is subsequently presented.
The terms (104) are inserted in equation (105), and based on the equality the
exp-functions are factorized. Then there holds:

Fjk + Fkj = exp(−λjt)

(

b −
a

λjk

)

1

λjk
· (107)

· exp(−λjk(1 − vjt))(Λj,iΛjk,i + Λk,iΛkj,i). (108)

Using the statement Λj,iΛjk,i + Λk,iΛkj,i = 0, then there holds:

Fjk + Fkj = 0.0 . (109)

For all j = 1, . . . , i and k > j one obtains:

mi14
= 0. (110)

Hence equation (106) is proved.
Equation (90) to calculate the mass can be written as:

mi1 = Λi

i
∑

j=1

Λj,i exp(−λjt)






a
(1 − vjt)

2

2
+ b(1 − vjt−

i
∑

k=1

k 6=j

1

λjk
)

−a(1 − vjt)(

i
∑

k=1

k 6=j

1

λjk
) + a

( i
∑

k=1

k 6=j

1

λjk
(

i
∑

l≥k
l 6=j

1

λjl
)

)






. (111)

In a further step the calculation of the total mass mitot is derived, which
consists of the sub-masses mi1 and mi2.

3.7 Calculation of total mass

For the calculation it can be shown that the total mass consists of the mass of
the pulse and the mass of the concentration of the ordinary differential equation.

For the total mass shall hold:

mitot = mpulse ci,ODE (112)

= mi1 +mi2.
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This is shown subsequently in two steps.
First Step:
The total mass is calculated by means of the solution of the ordinary differ-

ential equation and the mass of the initial pulse: The total mass is calculated as
follows:

mpulse =

∫ 1+vjt

vjt

(a(x− vjt) + b) dx

= (a
1

2
+ b),

ci,ODE = Λi

i
∑

j=1

Λj,i exp(−λjt),

mi,ODE = mpulse ci,ODE

= (a
1

2
+ b) Λi

i
∑

j=1

Λj,i exp(−λjt). (113)

The terms Λi, Λj,i, and Λjk,i are declared in equations (15) and (19).
This completes the first step.
Second Step:
The total mass is now integrated over the total interval (0,∞).
For the total mass we have the following integral:

mitot = mi1(t) +mi2(t)

=

∫ 1+maxi
j=1

{vj t}

mini
j=1

{vjt}

ci(x, t) dx. (114)

For the integration we need the following considerations concerning the interval
boundaries.

To consider all possibilities concerning the varying combination options for
the integration boundaries we initiate the permutation group k (cf. [27]). The
values can be ordered as follows:
vk(1) < . . . < vk(i).

Without loss of generality we confine ourselves to a selection.
The selection is given as:

W.l.o.g. holds:

v1 < v2 . . . < vi. (115)

From the additivity of the solutions we can declare the individual sub-solutions as
follows and utilize the integration boundaries. The upper integration boundary
is given as maxi

j=1{vjt} = vit, and the integrals can be written as:

mitot =

∫ 1+maxi
j=1

{vjt}

mini
j=1

{vjt}

ci(x, t)dx (116)
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=

i
∑

j=1

∫ 1+vj t

vjt

cij(x, t)dx +

i−1
∑

j=1

∫ 1+vit

1+vjt

cij(x, t) dx

= Λi

i
∑

j=1

Λj,i

i
∑

k=1

k 6=j

Λjk,i exp(−λjt)

∫ vjt+1

vjt

(

a(x− vjt) + (b −
a

λjk
)(1 − exp(−λjk(x− vjt)))

)

dx

+ Λi

i−1
∑

j=1

Λj,i

i
∑

k=1

k 6=j

Λjk,i exp(−λjt)

∫ vit+1

vjt+1

(

(b −
a

λjk
+ a) exp(−λjk(x− (vjt+ 1)))

−(b−
a

λjk
) exp(−λjk(x− vjt))

)

dx.

The integration is realized over the integration areas yielding the following so-
lutions:

mitot = Λi

(

i
∑

j=1

Λj,i

i
∑

k=1

k 6=j

Λjk,i exp(−λjt) (117)

(

a
1

2
+ (b−

a

λjk
)(1 +

1

λjk
(exp(−λjk) − 1))

)

)

+ Λi

(

i−1
∑

j=1

Λj,i

i
∑

k=1

k 6=j

Λjk,i exp(−λjt)

(

(b−
a

λjk
+ a)

(

−
1

λjk
(exp(−λjk(vi − vj)t) − 1)

)

−(b−
a

λjk
)
(

−
1

λjk
(exp(−λjk((vi − vj)t+ 1)) − exp(−λjk))

)

)

)

.

Some terms can be eliminated and equation and one obtains the following
terms:

mitot(t) = Λi

i
∑

j=1

Λj,i exp(−λjt)(a
1

2
+ b)

+ Λi

(

i−1
∑

j=1

Λj,i

i
∑

k=1

k 6=j

Λjk,i exp(−λjt)

(

(b −
a

λjk
+ a)(−

1

λjk
exp(−λjk(vi − vj)t))
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−(b−
a

λjk
)(−

1

λjk
exp(−λjk((vi − vj)t+ 1)))

)

)

.

For the sake of simplicity we define the following terms of further considerations:

F̃jk = Λj,iΛjk,i exp(−λjt)

(

(b−
a

λjk
+ a)(−

1

λjk
exp(−λjk(vi − vj)t))

)

,

F̂jk = Λj,iΛjk,i exp(−λjt)

(

(b−
a

λjk
)(−

1

λjk
exp(−λjk((vi − vj)t+ 1)))

)

.

For these terms we have the following statements:

F̃jk + F̃kj = 0, (118)

F̂jk + F̂kj = 0, (119)

with j = 1, . . . , i and j 6= k.

The proof can be done analogously by means of the statements of equation
(112).

By eliminating the terms F̃jk and F̂jk one obtains the equation for the total
mass described as:

mitot = Λi





i
∑

j=1

Λj,i exp(−λjt)(a
1

2
+ b)



 .

This concludes the second step, yielding the same result as in the first step.
This proves the equality in equation (112).

Based on the simple calculation of the total mass mitot from Equation (112)
a simpler calculation of the outflowing mass can be achieved.

This is considered subsequently in a further equation.

3.8 Calculation of the outflowing mass

From the statement of equation (112) the outflowing mass mi2 can be calculated
by:

mi2 = mitot −mi1.

This reduces the computational efforts significantly .
The next chapter describes the solver methods that are used for the implicitly

discretized equation parts, especially those of the diffusion-dispersion equation.

4 Discretization Method

For the space-discretization we use finite volume methods and for the time-
discretization we use explicit or implicit Euler methods. In the next section we
introduce the notation for the space-discretization. Further, for the equation’s
terms we describe the discretization methods.
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4.1 Notation

The time-steps for the calculation in the time-intervals are (tn, tn+1) ⊂ (0, T ) ,
for n = 0, 1, . . .. The computational cells are given as Ωi ⊂ Ω with j = 1, . . . , I.
The unknown I is the number of nodes.

For the use of finite volumes we have to construct the dual mesh for the
triangulation T [11] of the domain Ω. First, the finite elements for the domain
Ω are given by T e, e = 1, . . . , E. The polygonal computational cells Ωj are
related to the vertices xj of the triangulation.

To get the relation between the neighbor cells and to use the volume of each
cell we introduce the following notation. Let Vj = |Ωj | and the set Λj denote
the neighbor-point xk to the point xj . The boundary of cells j and k is Γjk.

We define the flux over the boundary Γjk as

vjk =

∫

Γjk

n · v ds . (120)

The inflow-flux is given as vjk < 0, and the outflow-flux is vjk > 0. The fluxes’
antisymmetrics are denoted as vjk = −vkj . The total outflow-flux is given by:

νj =
∑

k∈out(j)

vjk. (121)

The idea of the finite volumes is to construct an algebraic equation system
to express the unknowns cni ≈ c(xi, t

n). The initial values are given by c0i . The
expression of the interpolation schemes could be given naturally in two ways.
The first is given with the primary mesh of the finite elements:

cn =

I
∑

i=1

cni φi(x) (122)

where φi are the standard globally-finite-element-basis functions [11]. The second
possibility is for the finite volumes with:

ĉn =

I
∑

i=1

cni ϕi(x) (123)

where ϕi are piecewise constant discontinuous functions defined by ϕi(x) = 1
for x ∈ Ωi and ϕi(x) = 0 otherwise.

4.2 Discretization of the convection equation with first-order

The piecewise constant discretization of the convection equation

∂tR c− v · ∇c = 0 , (124)
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with the simple boundary condition c = 0 for the inflow and outflow boundary.
We use the upwind discretization performed in [11] and get

Vj R cn+1
j = cnj (R Vj − τnνj) + τn

∑

k∈in(j)

R cnk vkj , (125)

Because of the explicit discretization for time and to fulfill the discrete minimum-
maximum property [11], we get a restriction for the time-steps as follows:

τ j =
R Vj

νj
, τn ≤ min

j=1,...,I
τj (126)

In the next subsection we improve the discretization with a reconstruction
with linear polynomes. The reconstruction is based on Godunov’s method and
is the limiter on the local minimum-maximum property.

4.3 Discretization of the convection equation with higher-order

The reconstruction was done in a previous paper [11] and we introduce the
scheme in the next steps.

The linear polynomes are reconstructed over the element-wise gradient and
are given as:

un(xj) = cnj , (127)

∇un|Vj =
1

Vj

E
∑

e=1

∫

T e∩Ωj

∇cndx , (128)

with j = 1, . . . , I .

The piecewise linear function is given by:

un
jk = cnj + ψj∇u

n|Vj (xjk − xj) , (129)

with j = 1, . . . , I ,

where ψi ∈ (0, 1) is the limiter which has to fulfill the discrete minimum-
maximum property.

The piecewise linear function is given by:

un
jk = cnj + ψj∇u

n|Vj (xjk − xj) , with j = 1, . . . , I ,

where ψj ∈ (0, 1) is the limiter which has to fulfill the discrete minimum-
maximum property, as described in [11].

We also use the limitation of the flux to get no overshooting when transport-
ing the mass and to receive the maximal time-step.

We get the restriction for the concentration as:

ũn
jk = un

jk +
τj

τn
(cnj − un

jk) . (130)
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On the basis of all the previous schemes the discretization for the second-
order is written in the form

RVjc
n+1
j = RVjc

n
j − τn

∑

k∈out(j)

ũn
jkvjk + τn

∑

l∈in(j)

ũn
ljvlj , (131)

This discretization method is used for the next coupled discretization with
the reaction equation.

4.4 Discretization of the convection-reaction equation with

one-dimensional analytical solutions

We apply Godonov’s method for the discretization, see [23], and enlarge it
with the solution of convection-reaction equations. We reduce the equation to
a one-dimensional problem, solve the equation exactly and transform the one-
dimensional mass to the multi-dimensional equation.

The discretization of the equation:

∂t cl + ∇ · vl cl = −λl cl + λl−1 cl−1, (132)

with l = 1, . . . ,m .

The velocity vector v is normed by Rl. The initial conditions are given by c01 =
c1(x, 0) , else c0l = 0 for l = 2, . . . ,m and the boundary conditions are trivial
cl = 0 for l = 1, . . . ,m.

We first calculate the maximal time-step for cell j and concentration i with
the use of the total outflow fluxes:

τi,j =
Vj Ri

νj
, νj =

∑

j∈out(i)

vij .

We get the restricted time-step with the local time-steps of cells and their com-
ponents:

τn ≤ min
i=1,...,m
j=1,...,I

τi,j .

The velocity of the discrete equation is given by:

vi,j =
1

τi,j
.

We calculate the analytical solution of the mass with equation (132) (see also
Subsection ??) and obtain:

mn
i,jk,out = mi,out(a, b, τ

n, v1,j, . . . , vi,j , R1, . . . , Ri, λ1, . . . , λi) ,

mn
i,j,rest = mn

i,j f(τn, v1,j , . . . , vi,j , R1, . . . , Ri, λ1, . . . , λi) ,
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whereby a = VjRi(c
n
i,jk − cni,jk′ ) , b = VjRic

n
i,jk′ and mn

i,j = VjRiu
n
i are the

parameters. The linear impulse in the finite-volume cell is cni,jk′ for the concen-
tration on the inflow- and cni,jk for the concentration on the outflow-boundary
of the cell j.

The discretization with the embedded analytical mass is calculated by:

mn+1
i,j −mn

i,rest = −
∑

k∈out(j)

vjk

νj
mi,jk,out +

∑

l∈in(j)

vlj

νl
mi,lj,out ,

whereby
vjk

νj
is the re-transformation for the total mass mi,jk,out in the partial

mass mi,jk . The mass in the next time-step is mn+1
i,j = Vj c

n+1
i and in the old

time-step it is the rest mass for the concentration i. The proof is shown in [13].
In the next section we derive an analytical solution for the benchmark problem.

5 Numerical experiments

The numerical and analytical methods are programmed in our software package
R3T , described in [15], based on the software tool ug, described in [2]. In this
paper we will focus on the experiments: a description of the tools is presented
in [13].

5.1 First experiment: ascending retardation factors with four

species

We use ascending parameters for the retardation factors. The retardation factors
are given as R1 = 1, R2 = 2, R3 = 4, R4 = 8. The reaction factors are given as
λ1 = 0.4, λ2 = 0.3, λ3 = 0.2, λ4 = 0.

See the results in Figure 1. The L1-error and the convergence rate are given
as follows:

l E1

L1
ρ1

L1
E2

L1
ρ2

L1
E3

L1
ρ3

L1
E4

L1
ρ4

L1

4 0.0 1.71 10−3 1.04 10−3 2.407 10−4

5 0.0 ∞ 8.61 10−4 0.989 5.28 10−4 0.978 1.22 10−4 0.98
6 0.0 ∞ 4.29 10−4 1.005 2.65 10−4 0.995 6.13 10−5 0.993
7 0.0 ∞ 2.14 10−4 1.003 1.31 10−4 1.016 3.07 10−5 0.997

Table 1. L1-error for the ascending-retardation factors with the standard method.

To compare these results with the modified version we reproduce the same
calculations and get the following results: We improved the convergence rates
for the modified results. They tend to the second-order so that we achieve a
second-order method for such results.

The next experiment is done with reciprocal parameters.
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Fig. 1. Experiment ascending parameters.

5.2 Second experiment: descending retardation factor with five

species

We use ascending parameters for the retardation factors. The retardation factors
are given as R1 = 16, R2 = 8, R3 = 4, R4 = 2, R5 = 1. The reaction factors are
given as λ1 = 0.4, λ2 = 0.3, λ3 = 0.2, λ4 = 0.1, λ5 = 0.0.

See the results in Figure 2. The results of the calculations are given as:

The modified example has the results:

The next experiment is done with ten species.
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l E1

L1
ρ1

L1
E2

L1
ρ2

L1
E3

L1
ρ3

L1
E4

L1
ρ4

L1

4 0.0 3.06 10−4 3.91 10−5 7.79 10−6

5 0.0 ∞ 8.03 10−5 1.95 9.87 10−6 1.986 2.15 10−6 1.89
6 0.0 ∞ 2.007 10−5 2.0 2.60 10−6 1.93 5.81 10−7 1.89
7 0.0 ∞ 4.36 10−6 2.21 6.66 10−7 1.96 1.51 10−7 1.94

Table 2. L1-error and convergence rate for the ascending-retardation factor done with
the modified method

l E1

L1
ρ1

L1
E2

L1
ρ2

L1
E3

L1
ρ3

L1
E4

L1
ρ4

L1

4 7.30 10−3 5.55 10−3 1.069 10−2 2.502 10−2

5 2.57 10−3 1.58 2.27 10−3 1.25 5.16 10−3 1.051 1.225 10−2 1.02
6 9.36 10−4 1.53 1.01 10−3 1.16 2.52 10−3 1.033 6.056 10−3 1.01
7 3.52 10−4 1.45 4.73 10−4 1.09 1.24 10−3 1.023 3.00 10−3 1.01

Table 3. L1-error and convergence rate for the descending-retardation factors for the
standard method.

5.3 Third experiment: descending retardation factor with ten

species

We use ascending parameters for the retardation factors. The retardation factors
are given as R1 = 10, R2 = 9, R3 = 8, R4 = 7, R5 = 6 . . . R10 = 1. The reaction
factors are given as λ1 = 2.0, λ2 = 1.8, λ3 = 1.6, λ4 = 1.4, . . . , λ10 = 0.0.

With the assumptions:

– λj 6= λk

– vj 6= vk

– λjk 6= λjl

Here we apply the reduced equation 28 and 32.
The idea is to select the dominated decay chains and to apply them in the

scheme.
We have the following color series: u(1)=red, u(2)=blue, u(3)=green, u(4)=yellow,

u(5)=black, u(6)=cyan, u(7)=violet, u(8)=coral, u(9)=brown, u(10)=orange.
The results are given in Figures 3 and 4.
The next experiment is done with a two-dimensional benchmark problem.

5.4 Fourth experiment: rotating pyramid

For further applications of two-dimensional problems we focus on a new bench-
mark problem. The problem is described in the literature as a rotating Gaussian
impulse, see [?].
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Fig. 2. Experiment descending parameters.

The application of our test example modified this benchmark problem in a
form for use with the analytical one-dimensional solution.

The constant velocities are given on the circular lines and the continuous
form of the impulse is given with a triangular impulse on the circular arc. The
further directions are continuous on the radius r with a linear function of r
beginning in the basic radius ra and rb as presented in Figure 5. Therefore the
two-dimensional example is continuous in α- and in r-direction.

The transformation changes the two-dimensional problem to a one-dimensional
one, for which we derived the analytical solution.

The transformation from the Cartesian to the polar coordinates is given as:

r =
√

x2 + y2 , (133)

ǫ(r) = r α0 , (134)
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l E1

L1
ρ1

L1
E2

L1
ρ2

L1
E3

L1
ρ3

L1
E3

L1
ρ4

L1

4 7.30 10−3 4.23 10−3 1.43 10−3 1.255 10−3

5 2.57 10−3 1.58 1.14 10−3 1.89 3.07 10−4 2.22 2.82 10−4 2.15
6 9.36 10−4 1.53 2.49 10−4 2.24 7.94 10−5 1.95 6.81 10−5 2.05
7 3.52 10−4 1.45 5.82 10−5 2.11 2.04 10−5 1.96 1.68 10−5 2.02

Table 4. L1-error and convergence rate for the descending-retardation factors done
with the modified method.

Fig. 3. Experiment with ten descending parameters (initial and experiment after t =
4).

the (x, y) ∈ IR × IR is the Cartesian coordinate, and r is the radius, α0 is the
initial arc and ǫ(r) is the length of the circular arc with radius r.

First, we transform the triangular impulse on the cylinder surface (see Picture
5). We receive a continuous impulse for one circle with radius r.

Second, we transfer the continuity in the r-direction with the dependency of
the initial concentration c0(r), which depends on r. We reach further continuous
triangular impulses for further circles, and the transformation is given as 135.

rmed =
ra + rb

2
, (135)

c0(r) = cinit







2
rb−ra

(r − ra) ra ≤ r ≤ rmed
−2

rb−ra
(r − rb) rmed ≤ r ≤ rb
0.0 sonst

, (136)

cinit ∈ IR+ (Initial-concentration) .

The continuity in the r-direction is given in the vertical cut of the pyramid
in the direction r (see Figure 6).
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Fig. 4. Experiment with ten descending parameters (species 1-5 and species 6-10 after
t = 8).

This initial impulse is then rotating on in the domain to follow the impulse,
and the Cartesian domain is divided into four quadrants.

To use the analytical solution the rectangular domain is cut into four quad-
rants and the analytical solution is calculated with the polar coordinates (see
Figure 7).

The arcs on each quadrants are given as:

α =















arctan(| yx |) x < 0, y ≤ 0
arctan(|xy |) + 0.5π x ≥ 0, y < 0

arctan(| yx |) + 1.0π x > 0, y ≥ 0
arctan(|xy |) + 1.5π x ≤ 0, y > 0

, (137)

whereby the coordinates (x, y) are in the domain Ω.
Then we can calculate the length of the circular arc and it gives:

xarc(r, α) = r α , (138)

whereby r is the radius to the point (x, y) and α the arc, measured from the
negative abscissa to the point (x, y).

The velocity is given in the following form, divergence-free and orientated
around the circle with:

v =

(

−4.0 y
4.0 x

)

. (139)

Therefore the velocity is constant on each circle and can be calculated with
the radius r by:

v =
√

v2
rot,x + v2

rot,y = 4.0 r , (140)
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ε(r)/2 ε(r)

c0

ε(r)

ε(r)/2

c0

0

0

(r)

(r)

Initialising
on a circular arc

Triangular−Impulse 
on a cylinder surface                          
Triangular−Impulse                           

Fig. 5. The initializing of circular segments joined together results in a pyramid.

whereby v = (vrot,x, vrot,y)
T is.

Then the one-dimensional analytical solution can be calculated.
The initializing for the rotating pyramid is calculated by:

u1,init = u1,Tri(xarc(r, α0), t0, ǫ(r), c0(r), v1, λ1) , (141)

ui,init = 0.0 with i = 2, . . . ,M , (142)

whereby t0 = 0.0 bund v1 = v
R1

is. M is the number of components.
The analytical solution for an arbitrary time is given as:

ui,Tri = ui,Tri(xarc(r, α), t, ǫ(r), c0(r), v1, . . . , vi, λ1, . . . , λi) , (143)

whereby i = 1, . . . ,M and vi = v
Ri

.
The example for the comparison is given with four components.
The parameters are given as: the porosity is φ = 0.5, the retardation factor

are:
R1 = 1.0, R2 = 2.0, R3 = 4.0, R4 = 8.0 and
the decay-rates are:
λ1 = 1.5, λ2 = 1.4, λ3 = 1.3, λ4 = 0.0 .

The initializing parameters are given as: height of the pyramid is cinit = 1,
the base area in the polar coordinates is with the radius 0.125 ≤ r ≤ 0.375 and
with the initial arc α0 = 0.22.

The initial conditions are chosen to be sufficiently away from the boundary,
so there is no influence from the boundary conditions.

The higher components are initialized with 0.0.
The initial condition of the first component is presented in Figure 8.
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rb
rarmed

rmed( )c0

c0 (r)

r

Fig. 6. Cut in r-direction off the pyramid.

The boundary conditions are trivial inflow and outflow conditions. There are
no sources, i.d. Q̃i = 0.0 for i = 1, . . . , 4.

The domain is [−0.5, 0.5] × [−0.5, 0.5] and the coarse grid consists of one
element, maximally refined till grid-level 7.

The time-steps are fixed at each level and fulfill the Courant number 0.5.
The time-steps are halved for each finer grid-level.

The numerical results are calculated to the time-point t = π
4 .

As in the previous example we calculated with the two methods and reached
improved results in the modified method as presented in Table 5.

The Courant number was ≈ 0.5 and we have a fixed time-step.

l E1

L1
ρ1

L1
E2

L1
ρ2

L1
E3

L1
ρ3

L1
E4

L1
ρ4

L1

4 7.12 10−3 5.80 10−4 3.09 10−5 8.28 10−7

5 2.74 10−3 1.377 2.14 10−4 1.44 1.12 10−5 1.46 2.86 10−7 1.53
6 1.10 10−3 1.32 8.82 10−5 1.27 4.90 10−6 1.19 1.20 10−7 1.25
7 4.40 10−4 1.322 3.50 10−5 1.33 1.90 10−6 1.37 4.80 10−8 1.32

Table 5. L1-error and convergence rate for the modified method with an embedded
analytical solution.

All components reached the second-order because there is no splitting error
between the equations.

For this complex example we also obtained higher-order convergence results
with the modified method.
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rb

ra

c0

Fig. 7. Quadrants for the rotating pyramid.

Fig. 8. Concentration of the first component at the initialization.

The results of the calculation to the end-point t = π
4 for the components are

given in Figure 9.
The concentrations of the higher components are strongly retarded. The first

component is transported furthest and rotated in the half circle. The successor
components are enlarged to their predecessors’ sizes. Therefore the characteristic
results are fulfilled.

5.5 Realistic simulations

In the following subsections, we present our experiments based on the mobile
and immobile gaseous phases. We contribute ideas for obtaining an optimal layer
deposition, which is based on the PE-CVD process (Plasma-enhanced chemical
vapor deposition), see [24].
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Fig. 9. The concentrations of the four components at the time-point t = π

4
.

The main contributions are an optimal collection of point sources, line sources
or moving sources to cover the deposition area. We simulate the deposition pro-
cess with our fast decomposition algorithms and can deal with many different
conditions that might be impossible for physical experiments. Such simulation
results may benefit physical experiments and offer new ideas for optimizing such
deposition problems.

The next experiments show the deposition rates for different sources and
their optimal positions in the apparatus.

The experiments have the following outline:

The exchange between the mobile and immobile concentrations is very low:
it is about g = 10−14, and we assume less activities in the plasma environment.
We apply a one-point source at the position (50, 20). Our number of time-steps
for the simulations is ∆t = 25.

In Figure 10, we present the concentration of the one-point source with short
time.

In Figure 11, we show the deposition rates of the immobile concentration and
one-point source, with number of time-steps equal to 25.

In Figure 12, we show the deposition rates of the mobile concentration and
one point source, with number of time-steps equal to 25.

Remark 6. The mobile concentrations are depositing as a heap, and here we can
see the maximum concentration is at the point (50,0). The other concentrations
in the neighborhood are much smaller; nevertheless the immobile concentration
are very small owing to the mobile concentration. Therefore in the immobile
phase we lost less of the deposition concentration.
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6 Conclusions

We derived analytical solutions of convection dominant equations with general
initial conditions. The analytical test functions are embedded to discretiza-
tion methods for the convection diffusion reaction equation. Further mobile
and immobile equations can be treated with decomposition methods that allow
to reduce the computational complexity and obtain higher-order discretization
schemes.

We could confirm also the new methods with the analytical and numerical
test examples and present the higher-order results of the underlying schemes.

The problem for the convection-dominant equation can be solved with com-
bined analytical and decomposed methods to decouple the complicated equation
systems and achieve the accuracy with iterative or analytical embedded methods.

For complex computations of such convection-dominant problems, we use
these methods in the initialization process of the computation and switch after
sufficient accuracy to implicit methods with large time-steps.

In future the decomposition methods and analytically-improved methods can
be generalized for non-smooth and non-linear problems in time and space.

References

1. M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions. Dover
Publication New York, 1970.

2. P. Bastian, K. Birken, K. Eckstein, K. Johannsen, S. Lang, N. Neuss, and H. Rentz-
Reichert. UG - a flexible software toolbox for solving partial differential equations.
Computing and Visualization in Science, 1(1):27–40, 1997.

3. J. Bear. Dynamics of fluids in porous media. American Elsevier, New York, 1972.
4. J. Bear and Y. Bachmat. Introduction to Modeling of Transport Phenomena in

Porous Media. Kluwer Academic Publishers, Dordrecht, Boston, London, 1991.
5. B. Davis. Integral Transform and Their Applications. Applied Mathematical Sci-

ences, 25, Springer Verlag, New York, Heidelberg, Berlin, 1978 .
6. G.R.. Eykolt. Analytical solution for networks of irreversible first-order reactions.

Wat.Res., 33(3):814–826, 1999.
7. G.R. Eykolt and L. Li. Fate and transport of species in a linear reaction network

with different retardation coefficents. Journal of Contaminant Hydrology, 46:163–
185, 2000.

8. I. Farago, J. Geiser. Iterative Operator-Splitting methods for Linear Problems.

IJCS, International Journal of Computational Sciences, Vol. 1, Nos. 1/2/3, pp.
64-74, 2005.

9. E. Fein, T. Kühle, and U. Noseck. Development of a software-package for three-

dimensional simulation of contaminat transport problems. Scientific Concept,
Braunschweig, 2001.
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Fig. 10. One-point source, immobile and mobile cases, with number of time-steps equal
to 25.
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Fig. 11. Deposition rates in case of immobile concentration and one-point source, with
number of time-steps equal to 25.
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Fig. 12. Deposition rates in case of mobile concentration and one point source, with
number of time-steps equal to 25.


