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Abstract
For phase field equations of generalized Cahn-Hilliard type, we present an a posteriori error

analysis that is robust with respect to a small interface length scale γ which enters the model
as a regularizing parameter. By the solution of a fourth order elliptic eigenvalue problem in
each time step we gain a fully computable error bound. In accordance with theoretical results,
this error bound only depends on the inverse of the small parameter in a low order polynomial
for a smooth evolution of the interface. We apply the general framework to the technologically
relevant Cahn-Hilliard system coupled with homogeneous elasticity. The derived estimators
can be used for adaptive mesh refinement and coarsening. In numerical examples we illustrate
that the computation of the principal eigenvalue allows the detection of critical points during
the time evolution like merging of interfaces or other topological changes. Moreover, it confirms
theoretical predictions about fast relaxation of nonsmooth components in the initial data.

1 Introduction
Phase separation of an initially homogeneous mixture can be observed in many metal alloys and
has influence on the quality and properties of the materials in technical applications [15, 8]. On
a mesoscopic length scale, phase field models of Cahn-Hilliard-type serve as a general continuum
model for these processes. They are often based on a minimization of the Ginzburg-Landau free
energy functional

E(ρ, ~u) :=
∫

Ω

γ2

2
|∇ρ|2 + F(ρ) +W (ρ, E(~u)) dx . (1)

Here, the phase field variable ρ(x) ∈ [−1, 1] denotes the difference between the volume fractions of
the two components in a binary alloy. Regions of pure phases are separated by diffuse interfaces
that have a thickness of the order γ. F(ρ) is a double well potential that defines the stable states at
ρ = ±1. The influence of elastic stresses due to a lattice misfit is modeled by the termW (ρ, E(~u)),
where the displacement ~u is a continuous function related to the mapping of the reference domain
Ω to the volume actually occupied by the material. Assuming only small deformations, the strain is
approximated by the symmetric gradient E(~u) := 1

2 (∇~u+∇~uT). In the pure Cahn-Hilliard model
elastic effects are neglected, but during the time evolution they become more and more important
and will finally be the dominant influence [15]. The H−1 gradient flow of (1) leads to the fourth
order semilinear parabolic equation

∂tρ−∆
(
− γ∆ρ+ 1

γ
f(ρ) + 1

γ
W (ρ, E(~u))

)
= 0 , (2)

where f(ρ) := F ′(ρ) and W (ρ, E(~u)) = ∂ρW(ρ, E(~u)). Because the time scale of mechanical relax-
ation is much smaller than the scale at which diffusion takes place, we may assume an equilibrium
state governed by

0 = div
(
C
[
E(~u)− Ē(ρ)

])
in Ω . (3)
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Here, C denotes the elasticity tensor. By Ē(ρ) := κIρ we denote the stress free strain, where I is
the unit tensor and κ is called misfit.

The Cahn-Larché system consists of (2) and (3) together with initial and boundary conditions.
In general, the elasticity tensor C may depend on ρ. It is called homogeneous, if C is independent of
ρ. In this case there is a linear solution operator D−1 to (3), such that ~u = D−1ρ and we can write
W (ρ, E(~u)) =: Aρ with some linear operator A. This reduces (2) and (3) to the single equation

∂tρ−∆
(
− γ∆ρ+ 1

γ
f(ρ) + 1

γ
Aρ
)

= 0 . (4)

The error analysis presented in this paper is valid for Cahn-Hilliard type equations of the form (4),
with a general linear selfadjoint operator A, that does not have to be related to elastic effects. On
the other hand, the approximation scheme devised below in Section 6 is stated for the general Cahn-
Larché system, that might not be of the form (4), e.g. if the elasticity tensor C is inhomogeneous.

Remark 1.1. a) The time scaling in (2) is chosen in such a way that topological changes of the
solution take place during a fixed time period T that is independent of γ. In the limit γ → 0 the
Cahn-Hilliard model (i.e. W = 0) converges to the Mullins-Sekerka model [1, 22].
b) There is no maximum principle for the Cahn-Hilliard equation (2) that would guarantee ρ ∈
[−1, 1] for T > 0. Because the equation is in divergence form, total mass is conserved, i.e.

ρ̄(t) := 1
|Ω|

∫
Ω
ρ(t, x) dx = 1

|Ω|

∫
Ω
ρ0(x) dx =: ρ̄0 .

c) Minimizing the same Ginzburg-Landau energy functional (1) with respect to the L2 scalar
product leads to the Allen-Cahn equation, a nonconservative second order equation, that obeys a
maximum principle.
d) When natural boundary conditions ~n ·

(
C
[
E(~u)− Ē(ρ)

])
= 0 are prescribed on all of the do-

main boundary ∂Ω, then ~u is not uniquely determined by the elasticity equation (3). From the
solution space we have to exclude the kernel of E , which contains all linearized rigid body motions;
W (ρ, E(~u)) depends only on E(~u), not on ~u itself.

For a fixed size of the parameter γ the numerical analysis of the Cahn-Hilliard and Cahn-Larché
equations is well established [10, 6, 24, 17]. When γ becomes small, the solution ρ is of low effective
regularity and numerical approximation takes great advantage of mesh adaptivity. That in turn
requires error control based on a posteriori estimates, but up to now, these error estimates depend
exponentially on γ−1, owing to an application of Gronwall’s Lemma. For an a priori estimate,
the dependence on the parameter γ−1 was reduced to a low order polynomial in [11, 12, 13]. A
posteriori error estimates for the Allen-Cahn equation, that are robust with respect to the small
parameter γ, have been presented in [18, 3]. These results are based on estimates for the principal
eigenvalue of the linearized operator about the exact or the approximate solution. Transferring
this idea to Cahn-Hilliard type equations, one looks for the largest number λ and a function q 6= 0
such that

λ q = ∆
(
− γ∆q + 1

γ
f ′(ρ̂h) q + 1

γ
A q
)
.

Recent results in [14] provide an a posteriori error analysis for Cahn-Hilliard equations under the
assumption that the principal eigenvalue defined through the exact solution remains bounded. This
leads to restrictive assumptions on the initial data that we want to avoid. Instead, to guarantee
the uniform boundedness of λ with respect to γ−1, we propose to numerically approximate the
principal eigenvalue −λ in each time step and thereby measure the stability of the solution and
detect critical points of the nonlinear evolution. The computation of the principal eigenvalue of the
linearized operator about the discrete approximate solution is especially of great importance for
Cahn-Larché system since in this case there is no spectral estimate available to get a bound of the
principal eigenvalue. Moreover, our approach fits well into the methodology of a posteriori error
estimation as it provides important information about the approximation. Our main result states
that robust a posteriori error estimation is possible as long as an approximation of −λ remains
bounded from above in the time interval [γ, T ], cf. Theorem 3.4 and Remark 3.5 below.
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As opposed to the work carried out for the Allen-Cahn equation, that is only of second order,
we have to measure the error in the weaker H−1 norm. This makes it significantly harder to get
control on the super-quadratic term in the error equation, so at least for space dimension d = 3
we have to impose a non-standard growth condition on the potential function f(ρ). We remark
that if a priori bounds are employed, then our error analysis could be modified to cover the case
of more general potentials. This however is not in the spirit of a posteriori error estimation. In
this fourth order problem, we have to take care of different constraints to the solution and the
particular representation of the error defined below. For the eigenvalue problem, that is also of
fourth order, we have to derive a computable a posteriori error bound and again, there are some
constraints to the eigenfunctions to be taken into account.

The outline of this article is as follows. In the next section we introduce the finite element
setting and the weak formulation of the considered problem, then we derive the error equation.
The main result is stated in Section 3, where the aforementioned a posteriori error estimate is
proven. In Section 4 we give an a posteriori upper bound for the numerically computed eigenvalue.
To show that the assumptions are not too restrictive we complement this result by an a priori
estimate. A finite element method for the Cahn-Larché system is given in Section 5 along with
the corresponding residual estimators. Finally, in Section 6 we show the results of numerical
experiments.

2 Problem Formulation and Finite Element Spaces
Let Ω ⊂ Rd, d = 2, 3, be a bounded Lipschitz domain and T > 0 a time horizon. We use standard
notation for Lebesgue and Sobolev spaces and denote the inner product of L2(Ω) by (v, w). The
duality pairing between a Banach space X and its dual X∗ is written 〈·, ·〉. We define

v̄ :=
∫

Ω
v dx ,

◦
H1(Ω) := {v ∈ H1(Ω) : v̄ = 0} .

The inverse Laplacian with natural boundary conditions ∆−1
N :

◦
H1(Ω)→

◦
H1(Ω) is defined by(

∇∆−1
N v,∇ϕ

)
= − (v, ϕ) for all v ∈

◦
H1(Ω) and ϕ ∈ H1(Ω).

We restrict our analysis to continuous potential functions, of which the most common example is
F∗(ρ) := (ρ2−1)2/4. More realistic nonsmooth logarithmic potential functions have been proposed
and quantitatively studied e.g. in [2, 6] but do not fit into our analysis. The following assumptions
on the double well potential and the linear operator A are essential for our analysis:

(A1) f ∈ C1(R) and there is a constant Cf ≥ 0 such that −f ′ ≤ Cf .

(A2) There are a function g∗ and constants Cδ ≥ 0 and δ ∈ (0, 1], with δ ≤ 4/5 if d = 3, such that
for all a, b ∈ R

−(b− a) (f(b)− f(a)) ≤ −f ′(b)(b− a)2 + g∗(b)Cδ |b− a|2+δ .

(A3) A : L2(Ω)→ L2(Ω) is a bounded linear selfadjoint operator and there are constants α,CA >
0, such that

− (ϕ,Aϕ) ≤ α ‖ϕ‖L2(Ω) for all ϕ ∈ L2(Ω) ,

(ψ,Aϕ) ≤ CA ‖∇ψ‖L2(Ω) ‖∇ϕ‖L2(Ω) for all ψ,ϕ ∈
◦
H1(Ω) .

Because there is no maximum principle available for the Cahn-Hilliard equation, the properties of
f outside of [−1, 1] may matter. Thus, if d = 3 we can not use f∗ := F∗′ given above on all of R
since f∗ fails to satisfy (A2). Nevertheless a proper modification of f∗ outside of [−1, 1] is possible
or alternatively a suitable replacement for the free energy function may be used.
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Figure 1: Left: quartic potential F∗; right: alternative potentials: F1 and F2 (dashed).

Lemma 2.1. a) Let f∗ = F∗′ for the quartic potential F∗. If d = 2, f∗ satisfies (A1) and (A2)
with g∗(b) = 3b, Cδ = 1 and Cf = 1.
b) Let 0 < δ ≤ 1 and f ∈ C1,δ(R), a continuously differentiable function with a Hölder continuous
derivative with exponent δ respectively Lipschitz continuous derivative if δ = 1. Then f satisfies
assumption (A2).
c) Define

F1(x) := 1
2 + δ

|x|2+δ − 1
2
x2 + δ

4 + 2δ
, F2(x) :=


2

1+δ

(
1

2+δ |x|
2+δ + x

)
+ 2

2+δ if x < −1 ,
1
4x

4 − 1
2x

2 + 1
4 if |x| ≤ 1 ,

2
1+δ

(
1

2+δ |x|
2+δ − x

)
+ 2

2+δ if x > 1 .

Then f1(x) := F ′1(x) = x|x|δ − x and f2(x) := F ′2(x) satisfy assumptions (A1) and (A2).

Proof. a) Since f(x) = x3 − x, we have the lower bound f ′(x) = 3x2 − 1 ≥ −1 =: −Cf . Moreover,
we note f ′′(x) = 6x. Then, for a, b ∈ R, Taylor expansion yields

f(b)− f(a) = f ′(b)(b− a) + f ′′(b)(b− a)2/2 + f ′′′(b)(b− a)3/6 .

We multiply this identity −(b− a) to verify

−(b− a)(f(b)− f(a)) = −f ′(b)(b− a)2 − f ′′(b)(b− a)3/2− (b− a)4

≤ −f ′(b)(b− a)2 − 6b(b− a)3/2 .

b) Let a 6= b ∈ R and f ∈ C1,δ(R). By the meanvalue theorem f(b)− f(a) = f ′(ξ)(b− a) for some
ξ ∈ (min(a, b),max(a, b)) and there is a constant Cδ such that

f ′(ξ)− f ′(b) ≥ −|f ′(ξ)− f ′(b)| ≥ −Cδ|ξ − b|δ ≥ −Cδ|a− b|δ .

Thus the first assertion follows, when multiplying

f(b)− f(a)
b− a

= f ′(ξ) ≥ f ′(b)− Cδ|b− a|δ

by −(b − a)2. For c) we first note f ′1(x) = (1 + δ)|x|δ − 1 ≥ −1 and then check f1 ∈ C1,δ(R):
Without loss of generality assume |a| ≤ |b|, then

|f ′1(b)− f ′1(a)| = (1 + δ)
∣∣|b|δ − |a|δ∣∣ = (1 + δ)

(
|b|δ − |a|δ

)
≤ (1 + δ)

(
(|b− a|+ |a|)δ − |a|δ

)
≤ (1 + δ)

(
|b− a|δ + |a|δ − |a|δ

)
= (1 + δ) |b− a|δ ,

where in the last inequality, we used that for δ ≤ 1 the mapping x 7→ xδ is concave. We easily verify
that f2 and f ′2 are continuous at x = ±1. Moreover f ′2 is Lipschitz continuous on [−1, 1], hence
|f ′2(b)−f ′2(a)| ≤ C̃|b−a| = C̃|b−a|1−δ |b−a|δ ≤ 21−δC̃|b−a|δ =: C|b−a|δ for all a, b ∈ [−1, 1]. By
the same arguments as above, we see that f ′2 is Hölder continuous with exponent δ on the intervals
(−∞,−1] and [1,∞) and by triangle inequality we conclude, that f2 ∈ C1,δ(R).
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Since we are interested in robust estimates for small γ we assume 0 < γ ≤ 1. To reduce the
regularity requirements on the solution ρ, we introduce the chemical potential w defined as

w := −γ∆ρ+ γ−1 (f(ρ) +Aρ)

and the solution space

XCH :=
(
L2 ([0, T ], H1(Ω)

)
∩H1 ([0, T ], H1(Ω)∗

))
× L2 ([0, T ], H1(Ω)

)
.

The mixed variational formulation of the Cahn-Hilliard type equation with natural boundary
conditions reads as follows:

(P)


Given ρ(0, x) = ρ0(x) ∈ H1(Ω), find(ρ, w) ∈ XCH such that for almost all t ∈ (0, T )

〈ϕ, ∂tρ〉+ (∇ϕ,∇w) = 0 for all ϕ ∈ H1(Ω) ,
(ψ,w)− γ (∇ψ,∇ρ) = γ−1 (ψ, f(ρ) +Aρ) for all ψ ∈ H1(Ω) .

For the pure Cahn-Hilliard equation, i.e. for A = 0, the existence and uniqueness of a global
solution to (P) has been established in [9, 10]. The existence of a solution to the Cahn-Larché
system was proven in [16], together with a uniqueness result for the case of homogeneous elasticity.

The quantities ρ and w are discretized with lowest order conforming finite elements. We consider
shape regular meshes T without hanging nodes, which consist of simplicial elements and define
the T -elementwise constant function hT : Ω → R by hT |K := diam(K) for all K ∈ T . The set
of all element faces within T is denoted by E(T ) and we assign to each E ∈ E(T ) its diameter
hE . Then, we denote the skeleton {x ∈ Ω : x ∈ E,E ∈ E(T )} of T by

⋃
E(T ) and introduce the

function hE ∈ L∞(
⋃
E(T )) that satisfies hE |E = hE for all E ∈ E .

Let 0 = t0 < t1 < . . . < tM = T be a partition of the time interval [0, T ]. At time step j the
mesh is denoted by T (j) and the approximation space is denoted by S(T (j)). Often we abbreviate
E(j) := E(T (j)) and S(j) := S(T (j)). On the subspace

◦
S(j) of finite element functions having

meanvalue zero, the discrete inverse Laplacian ∆−1
Nh :

◦
S(j) →

◦
S(j) satisfies(

∇∆−1
Nhvh,∇ϕh

)
= − (vh, ϕh) for all vh ∈

◦
S(j) and ϕh ∈ S(j).

The operators ∆T and divT satisfy ∆T ϕh|K = ∆(ϕh|K) for all ϕ ∈ S(j) and K ∈ T and
divT ~ξh|K = div(~ξh|K) for all T -elementwise affine vector fields ~ξ. To each face E ∈ E we as-
sign a unique normal vector ~n and denote the neighboring elements K+,K− ∈ T in the way that
E = K+ ∩K− and the normal ~n points from K+ to K−. Then the jump operator is defined by
[[ϕ]] := ϕ|K+ − ϕ|K− for all T -elementwise affine functions ϕ.

Definition 2.2. a) Let (ρ, w) ∈ XCH be the solution of (P) and (ρh, wh) a conforming finite
element approximation. For almost all t ∈ [0, T ], we define the errors

ē1 := ρ̄h − ρ̄0 ∈ R , ◦
e1 := ρh − ρ− ē1 ∈

◦
H1(Ω) , e2 := wh − w ∈ H1(Ω) .

We set
ρ̂h := ρh − ē1 , z := −∆−1

N
◦
e1.

b) For s ∈ (0, T ) the residuals R1(s), R2(s) ∈ H1(Ω)∗ of the approximation (ρh, wh) are defined as

〈ϕ,R1〉 := (∇ϕ,∇wh) + 〈ϕ, ∂tρh〉 for all ϕ ∈ H1(Ω) , (5a)
〈ψ,R2〉 := γ (∇ψ,∇ρh)− (ψ,wh) + γ−1 (ψ, f(ρh) +Aρh) for all ψ ∈ H1(Ω) . (5b)

Remark 2.3. If ρ̄(0)
h = ρ̄0 and a fixed triangulation T (j) = T (0) for j = 1, 2, · · ·M is used, or if

T (j) is a refinement of T (j−1) for all j ≥ 0, then ē1 = 0.
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We note that if the finite element solution coincides with the exact solution then the residuals
vanish. In order to derive an error equation, we choose ϕ = z in (5a), set ψ = ◦

e1 in (5b) and
subtract the weak formulation from the definition of the residuals, i.e.

〈z,R1〉 = (∇z,∇e2) + 〈z, ∂t
◦
e1〉+ 〈z, ∂tρ̄h〉 , (6a)

〈◦e1, R2〉 =γ ‖∇◦e1‖
2
L2(Ω) − (◦e1, e2) + 1

γ
(◦e1, f(ρh)− f(ρ) +Aρh −Aρ) . (6b)

Note 〈z, ∂t
◦
e1〉 = −〈z, ∂t∆z〉 = 〈∇z, ∂t∇z〉 = 1

2
d
dt ‖∇z‖

2
L2(Ω) and (z, ∂tρ̄h) = 0 because z ∈

◦
H1(Ω).

By definition of z we have (◦e1, e2) = (∇z,∇e2). Thus, when adding (6a) and (6b), the mixed terms
cancel and we obtain the identity

1
2
d

dt
‖∇z‖2L2(Ω) + γ ‖∇◦e1‖

2
L2(Ω) = 〈z,R1〉+ 〈

◦
e1, R2〉 − γ−1 (◦e1, A ē1)

− γ−1 (◦e1, f(ρh)− f(ρ) +A
◦
e1) .

(7)

Because of ◦e1 ∈
◦
H1(Ω), by Poincaré’s inequality there is a constant CP , depending only on Ω, such

that ‖◦e1‖L2(Ω) ≤ CP ‖∇
◦
e1‖L2(Ω). Instead of using this, we will sometimes apply Young’s inequality

with a positive factor ε > 0 to insert appropriate powers of γ:

‖◦e1‖
2
L2(Ω) = (∇◦e1,∇z) ≤ ε ‖∇

◦
e1‖

2
L2(Ω) + 1

4ε
‖∇z‖2L2(Ω) . (8)

3 A posteriori Error Estimate
Our main result relies on an application of Gronwall’s Lemma to (7). Therefore we have to get
appropriate bounds on the nonlinear contribution to the right-hand side. To estimate the nonlinear
potential f , we consider the smallest eigenvalue of the linearized operator about the corrected
discrete approximation ρ̂h,

−λ(s) := inf
q∈
◦
H1(Ω)\{0}
y=−∆−1

N
q

γ ‖∇q‖2L2(Ω) + γ−1 (q, f ′(ρ̂h(s))q) + γ−1 (q, Aq)

‖∇y‖2L2(Ω)
. (9)

When A = 0, i.e. in case of the Cahn-Hilliard problem, it is known, that if ρ describes bulk phase
regions separated by transition zones of width O(γ), then −λ is uniformly bounded from below
with respect to γ−1, as long as no topological changes occur [5, 7]. Instead of assuming a priori
bounds on the spectrum of the linearized operator, we use a numerically computed eigenvalue Λ
and the a posteriori estimate of Theorem 4.4 to define

−Λ∗ := inf
s∈[0,T ]

(−Λ− ηΛ) ≤ inf
s∈[0,T ]

−λ . (10)

Lemma 3.1. Let −Λ∗ be a lower bound for the principal eigenvalue −λ in (9) and define ηf :=
‖f(ρh)− f(ρ̂h)‖L2(Ω), η̃g∗ := ‖g∗(ρh)‖L∞(Ω). The assumptions (A1), (A2) and (A3) imply

1
2
d

dt
‖∇z‖2L2(Ω) + 3

4
γ ‖∇◦e1‖

2
L2(Ω) ≤〈z,R1〉+ 〈

◦
e1, R2〉 − γ−1 (◦e1, A ē1) + 1

4γ
η2
f

+ (Cf + α+ 1)2

γ3 ‖∇z‖2L2(Ω) ,

(11)

1
2
d

dt
‖∇z‖2L2(Ω) ≤〈z,R1〉+ 〈

◦
e1, R2〉 − γ−1 (◦e1, A ē1) + C2

P

γ6 η
2
f

+ Λ∗ ‖∇z‖2L2(Ω) + η̃g∗
Cδ
γ
‖◦e1‖

2+δ
L2+δ(Ω) + γ4

4(1− γ3)
‖∇◦e1‖

2
L2(Ω) .

(12)

Proof. Because ◦e1 = ρ̂h − ρ, we insert f(ρ̂h) to the terms in (7) containing the nonlinear potential

−γ−1 (◦e1, f(ρh)− f(ρ)) = −γ−1 (◦e1, f(ρ̂h)− f(ρ)) − γ−1 (◦e1, f(ρh)− f(ρ̂h))
≤ −γ−1 (◦e1, f(ρ̂h)− f(ρ)) + γ−1ηf ‖

◦
e1‖L2(Ω) . (13)
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For the first assertion, from the fundamental theorem of calculus and assumption (A1) we get

−γ−1 ◦e1 [f(ρ̂h)− f(ρ)] = γ−1 ◦e1

∫ ρ̂h

ρ

−f ′(ξ) dξ ≤ γ−1Cf
◦
e21 .

Integrating this identity over Ω and using (A3) and (13) where we apply Young’s inequality to the
last term containing ηf , we deduce

−γ−1 (◦e1, f(ρh)− f(ρ) +A
◦
e1) ≤γ−1Cf ‖

◦
e1‖

2
L2(Ω) + γ−1(1 + α) ‖◦e1‖

2
L2(Ω) + 1

4γ
η2
f ,

≤1
4
γ ‖∇◦e1‖

2
L2(Ω) + (Cf + α+ 1)2

γ3 ‖∇z‖2L2(Ω) + 1
4γ
η2
f .

because of (8) with ε = γ2/4(Cf + α + 1). Inserting this into (7) proves the first assertion. To
prove the second assertion, by assumption (A2) we get

−γ−1[ (◦e1, f(ρ̂h)− f(ρ) +A
◦
e1)
]
≤− γ−1[ (◦e1, f ′(ρ̂h)◦e1) + (◦e1, A

◦
e1)
]
+ η̃g∗

Cδ
γ
‖◦e1‖

2+δ
L2+δ(Ω)

≤Λ∗ ‖∇z‖2L2(Ω) + γ ‖∇◦e1‖
2
L2(Ω) + η̃g∗

Cδ
γ
‖◦e1‖

2+δ
L2+δ(Ω) , (14)

owing to −Λ∗ ≤ −λ and (9), where we set q = ◦
e1 ∈

◦
H1(Ω) in (9) and thus by definition y = z.

Next, we again apply (13), but since we now want to avoid a term ‖∇z‖2L2(Ω) multiplied by a
negative power of γ, we have to treat the term γ−1ηf ‖

◦
e1‖L2(Ω) differently. We apply Young’s and

Poincaré’s inequality to verify

γ−1 (◦e1, f(ρh)− f(ρ̂h)) ≤ γ−1 ηf ‖
◦
e1‖L2(Ω) ≤

C2
P (1− γ3)
γ6 η2

f + γ4

4C2
P (1− γ3)

‖◦e1‖
2
L2(Ω) .

A combination with (14) and γ ≤ 1 yield (12).

The ”coarse estimate” (11) is not sufficient for a robust error estimate, since an application of
Gronwall’s Lemma would lead to an error bound that depends exponentially on γ−1. On the other
hand, with the ”fine estimate” (12) alone, we loose necessary control on the error ‖∇◦e1‖L2(Ω).
In the following lemma both approaches are combined. The residual estimators involved in this
lemma depend on the specific discretization scheme used. When A is given by linear elasticity, i.e.
the elasticity tensor is homogeneous, we derive in Section 5 computable estimates of the residuals
R1 and R2 that meet the stated requirements.

Lemma 3.2. Assume there are computable estimators η1, η21 and η22, such that for almost every
t ∈ [0, T ] and ϕ,ψ ∈

◦
H1(Ω)

〈ϕ,R1〉 ≤ η1 ‖∇ϕ‖L2(Ω) , 〈ψ,R2〉 ≤ η21 ‖∇ψ‖L2(Ω) + η22 ‖ψ‖L2(Ω) ,

and define

η̄2
A := ‖A ē1‖2L2(Ω)

η2 := 1
4
η2
1 + 2

γ4 η
2
21 + 4

γ2 η
2
22 +

(
γ2

4
+ C2

P

γ6

)
η2
f + 4

γ4 η̄
2
A ,

Λ◦ := 1 + 1
32

+ (Cf + α+ 1)2 .

Then, if −Λ∗ is a lower bound for the principal eigenvalue in (9) we have

1
2
d

dt
‖∇z‖2L2(Ω) + γ4

4
‖∇◦e1‖

2
L2(Ω) ≤ η

2 + (Λ◦ + Λ∗) ‖∇z‖2L2(Ω) + η̃g∗
Cδ
γ
‖◦e1‖

2+δ
L2+δ(Ω) . (15)

7



Proof. Taking a convex combination of γ3 times (11) plus
(
1− γ3) times (12) yields

1
2
d

dt
‖∇z‖2L2(Ω) + 1

2
γ4 ‖∇◦e1‖

2
L2(Ω) ≤ 〈z,R1〉+ 〈

◦
e1, R2〉 − γ−1 (◦e1, A ē1)

+
(
(Cf + α+ 1)2 + (1− γ3)Λ∗

)
‖∇z‖2L2(Ω)

+
(
1− γ3)Cδ

γ
‖◦e1‖

2+δ
L2+δ(Ω) +

(
γ2

4
+ C2

P (1− γ3)2

γ6

)
η2
f .

By Hölder’s and Young’s inequalities − 1
γ (◦e1, A ē1) ≤ 1

4ε0γ4 η̄
2
A + ε0γ

2 ‖◦e1‖
2
L2(Ω) with some ε0 > 0

and applying (8) with ε = γ2, we have

− 1
γ

(◦e1, A ē1) ≤
1

4ε0γ4 η̄
2
A + ε0γ

4 ‖∇◦e1‖
2
L2(Ω) + ε0

4
‖∇z‖2L2(Ω) .

In the same way, we treat the residuals R1 and R2 to verify

〈z,R1〉+ 〈
◦
e1, R2〉 ≤

1
4
η2
1 + ‖∇z‖2L2(Ω) + 1

4ε21γ4 η
2
21 + ε21γ

4 ‖∇◦e1‖
2
L2(Ω)

+ 1
4ε22γ2 η

2
22 + ε22γ

4 ‖∇◦e1‖
2
L2(Ω) + ε22

4
‖∇z‖2L2(Ω) .

On combining the last three estimates and choosing ε21 = 1/8, ε0 = ε22 = 1/16, we can absorb
(ε0 + ε21 + ε22)γ4 ‖∇◦e1‖

2
L2(Ω) = (γ4/4) ‖∇◦e1‖

2
L2(Ω) on the left-hand side.

The following (multiplicative) Sobolev inequalities are taken from [19].

Lemma 3.3. a) Let d = 2 and δ = 1. Then there is a constant CS,δ > 0 such that

‖v‖2L4(Ω) ≤ CS,δ ‖v‖L2(Ω) ‖∇v‖L2(Ω) for all v ∈
◦
H1(Ω) . (16)

b) Let d = 2 and 0 ≤ δ < 1. Then there is a constant CS,δ > 0 such that

‖v‖
L

2−δ
1−δ (Ω)

≤ CS,δ ‖∇v‖L2(Ω) for all v ∈
◦
H1(Ω) . (17)

c) Let d = 3 and assume 0 ≤ δ ≤ 4
5 . Then there is a constant CS,δ > 0 such that (17) is satisfied.

The continuation argument in the proof of the following theorem is adopted from [18].

Theorem 3.4. Suppose Λ◦, Λ∗ and the residual estimate η be given according to Lemma 3.2 and
let CS,δ be as in Lemma 3.3. Set ηg∗ := max(1, supt∈[0,T ] η̃g∗) and

µ2
1 :=

(
e−2 max(0,Λ◦+Λ∗)T

16 ηg∗ Cδ C2−δ
S,δ

)1/δ

and µ2
2 := min

(
3 e−2 max(0,Λ◦+Λ∗)T

16
, 1
)
.

Given a tolerance θ ≤ γ5/δµ2
1, suppose the approximation error of the initial values and the residual

estimate can be controlled by this tolerance θ in the sense that

‖∇z0‖L2(Ω) +
√

2 ‖η‖L2([0,T ]) < µ2 θ ≤ µ2
1 µ2 γ

5/δ , (18)

where z0 := z(0) = ∆−1
N (ρ(0)

h − ρ0 − (ρ̄(0)
h − ρ̄0)). Then, we have

sup
s∈[0,T ]

‖∇z(s)‖2L2(Ω) + 1
2
γ4
∫ T

0
‖∇◦e1‖

2
L2(Ω) ds ≤ θ

2 .

8



Proof. We define the temporal interval

Iθ :=
{
t ∈ [0, T ] : Γ(t) := sup

s∈(0,t)
‖∇z(s)‖2L2(Ω) + 1

2
γ4
∫ t

0
‖∇◦e1‖

2
L2(Ω) ds ≤ θ

2
}
. (19)

Then, since ‖∇z0‖L2(Ω) < θ the interval Iθ is nonempty and because Γ(t) is continuous, Iθ is
closed. To establish Iθ = [0, T ] we need to show that Iθ also is relatively open in [0, T ]. Let t ∈ Iθ,
then by definition of Iθ we have ‖∇z(t)‖L2(Ω) ≤ θ, as well as∫ t

0
‖∇◦e1‖

2
L2(Ω) ds ≤ 2γ−4θ2 . (20)

We integrate the estimate (15) in time over [0, t] to verify

‖∇z(t)‖2L2(Ω) + 1
2
γ4
∫ t

0
‖∇◦e1‖

2
L2(Ω) ds ≤ 2(Λ◦ + Λ∗)

∫ t

0
‖∇z‖2L2(Ω) ds

+ ‖∇z0‖2L2(Ω) + 2
∫ t

0
η2 ds+ ηg∗

2Cδ
γ

∫ t

0
‖◦e1‖

2+δ
L2+δ(Ω) ds .

By assumption (18) we have ‖∇z0‖2L2(Ω) +2
∫ T
0 η2 ds ≤

(
‖∇z0‖L2(Ω) +

√
2 ‖η‖L2([0,T ])

)2
≤ (µ2θ)2,

so we deduce

‖∇z(t)‖2L2(Ω) + 1
2
γ4
∫ t

0
‖∇◦e1‖

2
L2(Ω) ds ≤ 2 max(0,Λ◦ + Λ∗)

∫ t

0
‖∇z‖2L2(Ω) ds

+ µ2
2θ

2 + ηg∗
2Cδ
γ

∫ t

0
‖◦e1‖

2+δ
L2+δ(Ω) ds .

(21)

We aim at estimating ‖◦e1‖
2+δ
L2+δ(Ω) in terms of ‖∇z‖L2(Ω) and ‖∇◦e1‖

2
L2(Ω). If δ < 1, Hölder’s

inequality with exponents 1/δ and 1/(1− δ) implies∫
Ω
|◦e1|

2+δ dx ≤
∥∥|◦e1|2δ∥∥

L
1
δ (Ω)

∥∥|◦e1|2−δ∥∥
L

1
1−δ (Ω)

= ‖◦e1‖
2δ
L2(Ω) ‖

◦
e1‖

2−δ

L
2−δ
1−δ (Ω)

(22)

and by Lemma 3.3 b) or c) as well as ‖◦e1‖
2δ
L2(Ω) ≤ ‖∇

◦
e1‖

δ
L2(Ω) ‖∇z‖

δ
L2(Ω) we conclude∫

Ω
|◦e1|

2+δ dx ≤ ‖◦e1‖
2δ
L2(Ω)

(
CS,δ ‖∇

◦
e1‖L2(Ω)

)2−δ
≤ C2−δ

S ‖∇z‖δL2(Ω) ‖∇
◦
e1‖

2
L2(Ω) .

If d = 2 and δ = 1 we deduce with Hölder’s inequality and Lemma 3.3 a) that∫
Ω
|◦e1|

3 dx ≤ ‖◦e1‖L2(Ω) ‖
◦
e1‖

2
L4(Ω)

≤ ‖◦e1‖L2(Ω) CS,δ ‖
◦
e1‖L2(Ω) ‖∇

◦
e1‖L2(Ω)

≤ C2−δ
S,δ ‖∇z‖

δ
L2(Ω) ‖∇

◦
e1‖

2
L2(Ω) ,

where in the last line we used ‖◦e1‖
2
L2(Ω) = (∇z,∇◦e1) ≤ ‖∇z‖L2(Ω) ‖∇

◦
e1‖L2(Ω). In either case we

can continue in the same way and incorporating (20) shows

2Cδ
γ

∫ t

0
‖◦e1‖

2+δ
L2+δ(Ω) ds ≤

2 ηg∗ Cδ C2−δ
S,δ

γ
θδ
∫ t

0
‖∇◦e1‖

2
L2(Ω) ds

≤
4 ηg∗ Cδ C2−δ

S,δ θδ

γ5 θ2

≤ 4 ηg∗ Cδ C2−δ
S,δ

(
θ

γ5/δ

)δ
θ2 ≤ 4 ηg∗ Cδ C2−δ

S,δ µ2δ
1 θ2 .
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We return to (21) and are now in the position to apply Gronwall’s Lemma in such a way, that the
resulting exponent 2 max(0,Λ◦ + Λ∗)T is independent of γ−1. We finally conclude

‖∇z(t)‖2L2(Ω) + 1
2
γ4
∫ t

0
‖∇◦e1‖

2
L2(Ω) ds ≤

[(
µ2

2 + 4 ηg∗ Cδ C2−δ
S,δ µ2δ

1

)
θ2

]
e2 max(0,Λ◦+Λ∗)T

≤

[
3
16

+ 1
4

]
θ2 <

1
2
θ2 .

Hence Γ(t) < θ2 and Iθ is also open. Altogether we have proved Iθ = [0, T ].

Remark 3.5. a) The theorem above guarantees error bounds that do not depend exponentially on
γ−1 provided that Λ∗ is independent of γ−1 or T ≤ γ. For the latter case we notice that Λ ≤ γ−1,
cf. (32) below.
b) From (18) we see that the minimal polynomial degree, in which the error estimate depends on
γ−1 is 5, that is d = 2 and δ = 1. If d = 3, due to the requirement δ ≤ 4/5 the minimal polynomial
degree is limited by 5/δ > 6.

4 Estimates for the Eigenvalue Approximation
In this section we derive a version of estimate (10) following ideas for the a posteriori error estima-
tion of eigenvalue problems in [20]. The principal eigenvalue −λ defined in (9) is well defined since,
possibly after a constant shift, the nominator on the right-hand side is a strictly convex functional.
Hence there is a minimizing q ∈

◦
H1(Ω) \ {0} with

λ
(
v,∆−1

N q
)

= γ (∇v,∇q) + γ−1 (v, f ′(ρ̂h)q) + γ−1 (v,Aq) for all v ∈
◦
H1(Ω). (23)

In the discrete eigenvalue problem, we are looking for the smallest number −Λ and a function
qh ∈

◦
S \ {0} such that

Λ
(
vh,∆−1

Nhqh
)

= γ (∇vh,∇qh) + γ−1 (vh, f ′(ρ̂h)qh) + γ−1 (vh, Ahqh) for all vh ∈
◦
S . (24)

Here, ∆−1
N and A are replaced by approximations ∆−1

Nh and Ah, respectively. If A is related to
linear elasticity, an estimator ηA for the residual (Ah−A)qh is given in Lemma 5.3 below. Keeping
the definition y := −∆−1

N qh in mind, the proof of the following lemma can be directly transferred
from standard a posteriori estimates for the Laplace equation.

Lemma 4.1 ([23]). Let CCl be the constant related to estimates for the Clément interpolation
operator and define the residual estimator

ηNh := CCl
∥∥hT (∆T∆−1

Nhqh − qh
)∥∥
L2(Ω) + CCl

∥∥∥h1/2
E [[∂~n∆−1

Nhqh]]
∥∥∥
L2(∪E)

.

Then we have ∥∥∇(∆−1
N qh −∆−1

Nhqh)
∥∥
L2(Ω) ≤ ηNh for all qh ∈

◦
S .

In the same way, we also get a lower bound of the form ηNh ≤ C‖∇(∆−1
N qh − ∆−1

Nhqh)‖L2(Ω),
where no oscillation terms appears because qh ∈

◦
S. Hence, with the standard a priori estimates for

the Laplace equation, we can always guarantee sufficient smallness of ηNh for small mesh width h.

Definition 4.2. Given (Λ, qh) ∈ R×
◦
S \ {0} satisfying (24), the residual RΛ is defined by

〈v,RΛ〉 := Λ
(
v,∆−1

N qh
)
− γ (∇v,∇qh)− γ−1 (v, f ′(ρ̂h)qh)− γ−1 (v,A qh) for all v ∈

◦
H1(Ω) .

Lemma 4.3. Let (Λ, qh) ∈ R×
◦
S \ {0} be a solution of (24) and define the residual estimator

ηqh := CCl
∥∥hT (γ∆T qh + γ−1(f ′(ρ̂h)qh +Ahqh)− Λ ∆−1

Nhqh
)∥∥
L2(Ω) + CCl

∥∥∥h1/2
E γ[[∂~nqh]]

∥∥∥
L2(∪E)

,
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with the constant CCl related to estimates for the Clément interpolation operator. If there is an
estimator ηA such that (v, (Ah −A)qh) ≤ ηA ‖∇v‖ for all v ∈

◦
H1(Ω), we have

| 〈v,RΛ〉 | ≤ (ηqh + γ−1ηA) ‖∇v‖L2(Ω) + Λ ηNh
∥∥∇∆−1

N v
∥∥
L2(Ω) for all v ∈

◦
H1(Ω) . (25)

Proof. For all v ∈
◦
H1(Ω) and vh ∈

◦
S we subtract (24) from the definition of the residual RΛ to

verify that

〈v,RΛ〉 = γ (∇(vh − v),∇qh) + γ−1 (vh − v, f ′(ρ̂h)qh +Ah qh)− Λ
(
vh − v,∆−1

Nhqh
)

− Λ
(
v,∆−1

Nhqh −∆−1
N qh

)
+ γ−1 (v, (Ah −A)qh) .

An elementwise integration by parts and Hölder’s inequality imply

| 〈v,RΛ〉 | ≤
∑
K∈T

∥∥h−1
T (v − vh)

∥∥
L2(K)

∥∥hT (γ∆qh − γ−1(f ′(ρ̂h)qh +Ahqh) + Λ ∆−1
Nhqh

)∥∥
L2(K)

+
∑
E∈E

∥∥∥h−1/2
E (v − vh)

∥∥∥
L2(E)

∥∥∥h1/2
E γ[[∂~nqh]]

∥∥∥
L2(E)

+Λ
∣∣(v,∆−1

N qh −∆−1
Nhqh

)∣∣+ γ−1 |(v, (Ah −A)qh)| .

Choosing vh = Πhv to be the Clément interpolant, with standard estimates and Lemma 4.1 we
deduce (25).

Let Pλ denote the L2 projection onto the eigenspace related to the eigenvalue −λ, i.e. the space
of all q ∈

◦
H1(Ω) satisfying (23). Choosing v = qh and q = Pλqh in (23) leads to

0 = −λ
(
qh,∆−1

N Pλqh
)

+ γ (∇qh,∇Pλqh) + γ−1 (qh, f ′(ρ̂h)Pλqh) + γ−1 (qh, APλqh) .

We add this equation to the residual in Definition 4.2, where we choose v = Pλqh. Because ∆−1
N is

selfadjoint, i.e.
(
Pλqh,∆−1

N qh
)

= −
(
∇∆−1

N Pλqh,∇∆−1
N qh

)
=
(
∆−1
N Pλqh, qh

)
, and A is assumed to

be selfadjoint, we get a representation of the error in the eigenvalue approximation

Λ− λ = 〈Pλqh, RΛ〉(
Pλqh,∆−1

N qh
) , (26)

provided that the denominator does not vanish. Thus the numerical approximation space has to
be large enough to resolve the eigenvectors related to the principal eigenvalue, i.e. Pλ

◦
S 6= {0}.

Theorem 4.4. Let −λ be the smallest number for which there exists a nontrivial q satisfying (23)
and Pλ the L2 projection onto the eigenspace related to −λ. Let (Λ, qh) ∈ (R,

◦
S) solve (24) with∥∥∇∆−1

Nhqh
∥∥
L2(Ω) = 1. Assume

◦
S is sufficiently large, such that

∥∥∇(∆−1
N qh −∆−1

Nhqh)
∥∥
L2(Ω) ≤ ηNh ≤

1
4
, (27)

and moreover ∥∥∇∆−1
N (qh − Pλqh)

∥∥2
L2(Ω) ≤

1
4
. (28)

Then, we have the following computable a posteriori error estimate for the eigenvalue

λ− Λ ≤ ηΛ := 8γ−1/2(ηqh + ηA)
(
(‖f ′(ρ̂h)‖∞ + α) ‖qh‖2 + 4 max(0,−Λ)

)1/2
+ 16ΛηNh . (29)
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Proof. For the denominator in (26), the assumed bound (28) implies

−2
(
Pλqh,∆−1

N qh
)

=2
(
∇∆−1

N Pλqh,∇∆−1
N qh

)
=
∥∥∇∆−1

N Pλqh
∥∥2
L2(Ω) +

∥∥∇∆−1
N qh

∥∥2
L2(Ω) −

∥∥∇∆−1
N (Pλqh − qh)

∥∥2
L2(Ω)

≥ 0 +
∥∥∇(∆−1

N qh −∆−1
Nhqh) +∇∆−1

Nhqh
∥∥2
L2(Ω) −

1
4
,

≥
(∥∥∇(∆−1

N qh −∆−1
Nhqh)

∥∥
L2(Ω) −

∥∥∇∆−1
Nhqh

∥∥
L2(Ω)

)2
− 1

4
=
∥∥∇(∆−1

N qh −∆−1
Nhqh)

∥∥2
L2(Ω) +

∥∥∇∆−1
Nhqh

∥∥2
L2(Ω)

− 2
∥∥∇(∆−1

N qh −∆−1
Nhqh)

∥∥
L2(Ω)

∥∥∇∆−1
Nhqh

∥∥
L2(Ω) −

1
4

≥ 0 + 1− 2 · 1
4
· 1− 1

4
= 1

4
.

Hence Λ− λ ≤ 8| 〈Pλqh, RΛ〉 |. Now we apply Lemma 4.3, where we choose v = Pλqh to conclude

Λ− λ ≤ 8(ηqh + γ−1ηA) ‖∇Pλqh‖L2(Ω) + 8ΛηNh
∥∥∇∆−1

N Pλqh
∥∥
L2(Ω) .

With (27), (28) and Lemma 4.1 we find that∥∥∇∆−1
N Pλqh

∥∥
L2(Ω) ≤

∥∥∇∆−1
N (Pλqh − qh)

∥∥
L2(Ω) +

∥∥∇(∆−1
N qh −∆−1

Nhqh)
∥∥
L2(Ω) +

∥∥∇∆−1
Nhqh

∥∥
L2(Ω)

≤ 1
2

+ ηNh + 1 ≤ 2 . (30)

To bound ‖∇Pλqh‖L2(Ω) we choose v = q = Pλqh in (23). This yields

γ ‖∇Pλqh‖2L2(Ω) = −λ
∥∥∇∆−1

N Pλqh
∥∥2
L2(Ω) − γ

−1 (Pλqh, f ′(ρ̂h)Pλqh +APλqh) .

If −λ ≤ −Λ we use ‖Pλqh‖L2(Ω) ≤ ‖qh‖L2(Ω) and (30) to verify

γ ‖∇Pλqh‖2L2(Ω) ≤ 4 max(0,−Λ) + γ−1 (‖f ′(ρ̂h)‖∞ + α) ‖qh‖2

and deduce (29). Otherwise, if λ ≤ Λ, nothing remains to be shown since the right-hand side of
(29) is non-negative.

The saturation assumption (28) in Theorem 4.4 is quite common to derive error estimates
for eigenvalue approximation but it is not clear, how it can be verified in practice. To close
this theoretical gap we present an explicit a priori estimate that only requires that the Laplace
operator subject to homogeneous Neumann boundary conditions is H2 regular on Ω, i.e. there is
a constant CH2 > 0 such that if q, y ∈

◦
H1(Ω) with −∆y = q in Ω and ∂ny = 0 on ∂Ω, then

‖y‖H2(Ω) ≤ CH2 ‖q‖L2(Ω). Instead of the difference qh − Pλq in the a posteriori estimate, we
now consider q − IT q, where IT denotes the nodal interpolation operator. Then we have the
interpolation estimate

‖q − IT q‖L2(Ω) + h ‖∇(q − IT q)‖L2(Ω) ≤ CIT h
2 ∥∥D2q

∥∥
L2(Ω) . (31)

Analogous to above, we need a suitable a priori estimate for (Ah − A)qh. This can be obtained
by standard methods, if A is the operator related to linear elasticity, cf. Lemma 5.3. From
standard a priori estimates for the Laplace equation we get a constant CNh > 0 such that
‖∇(∆−1

N qh − ∆−1
Nhqh)‖L2(Ω) ≤ CNhh‖qh‖L2(Ω) for all qh ∈

◦
S. The optimal constant C−1,1 such

that ‖∇∆−1
N v‖L2(Ω) ≤ C−1

−1,1‖∇v‖L2(Ω) for all v ∈
◦
H1(Ω) is needed to get an a priori estimate for

the principal eigenvalue −λ. We note that C−1
−1,1 ≤ C2

P .
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Theorem 4.5. Assume that the Laplace operator subject to homogeneous Neumann boundary
conditions is H2 regular on Ω and suppose there is CAh > 0 such that (qh, (Ah −A)qh) ≤
CAhh ‖∇qh‖2L2(Ω) for all qh ∈

◦
S. Set

ε0 := γ2 + CA + max(CP , C2
P ) ‖f ′(ρ̂h)‖L∞(Ω) ,

ε1 :=
(
2γ2ε0C

2
−1,1 + 4(Cf + α)2

)1/2
,

ε2 :=
(
ε0CH2

(
γ2C2

−1,1CP + ε1
)
CIT CP /2

)1/2
.

Assume
◦
S is sufficiently large so that 2γ−2ε2 h ≤ 1/2 as well, as γ−1(4ε1/21 CP + γ)CNh h ≤ CP

and define
ε3 := 2ε2 + CNh(4γε1/21 + γ2/CP )/2
ε4 := ε1ε3 + ε2(4ε2 + ε3/CP ) .

Then, the error of the computed eigenvalue is bounded by

λ− Λ ≤ γ−7 [(2γ2 + 6ε0)(ε1 + ε4/(4ε2)) ε4 + γ2CAh(ε1 + ε4/(4ε2))2
]
h .

Proof. In a first step we derive a priori bounds for q and |λ|. From the definition of the principal
eigenvalue −λ in (9) and (A3) we get

|λ| ≤ γ−1(γ2 + C2
P ‖f ′(ρ̂h)‖L∞(Ω) + CA) inf

v∈
◦
H1(Ω)\{0}

‖∇v‖2L2(Ω)∥∥∇∆−1
N v

∥∥2
L2(Ω)

≤ γ−1ε0C
2
−1,1 . (32)

Let (λ, q) satisfy (23) with
∥∥∇∆−1

N q
∥∥
L2(Ω) = 1. We chose v = q in (23) to infer with (A1), (A3)

and (8) that

γ ‖∇q‖2L2(Ω) = −λ
∥∥∇∆−1

N q
∥∥2
L2(Ω) − γ

−1 (q, f ′(ρ̂h)q) − γ−1 (q, Aq)

≤ |λ|+ γ−1(Cf + α) ‖q‖2L2(Ω)

≤ |λ|+ 2γ−3(Cf + α)2
∥∥∇∆−1

N q
∥∥2
L2(Ω) + γ

2
‖∇q‖2L2(Ω) .

From (32) we deduce the estimates

‖∇q‖2L2(Ω) ≤ 2γ−2ε0C
2
−1,1 + 4γ−4(Cf + α)2 = γ−4ε21 , (33)

‖q‖2L2(Ω) = −
(
∇∆−1

N q,∇q
)
≤
∥∥∇∆−1

N q
∥∥
L2(Ω) ‖∇q‖L2(Ω) ≤ γ

−2ε1 . (34)

We note
∥∥∆−1

N q
∥∥
L2(Ω) ≤ CP

∥∥∇∆−1
N q
∥∥
L2(Ω) = CP to conclude from the strong form −λ∆−1

N q =
γ∆q − γ−1(f ′(ρ̂h) q −Aq) the assumed H2 regularity that∥∥D2q

∥∥
L2(Ω) ≤ γ

−1CH2

[
|λ|
∥∥∆−1

N q
∥∥
L2(Ω) + γ−1 ‖f ′(ρ̂h)q +Aq‖L2(Ω)

]
≤ γ−2CH2

[
γ|λ|CP +

(
CP ‖f ′(ρ̂h)‖L∞(Ω) + CA

)
‖∇q‖L2(Ω)

]
≤ γ−2CH2

(
ε0C

2
−1,1CP + γ−2ε0ε1

)
= γ−4 2ε22/(CIT CP ) .

The second step consists in the construction of a discrete approximate eigenfunction. We define
the meanvalue corrected nodal interpolant ĨT q := IT q − |Ω|−1 (1, IT q) ∈

◦
S. Then, the triangle

inequality and q ∈
◦
H1(Ω) lead to

‖q − ĨT q‖L2(Ω) ≤ 2CIT h2 ∥∥D2q
∥∥
L2(Ω) ≤ 2h2 γ−42ε22/CP .

Since for any v ∈
◦
H1(Ω) we have

∥∥∇∆−1
N v

∥∥
L2(Ω) ≤ CP ‖v‖L2(Ω), the assumptions on the mesh

width h yield

‖∇∆−1
N (q − ĨT q)‖L2(Ω) ≤ (2γ−2 ε2 h)2 ≤ 1/4 . (35)
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On the other hand, from the a priori estimate for ∆−1
N we get

‖∇(∆−1
N ĨT q −∆−1

Nh ĨT q)‖L2(Ω) ≤ CNhh‖ĨT q‖L2(Ω)

≤ CNhh(‖q‖L2(Ω) + ‖q − ĨT q‖L2(Ω))

≤ CNhh(γ−1ε
1/2
1 + 1/(4CP )) ≤ 1/4 .

Combining both estimates, from the triangle inequality we get 1/2 ≤ ‖∇∆−1
Nh ĨT q‖L2(Ω) ≤ 3/2 so

that we can define q̃h := ĨT q/‖∇∆−1
Nh ĨT q‖L2(Ω) and deduce

‖∇(q̃h − q)‖L2(Ω) ≤

∣∣∣1− ‖∇∆−1
Nh ĨT q‖L2(Ω)

∣∣∣
‖∇∆−1

Nh ĨT q‖L2(Ω)

∥∥∥∇ĨT q∥∥∥
L2(Ω)

+
∥∥∥∇(ĨT q − q)

∥∥∥
L2(Ω)

≤ 2
∣∣∣∥∥∇∆−1

N q
∥∥
L2(Ω) − ‖∇∆−1

Nh ĨT q‖L2(Ω)

∣∣∣ ‖∇IT q‖L2(Ω) + ‖∇(IT q − q)‖L2(Ω)

≤ 2
(
‖∇∆−1

N (q − ĨT q)‖L2(Ω) + ‖∇(∆−1
N ĨT q −∆−1

Nh ĨT q‖L2(Ω)

)
‖∇IT q‖L2(Ω)

+ ‖∇(IT q − q)‖L2(Ω)

≤ 2
(
(2γ−2 ε2 h)2 + CNhh(γ−1ε

1/2
1 + 1/(4CP ))

)
‖∇IT q‖L2(Ω)

+ ‖∇(IT q − q)‖L2(Ω) ,

=: γ−2ε3h ‖∇IT q‖L2(Ω) + ‖∇(IT q − q)‖L2(Ω) ,

where we applied (35) and the assumption on the meshsize in order to reduce the polynomial
dependence on γ−1. From (33) and (31), we conclude

‖∇(q̃h − q)‖L2(Ω) ≤ γ
−2ε3h ‖∇q‖L2(Ω) + (1 + γ−2ε3h) ‖∇(IT q − q)‖L2(Ω)

≤ γ−4ε1ε3 h+ (1 + ε3/(4ε2))4γ−4(ε22/CP )h =: γ−4ε4 h .

In the third step, we use the definitions of λ and Λ to estimate their difference. Setting vh = q̃h in
(24) and using the minimality of −Λ we get

−Λ ≤ γ ‖∇q̃h‖2L2(Ω) + (q̃h, f ′(ρ̂h)q̃h) + (q̃h, Aq̃h) + γ−1 (q̃h, (Ah −A)q̃h) . (36)

Upon adding (23), where we chose v = q, we verify

λ− Λ ≤γ
(
‖∇q̃h‖2L2(Ω) − ‖∇q‖

2
L2(Ω)

)
+ γ−1

(
(q̃h, f ′(ρ̂h)q̃h)− (q, f ′(ρ̂h)q) + (q̃h, Aq̃h)− (q, Aq)

)
+ γ−1 (q̃h, (Ah −A)q̃h) .

In order to apply the binomial formula a2 − b2 ≤ 2a(a− b), we define the shifted, positive definite
operator B := (f ′(ρ̂h) + ε0C

−2
P ) Id+A. This yields

λ− Λ ≤γ
(
‖∇q̃h‖2L2(Ω) − ‖∇q‖

2
L2(Ω)

)
+ γ−1

(
(q̃h, Bq̃h)− (q,Bq)

)
− γ−1ε0C

−2
P

(
‖q̃h‖2L2(Ω) − ‖q‖

2
L2(Ω)

)
+ γ−1 (q̃h, (Ah −A)q̃h) .

For the term containing Ah−A, we use the given a priori estimate from the assumptions to estimate

λ− Λ ≤2γ (∇q̃h,∇(q̃h − q)) + 2γ−1 (B q̃h, q̃h − q)

+ 2γ−1ε0C
−2
P (q, q̃h − q) + γ−1CAhh ‖∇q̃h‖2L2(Ω)

≤2γ ‖∇q̃h‖L2(Ω) ‖∇(q̃h − q)‖L2(Ω) + 2γ−12ε0 ‖∇q̃h‖L2(Ω) ‖∇(q̃h − q)‖L2(Ω)

+ 2γ−1ε0C
−2
P ‖q‖L2(Ω) ‖q̃h − q‖L2(Ω) + γ−1CAhh ‖∇q̃h‖2L2(Ω)

≤2
[
γ ‖∇q̃h‖L2(Ω) + 2γ−1ε0 ‖∇q̃h‖L2(Ω) + γ−1ε0 ‖∇q‖L2(Ω)

]
γ−4ε4 h

+ γ−1CAhh ‖∇q̃h‖2L2(Ω) .

We finally note ‖∇q̃h‖L2(Ω) ≤ γ−2(ε1 + ε4/(4ε2)) to verify the desired estimate.
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5 Application to Homogeneous Elasticity
The last missing parts to gain robust error control are the residual estimators. These depend on
the concrete application with a particular linear operator A and on the implemented numerical
method. In this section we present a practical method for a semi-implicit treatment of the general
Cahn-Larché system and derive computable residual estimators in the case of a homogeneous
elasticity tensor.

5.1 Homogeneous Elasticity
Let the elasticity tensor C ∈ Rd×d×d×d be a symmetric positive definite fourth order tensor, i.e.

• Cijmn = Cijnm = Cjimn and Cijmn = Cmnij for all 1 ≤ i, j,m, n ≤ d,

• there is c∗ > 0, such that A : CA ≥ c∗ |A|2 for all symmetric matrices A ∈ Rd×d.

For symmetric matrices A, B we define A : B := trace
(
ATB

)
=
∑
i,j AijBij and the scalar product

(A,B)C :=
∫
ΩA : CB dx. The set of all infinitesimal, linearized rigid body motions is given by

RM(Ω) =

{
{(x, y) 7→ (a, b) + c(y,−x) : a, b, c ∈ R, (x, y) ∈ Ω ⊂ R2} for d = 2 ,
{x 7→ a+ c× x : a, b ∈ R3, x ∈ Ω ⊂ R3} for d = 3 .

By H1
RM(Ω) we denote the subspace of

(
H1(Ω)

)d where all linearized rigid body motions have been
removed and define the solution space of the Cahn-Larché system by

XCL := XCH × L∞([0, T ], H1
RM(Ω)) .

In the weak form we seek the solution of the following problem

(CL)



Given ρ(0, x) = ρ0(x) ∈ H1(Ω), find (ρ, w, ~u) ∈ XCL such that for almost all t ∈ (0, T )(
E(~ξ ), E(~u)− Ē(ρ)

)
C

= 0 for all ~ξ ∈ H1
RM(Ω) ,

〈ϕ, ∂tρ〉+ (∇ϕ,∇w) = 0 for all ϕ ∈ H1(Ω) ,
(ψ,w)− γ (∇ψ,∇ρ) = γ−1 (ψ, f(ρ) +W (ρ, E(~u))) for all ψ ∈ H1(Ω) .

Following [15], the elastic energy can be modeled by

W(ρ, E(~u)) := 1
2
(
E(~u)− Ē(ρ)

)
: C
(
E(~u)− Ē(ρ)

)
.

If the elasticity tensor C is homogeneous, the first equation of (CL) defines the linear solution
operator D−1 : ρ 7→ ~u and the contribution of the elastic energy to (CL) is

W (ρ, E(~u)) = −κI : C
(
E(~u)− Ē(ρ)

)
. (37)

In the next lemma, we show that the mapping ρ 7→ Aρ = W (ρ, E(~u)) satisfies (A3).

Lemma 5.1. There is a constant CC,K such that for given ρ ∈ L2(Ω) and ~u as in (CL) we have

‖∇~u‖L2(Ω) ≤ κCC,K ‖ρ‖L2(Ω) . (38)

Moreover, the linear operator A : ρ 7→W (ρ, E(~u)) = −κI : C
(
E(~u)− Ē(ρ)

)
is selfadjoint and there

are constants α,CA ≥ 0 such that assumption (A3) is satisfied, i.e.

− (ρ,Aρ) ≤ α ‖ρ‖2L2(Ω) for all ρ ∈ L2(Ω) ,

(ψ,Aρ) ≤ CA ‖∇ψ‖L2(Ω) ‖∇ρ‖L2(Ω) for all ρ ∈
◦
H1(Ω) .
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Proof. Since we excluded rigid body motions, we can apply Korn’s inequality. On the other hand,
C is positive definite, together this yields

CK ‖∇~u‖2L2(Ω) ≤ (E(~u), E(~u)) ≤ 1
c∗

(E(~u), E(~u))C . (39)

By choosing ~ξ = ~u in (CL) and employing Hölder’s inequality we verify

‖∇~u‖2L2(Ω) ≤
1

c∗ CK

(
Ē(ρ), E(~u)

)
C = κ

c∗ CK

∫
Ω
ρ E(~u) : CI dx

≤ κ

c∗ CK
‖ρ‖L2(Ω) ‖E(~u) : CI‖L2(Ω) ≤ κCC,K ‖ρ‖L2(Ω) ‖∇~u‖L2(Ω) ,

with some constant CC,K > 0. The symmetry of C implies that A is selfadjoint and

(ρ,Aρ) = −
∫

Ω
κIρ : C

(
E(~u)− Ē(ρ)

)
dx = −

(
Ē(ρ), E(~u)− Ē(ρ)

)
C

= − (E(~u), E(~u))C +
(
Ē(ρ), Ē(ρ)

)
C ≥ −c

∗ CK ‖∇~u‖2L2(Ω) + κ2c∗ ‖ρ‖2L2(Ω) .

Upon setting α = max(0, κ2 (CK C2
C,K − |Ω|)) c∗ we get the lower bound for A. For the upper

bound, we set ~ξ = D−1ψ and ~v = D−1ρ. An application of Hölder’s inequality, (38) and (39) yield

(ψ,Aρ) = −
(
Ē(ψ), E(~v)− Ē(ρ)

)
C = −

(
E(~ξ ), E(~v)

)
C +

(
Ē(ψ), Ē(ρ)

)
C

≤
(
E(~ξ ), E(~ξ )

)1/2
C (E(~v ), E(~v))1/2C + κ2I : CI ‖ψ‖L2 ‖ρ‖L2(Ω)

≤ C2
K‖∇~ξ ‖L2(Ω)‖∇~ξ ‖L2(Ω) + κ2I : CIC2

P ‖∇ψ‖L2 ‖∇ρ‖L2(Ω)

≤ (C2
K κ

2 C2
C,K + κ2I : CIC2

P ) ‖∇ψ‖L2 ‖∇ρ‖L2(Ω) .

5.2 Numerical Scheme and Residual Estimates
We define SRM := Sd ∩ H1

RM(Ω) and propose the following decoupled semi-implicit numerical
method to approximate (CL):

(CLh)



Given the approximations ρ(j−1)
h at time tj−1, first compute ~u(j)

h ∈ S
(j)
RM such that

0 =
(
E(~ξh), E(~u(j)

h )− Ē(I(j)ρ
(j−1)
h )

)
C

for all ~ξh ∈ S(j)
RM ,

then compute (ρ(j)
h , w

(j)
h ) ∈ S(j) × S(j) such that(

ϕh, ρ
(j)
h

)
+ τj

(
∇ϕh,∇w(j)

h

)
=
(
ϕh, I(j)ρ

(j−1)
h

)
for all ϕh ∈ S(j) ,(

ψh, w
(j)
h

)
− γ

(
∇ψh,∇ρ(j)

h

)
− γ−1

(
ψh, f

′(I(j)ρ
(j−1)
h )ρ(j)

h

)
= γ−1

(
ψh, f(I(j)ρ

(j−1)
h )− f ′(I(j)ρ

(j−1)
h )ρ(j−1)

h

)
+ γ−1

(
ψh,W (I(j)ρ

(j−1)
h , E(~u(j)

h ))
)

for all ψh ∈ S(j) .

Definition 5.2. Given ρh ∈ L2(Ω) and ~uh the finite element solution of 0 =
(
E(~ξh), E(~uh)− Ē(ρh)

)
C

for all ~ξh ∈ SRM the residual R3 is defined as

〈~ξ,R3〉 :=
(
E(~ξ ), E(~uh)− Ē(ρh)

)
C

for all ~ξ ∈ H1
RM(Ω) . (40)
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Lemma 5.3. Suppose C is homogeneous and W (ρ, E(~u)) given by (37). Let A : ρ 7→ W (ρ, E(~u))
with ~u defined by the first identity in (CL). Similarly, let Ah : ρh 7→ W (ρh, E(~uh)) with ~uh as in
Definition 5.2. Set

η̃A :=
∥∥∥hT (divT

(
C
[
E(~uh)− Ē(ρh)

]) )∥∥∥
L2(Ω)

+
∥∥∥h1/2
E

[[
~n ·
(
CE(~uh)− Ē(ρh)

) ]]∥∥∥
L2(∪E)

.

Then, with ηA := κCPCC,KCCl η̃A, we have

〈~ξ,R3〉 ≤ η̃A CCl‖∇~ξ ‖L2(Ω) for all ~ξ ∈ H1
RM(Ω) ,

(ϕ, (Ah −A)ρh) ≤ ηA ‖∇ϕ‖L2(Ω) for all ϕ ∈
◦
H1(Ω) . (41)

Under the assumption of H2 regularity of the elasticity equations in the sense that ‖~u‖H2(Ω) ≤
C ‖∇ρh‖L2(Ω), there is a constant CAh > 0 such that we have the a priori estimate

| (ρh, (Ah −A)ρh) | ≤ CAh h ‖∇ρh‖2L2(Ω) .

Proof. Let ~ξ ∈ H1
RM(Ω). By Galerkin orthogonality we can insert the Clément interpolant of ~ξ in

(40). Using elementwise integration by parts and applying standard estimates we get

〈~ξ,R3〉 ≤ η̃A CCl‖∇~ξ ‖L2(Ω) .

Define ~v := D−1ρh, then Aρh = −κI : C
(
E(~v)− Ē(ρh)

)
and for ϕ ∈

◦
H1(Ω) set ~ξ := D−1ϕ. Since

~uh − ~v ∈ H1
RM(Ω) is an admissible test function, we verify

(ϕ, (Ah −A)ρh) =
(
Ē(ϕ), E(~uh)− E(~v)

)
C

=
(
E(~ξ ), E(~uh)− E(~v)

)
C

=
(
E(~ξ ), E(~uh)− Ē(ρh)

)
C

=
〈
~ξ,R3

〉
.

With Lemma 5.1 and Poincaré’s inequality we infer (41). For the a priori estimate, we choose
ϕ = ρh and apply Hölder’s inequality to deduce

| (ρh, (Ah −A)ρh) | = | (E(~v ), E(~uh)− E(~v))C | ≤ (E(~v ), E(~v))1/2C (E(~uh − ~v), E(~uh − ~v))1/2C
≤ c∗ CK ‖∇~v‖ C h

∥∥D2~v
∥∥
L2(Ω) ,

due to (39) and standard a priori estimates for linear elasticity with a constant C > 0. Then, we
finish the proof by using (38) and the H2 regularity of ~v.

Lemma 5.4. Let (ρ(j)
h , w

(j)
h , u

(j)
h )j=0,···N be the solution of (CLh) and let (ρh, wh, uh) denote the

piecewise affine in time interpolation. Set r(j) := max(‖ρ(j−1)
h ‖L∞(Ω), ‖ρ

(j)
h ‖L∞(Ω)) and I(j) :=

[−r(j), r(j)]. Let η(j)
A be as in Lemma 5.3. Define the residual estimators

η
(j)
1 := CCl η

(j)
1h + η

(j)
1t + η

(j)
1c , where

η
(j)
1h :=

∥∥∥hT (j)

(
τ−1
j

(
ρ
(j)
h − I

(j)ρ
(j−1)
h

)
−∆w(j)

h

)∥∥∥
L2(Ω)

+
∥∥∥h1/2
E(j)

[[
∂~nw

(j)
h

]]∥∥∥
L2(∪E(j))

,

η
(j)
1t := CP

∥∥∥∇w(j)
h −∇w

(j−1)
h

∥∥∥
L2(Ω)

,

η
(j)
1c := τ−1

j CP

∥∥∥I(j)ρ
(j−1)
h − ρ(j−1)

h

∥∥∥
L2(Ω)

,

η
(j)
21 := CCl η

(j)
21h + η

(j)
21t + (η(j−1)

A + η
(j)
A ), where

η
(j)
21h :=

∥∥∥hT (j)

(
w

(j)
h + γ∆T (j)ρ

(j)
h − γ

−1
[
f(I(j)ρ

(j−1)
h ) +W (I(j)ρ

(j−1)
h , E(~u(j)

h ))

+ f ′(I(j)ρ
(j−1)
h )(ρ(j)

h − I
(j)ρ

(j−1)
h )

])∥∥∥
L2(Ω)

+ γ
∥∥∥h1/2
E(j)

[[
∂~nρ

(j)
h

]]∥∥∥
L2(∪E(j))

,

η
(j)
21t := γ

∥∥∥∇(ρ(j)
h − ρ

(j−1)
h )

∥∥∥
L2(Ω)

,
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η
(j)
22 := η

(j)
2t + η

(j)
2c + η

(j)
2` ,

η
(j)
22t :=

∥∥∥w(j)
h − w

(j−1)
h

∥∥∥
L2(Ω)

+ γ−1‖f ′‖L∞(I(j))‖ρ
(j)
h − ρ

(j−1)
h ‖L2(Ω)

+ γ−1
∥∥∥W (ρ(j)

h , E(~u(j)
h ))−W (ρ(j−1)

h , E(~u(j)
h ))

∥∥∥
L2(Ω)

,

η
(j)
2c := γ−1

∥∥∥W (ρ(j−1)
h , E(~u(j)

h ))−W (I(j)ρ
(j−1)
h , E(~u(j)

h ))
∥∥∥
L2(Ω)

η
(j)
2` := γ−1

∥∥∥f(ρ(j)
h )− f(I(j)ρ

(j−1)
h )− f ′(I(j)ρ

(j−1)
h )

[
ρ
(j)
h − ρ

(j−1)
h

]∥∥∥
L2(Ω)

.

Then, for almost all s ∈ (tj−1, tj), j = 1, · · · , N , we have

〈ϕ,R1(s)〉 ≤ η(j)
1 ‖∇ϕ‖L2(Ω) for all ϕ ∈

◦
H1(Ω) , (42a)

〈ψ,R2(s)〉 ≤ η(j)
21 ‖∇ψ‖L2(Ω) + η

(j)
22 ‖ψ‖L2(Ω) for all ψ ∈

◦
H1(Ω) , (42b)

Proof. We add and subtract terms to the residuals defined in Definition 2.2, such that we split the
residuals into R1(s) = R

(j)
1h +R1t(s) +R

(j)
1c and R2(s) = R

(j)
2h +R2t(s) +R

(j)
2c +R

(j)
2` + (A−Ah)ρh,

where the subscripts c, `, h and t refer to coarsening-, linearization-, space discretization-, and
time discretization residuals, respectively. Since ρh and is affine in (tj−1, tj), with Lemma 5.3 we
can directly estimate (ψ, (A−Ah)ρh(s)) ≤ (η(j)

A + η
(j−1)
A ) ‖∇ψ‖L2(Ω). The space discretization

residuals are given by the discrete operator applied to test functions in the whole space
◦
H1(Ω)〈

ϕ,R
(j)
1h

〉
:=τ−1

j

(
ϕ, ρ

(j)
h − I

(j)ρ
(j−1)
h

)
+
(
∇ϕ,∇w(j)

h

)
, (43a)〈

ψ,R
(j)
2h

〉
:=γ

(
∇ψ,∇ρ(j)

h

)
+ γ−1

(
ψ, f ′(I(j)ρ

(j−1)
h )(ρ(j)

h − I
(j)ρ

(j−1)
h )

)
−
(
ψ,w

(j)
h

)
+ γ−1

(
ψ, f(I(j)ρ

(j−1)
h ) +W (I(j)ρ

(j−1)
h , E(~u(j)

h ))
)
.

(43b)

The linearization residual is〈
ψ,R

(j)
2`

〉
:=γ−1

(
ψh, f(ρ(j)

h )− f(I(j)ρ
(j−1)
h )− f ′(I(j)ρ

(j−1)
h )

[
ρ
(j)
h − I

(j)ρ
(j−1)
h

])
(44)

and the coarsening residuals contain the remaining explicit terms in the scheme, i.e.〈
ϕ,R

(j)
1c

〉
:= τ−1

j

(
ϕ, I(j)ρ

(j−1)
h − ρ(j−1)

h

)
, (45a)〈

ϕ,R
(j)
2c

〉
:= γ−1

(
ϕ,W (ρ(j−1)

h , E(~u(j)
h ))−W (I(j)ρ

(j−1)
h , E(~u(j)

h ))
)
. (45b)

Finally, the time discretization residuals are given by

〈ϕ,R1t(s)〉 :=
(
∇ϕ,∇wh(s)−∇w(j)

h

)
, (46a)

〈ψ,R2t(s)〉 :=γ
(
∇ψ,∇ρh(s)−∇ρ(j)

h

)
−
(
ψ,wh(s)− w(j)

h

)
+ γ−1

(
ψ, f(ρh(s))− f(ρ(j)

h ) +W (ρh(s), E(~uh(s)))−W (ρ(j−1)
h , E(~u(j)

h ))
)
.

(46b)

By Galerkin orthogonality we can insert the Clément interpolant Πhϕ into the space discretization
residual R(j)

1h . Then, with elementwise integration by parts and standard estimates we conclude〈
ϕ,R

(j)
1h

〉
=

∑
K∈T (j)

(
ϕ−Πhϕ, τ

−1
j

(
ρ
(j)
h − I

(j)ρ
(j−1)
h

)
−∆T (j)wh

)
+
∑

E∈E(j)

(ϕ−Πhϕ, [[∂~nwh]])

≤ CCl η1h ‖∇ϕ‖L2(Ω) .

Analogously, we infer 〈ψ,R(j)
2h 〉 ≤ CCl η21h ‖ψ‖L2(Ω). Since ρh and wh are affine in (tj−1, tj), by

Hölders’s and Poincaré’s inequality we conclude

〈ϕ,R1c〉 ≤ τ−1
j ‖I

(j)ρ
(j−1)
h − ρ(j−1)

h ‖L2(Ω) ‖ϕ‖L2(Ω) ≤ η1c ‖∇ϕ‖L2(Ω)

18



in analogous way 〈ϕ,R(j)
1t 〉 ≤ η

(j)
1t ‖∇ϕ‖L2(Ω). Further application of Hölder’s inequality proves

〈ψ,R(j)
2` 〉 ≤ η

(j)
2` ‖ψ‖L2(Ω) and 〈ψ,R(j)

2c 〉 ≤ η
(j)
2c ‖ψ‖L2(Ω). The first term of the time discretization

residual R2t(s) is estimated with η21t. W is linear with respect to E(~u) and for each x ∈ Ω there
is some rx between ρh(s, x) and ρ(j)

h (x) such that

f(ρh(s, x))− f(ρ(j)
h (x)) = f ′(rx)

(
ρh(s, x)− ρ(j)

h (x)
)
≤ ‖f ′‖L∞(I(j))|ρ

(j)
h (x)− ρ(j−1)

h (x)| .

Then, by Hölder’s inequality we deduce 〈ψ,R(j)
2t 〉 ≤ η

(j)
21t ‖∇ψ‖L2(Ω) + η

(j)
22t ‖ψ‖L2(Ω).

6 Numerical Experiments
In this section we illustrate the theoretical results of the previous sections and discuss analytical
properties of the given equations. The numerical experiments also show that the given error
indicators, the grid adaption and coarsening strategy enables an efficient and accurate solution of
the Cahn-Larché system. We used the numerical method (CLh) to approximate the time evolution.
The discrete eigenvalue problem in the jth time step reads as follows:

(EVh)



Given ρ(j)
h , find (qh, zh, ~vh,Λ) ∈ S(j) × S(j) × S(j)

RM × R such that(
E(~ξh), E(~vh)− Ē(qh)

)
C

= 0 for all ~ξh ∈ S(j)
RM ,

γ (ϕh, qh)− γ (∇ϕh,∇zh) = 0 for all ϕh ∈
◦
S(j) ,

γ (∇ψh,∇qh) + γ−1
(
ψh, f

′(ρ(j)
h )qh +W (qh, E(~vh))

)
= −Λ (ψh, zh) for all ψh ∈

◦
S(j) .

We solve this problem by a shifted inverse vector iteration. Therefore, we introduce a term
ε0 (ψh, zh) to each side of the last equation of (EVh). We note that the eigenvalue problem can
not be decoupled into an elasticity part and a Cahn-Hilliard part, so the size of the linear system
to solve is twice as large compared to each subproblem in (CLh). Due to the constraints related
to the spaces

◦
S(j) and S(j)

RM this matrix has a large bandwidth, thus it is not well suited for direct
solvers.

6.1 Detection of Topological Changes

Figure 2: Experiment 1. Left: initial values; right: final state.

Experiment 1: We neglect elastic effects and consider the pure Cahn-Hilliard problem, i.e. A = 0.
Let r1 = 0.55 and r2 = 0.2 and choose

ρ0(x) = min
(
− tanh

(
|x|−r1
γ
√

2

)
, tanh

(
|x|−r2
γ
√

2

))
.
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Initially the interface consists of two concentric circles. Then the smaller circle shrinks until it
vanishes completely and the solution reaches a stable state with only one circular interface, see
Figure 2. In the sharp interface limit γ → 0, the Ginzburg-Landau energy E from (1) converges
to the interface length 2π|r1(t) + r2(t)| in the corresponding Mullins-Sekerka problem. Given
this initial data, the Mullins-Sekerka problem can be reduced to a system of ordinary differential
equations for the radii r1 and r2, cf. [4, 24]. Thereby we gain a reference solution to compare the
accuracy of our numerical solution, see Figure 3.
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Figure 3: Left: Ginzburg-Landau energy E(t) from (1) and interface length in the Mullins-Sekerka-
Problem (thin solid line); right: numerically computed principal eigenvalue −Λ(t).

When the inner interface vanishes, the system undergoes a topological change and the numer-
ically computed principal eigenvalue −Λ shows the predicted peak that grows proportionally to
γ−1, see Figure 3. The relation of the principal eigenvalue to the maximal interface curvature in
the solution is illustrated in Figure 4. With decreasing parameter size γ, the interface thickness
reduces and larger curvatures can be resolved.
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Figure 4: Experiment 1. Left: curvature of the inner interface in relation to the principal eigenvalue
−Λ; right: the energy E(t) indicates a rapid decay of perturbations in the initial values.

In the given experiment, the moving fronts of the solution show a self-similar profile across the
interface. The chosen initial data ρ0 does not perfectly match such a profile. Thus, the Ginzburg-
Landau energy E is initially larger than the corresponding energy in the Mullins-Sekerka problem,
but shows a fast relaxation during a time proportional to γ, see Figure 4.

6.2 Smooth Transition Layers After T ∼ γ

In [22] it is stated that perturbations of a smooth transition layer between the bulk phases vanish
within a time frame of order O(γ). As long as there are no topological changes, the maximal
interface curvature is uniformly bounded. The numerical experiments below confirm that this
leads to a valid uniform upper bound for the principal eigenvalue −Λ.
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Experiment 2: The initial configuration is given by a single circular interface

ρ0(x) = − tanh
(
|x| − r1
2γ
√

2

)
,

where the profile is flat compared to the final state in Example 1. During the time evolution, there
are no other changes in the solution than a steepening of the interface profile to − tanh

(
|x|−r1
γ
√

2

)
.
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Figure 5: Experiment 2. Left: reduction of the Ginzburg-Landau energy E(t); right: principal
eigenvalue −Λ(t).

From Figure 5 we see that within a time proportional to γ the initially large Ginzburg-Landau
energy E reaches a lower level related to the final interface profile. As required by the error
estimate, the principal eigenvalue −Λ reduces to order O(1) during a period t ∼ γ.

When we prescribe initial values ρ0 with a steep profile close to a jump, the principal eigenvalue
initially takes large negative values, that are uncritical with respect to the error estimate. Again,
−Λ relaxes to order O(1) within a time frame proportional to γ.
Experiment 3: The initial values take the form

ρ0(x) = − tanh
(
|x| − r1
γ
√

2

)
+ noise .

Here, the circular interface is perturbed by noise on a length scale between the mesh width h and
the interface thickness γ, see Figure 6.
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Figure 6: Experiment 3. Left: initial values; right: principal eigenvalue −Λ(t).

As in Experiment 2, the numerical results confirm that the principal eigenvalue drops below an
upper bound of order O(1) within a time proportional to γ.

6.3 Application to Cahn-Larché System
Experiment 4: We choose the elasticity tensor to be of cubic symmetry by setting C1111 = C2222 = 2,
C1122 = 1 and C1212 = 20. We set κ = 0.1 and choose initial values ρ0 that describe two circular
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particles, where one is slightly larger than the other one. The radius of the larger particle is 1/6
whereas the radius of the other one is about 5.5% smaller. During the time evolution, the larger
particle grows whereas the smaller one shrinks and is finally absorbed by the larger one by diffusion,
see Figure 7.

Figure 7: Experiment 4. Merging of two particles; snapshots of the solution ρ of the Cahn-Larché
equation with homogeneous elasticity and γ = 1/32 are shown for t = 0, t = 0.282 and t = 0.3.

The numerical experiment underlines the importance to track the approximated principal eigen-
value. As required for the error control, Λ(t) stays uniformly bounded with respect to γ−1 as long
as there is no topological change in the solution and the critical point in time, when the smaller
particle vanishes, is detected by a peak proportionally to γ−1.
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Figure 8: Experiment 4. Left: Numerically computed eigenvalues. The singularity reflects the
topological change when the smaller particle vanishes; right: Comparison of the interface shape
when elastic effects are neglected (dashed lines). Isolines ρ(j)(x) = 0 are shown at times short
before and after the vanishing of the smaller particle.

To illustrate the influence of the elasticity we compared the numerical solution with the results
of a simulation where elasticity was neglected but all other parameters have been kept the same
and the same initial data was used. Due to the anisotropy of the elasticity tensor the interface
shows a more square like shape, compared to the pure Cahn-Hilliard case, where particles always
develop a spherical shape. Moreover with elasticity included, the particles stay in a larger distance
from each other, see Figure 8.
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