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1Humboldt-Universiẗat zu Berlin,Department of Mathematics, Unter den Linden 6,D-10099

Berlin, Germany

Email: geiser@mathematik.hu-berlin.de
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ABSTRACT

We are motivated to model chemical vapor deposition for metallic bipolar plates and optimiza-

tion to deposit a homogeneous layer. Moreover a constraint to the deposition process is a very

low pressure (nearly vacuum) and a low temperature (about 400 K). These constraints need to

have a catalyst process, here in our apparatus we deal with a plasma source and precursor gases,

see (Dobkin and Zuraw 2003). Such a plasma have the advantageto accelerate the vaporation

process, see (Lieberman and Lichtenberg 2005), and to bringthe solid materials to a gaseous

phase. Nevertheless there are also some drawbacks, so that aretardation and adsorption process

can hinder the direct transport to the target, see (Lieberman and Lichtenberg 2005).

Here, we present a mesoscopic model, which reflects the retardation, transport and reaction

of the gaseous species through a homogeneous media in the chamber. The models include

immobile gaseous phases, where the transport of the mobile gaseous species are hindered. Ki-

netically controlled adsorption are included to taken intoaccount the multiple species of heavier

and lighter species. Such ideas are also considered in fluid dynamical models, see (Farooq and

Ruthven 1991). Further, the models include the conservation of mass and the porous media,
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are in accordance with the Darcy‘s law, which is an assumption to the flow processes of the

gaseous phase. The transport through the instationary and ionized plasma field is treated as a

diffusion-dominated flow with mobile and immobile zones, see (Gobbert and Ringhofer 1998)

and (Lieberman and Lichtenberg 2005), where the metallic deposit and the gas chamber, looking

like a porous media, (Rouch 2006; Cao and Burggraaf 1993). Wehave a continuity condition

and an overall balance, where we detailed model the temporaldevelopment of sorption pro-

cesses. For the kinetics we apply first order processes and reflecting the different time-scales of

the multi gaseous species. We choose porous ceramic membranes and gas catalysts like Argon

(Ar), (Cao and Burggraaf 1993), additionally we assume precursor gases like Chlor (Cl) and

apply our experience in simulating gaseous flow and modelingthe penetration of such porous

media, (Jin and Wang 2002).

Numerical methods are developed to solve such multi-scale and multi-phase models and to

obtain qualitative results of the delicate multi physical processes in the gas chamber. To solve

such evolution models, we combine discretization methods for partial differential and ordinary

differential equations. Sequentially treatment of the partial differential equations and ordinary

differential equations allow to discretize with Finite volume methods for the spatial derivatives

of the transport equations, while Runge-Kutta methods are used to discretize the time derivatives

and the ordinary parts of the multi-phase model. With various source terms we control the

required concentration at the final deposition area. Different kinetically parameters allow to

simulate the different time scale of the heavier and lightergaseous species. We present an

expert system based on a multi phase model and embedded source and target controls to present

an accurate computational models for the transport of gas concentrations to a plasma media.

For such efficient choose of models an discussion of physically correct numerical methods are

important and simulate an optimal homogeneous deposition at the target with control of the rest

gaseous concentration in the plasma media. The results are discussed by means of physical

experiments to give a valid model for the assumed growth.

Keywords: Chemical vapor deposition, multi-scale problem, multi-phase problem, discretiza-

tion methods, multi-species problem.
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1 INTRODUCTION

We motivate our study by simulating a growth of a thin film thatcan be done by PE-CVD

(plasma enhanced chemical vapor deposition) processes, see (Lieberman and Lichtenberg 2005)

and (Ohring 2002). Further methods based on ionized plasma for deposition methods are PVD

(physical vapor deposition) processes. If we only concentrate on the macroscopic transport

of gaseous species, we can also lightly modify our models andsimulate also PVD processes,

taken into account clusters of heavier and lighter species,see (Senega and Brinkmann 2007).

A gas exposed to an electric field in low pressure conditions(< 5 Torr) results in a non-

equilibrium plasma, see (Chapman 1980) and (Morosoff 1990), such ionized media, known as

”cold” plasma or glow discharges, are powerful surface-modification tools in Material Science

and Technology. Low-pressure plasmas allow to modify the surface chemistry and properties of

materials compatible with low-medium vacuum, through a PE-CVD process, see applications

(Favia and D’Agostino 2002) and (Morosoff 1990).

Due to control this PE-CVD process has been interested on producing high-temperature films,

see (Ohring 2002).

While having a powerful deposition process in low-temperature and low-pressure regimes, we

have also taken into account some drawbacks of such a process, which is driven with ionized

plasma. Here, we deal with multicomponent problems with heavier and lighter species. Such

conditions have consequences in slower (strongly adsorbed) or faster traveling (waker adsorbed)

species.

To model the gaseous transport of our deposition process, inan ionized plasma, we present

a multi-phase and multi-species model and deal with the underlying plasma as a media with

mobile and immobile phases or groups, see (Favia and D’Agostino 2002) and (Lieberman and

Lichtenberg 2005). The species of the gaseous transport areMAX-phase materials, see (Bar-

soum and El-Raghy 1996), (Du and Aldinger 2000) and (Lange and Schaaf 2007), and we

concentrate onT i3SiC2 molecules, so we haveT i, Si andC in the gas phases.
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For the underlying multiple phase motivation, we apply a four phase model, that was developed

for fluid dynamical problems, see (Fein 2004) and (Farooq andRuthven 1991). We have taken

into account the extension to a gaseous transport model, while dealing with a low-temperature

and low-pressure environment in an ionized plasma, see (Senega and Brinkmann 2007). For the

mobile phase we consider a transport models that are relatedto mesoscopic scales, (Gobbert

and Ringhofer 1998), with respect to flows close to the wafer surface. Such a wafer surface can

be modeled as a porous media, (Rouch 2006).

By assuming a ionized plasma that activate the particle transport to the deposition layer, PE-

CVD process can be assumed as a homogeneous media, while dealing with ionized media

and/or gas catalysts (Argon, Xenon). Such media itself has mobile and immobile phases in

which the gaseous particles are transported or retarded, see (Serdyuk and Gubanski 2005). Fur-

ther we taken into account the different precursor gases (e.g. SilaneSiH4), which have addi-

tionally sorbed processes to the deposition gases (T i, Si, C), see an experimental application

(Lemieux and Zhang 2008).

We assume to model the ionized plasma as an underlying media in the chamber with mobile

and immobile phases. Here transport in the plasma with gaseous species contain of mobile and

immobile concentrations, (Lieberman and Lichtenberg 2005). For such a homogenous plasma,

we applied our expertise in modeling multiphase transport through a porous medium.

To amplify the modeling of the gaseous flow to the gas chamber which is filled with ionized

plasma, we deal with the so-called far-field model based on a porous media. Here the plasma can

be modeled as a continuous flow (Gobbert and Ringhofer 1998),that has mobile and immobile

phases, see (Favia and D’Agostino 2002).

We assume a near vacuum and a diffusion-dominated process, derived from the Knudsen dif-

fusion, (Cao and Burggraaf 1993). In such viscous flow regimes, we deal with small Knudsen

Numbers and a pressure of nearly zero.

In Figure 1, the gas chamber of the CVD apparatus is shown, which is done with a porous

media.

4



gas stream 
(single gas)

gas stream 
(mixture)

Ti, Si, C

porous media
e.g. ceramic membran                          
or gas catalyst (Argon )                             

 3Ti   Si C              2   

Figure 1: Gas chamber of the CVD apparatus.

In Figure 2, the mobile and immobile phases of the gas concentration are shown in the macro-

scopic scale of the porous media.
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Figure 2: Mobile and immobile phase.

In Figure 3, the mobile and adsorbed phases of the gas concentration are shown in the macro-

scopic scale of the porous media.
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Figure 3: Mobile-adsorbed phase and immobile-adsorbed phase.
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To solve the model, we concentrate on numerical solvers and discretization methods, that taken

into account the individual time- and spatial scales of eachequation part. To decompose the

time and spatial scales with the different discretization methods are to obtain efficiency in the

solver processes.

The immobile, adsorbed and reaction terms can be treated with fast Runge-Kutta solvers, where

the mobile terms are convection-diffusion equations and are solved with splitting semi-implicit

finite volume methods and characteristic methods, (Geiser 2006).

The numerical results discuss the applications in the production of so-called metallic bipolar

plates. Here we discuss analytical and numerical models.

The paper is outlined as follows.

In Section 2, we present our mathematical model and a possible reduced model for further ap-

proximations. In Section 3, we discuss the time- and space-discretization methods with respect

to the efficiency and accuracy. The numerical experiments are given in Section 4. In Section 5,

we briefly summarize our results.

2 MATHEMATICAL MODEL

In the following, the models are discussed in terms of transport problem on a macro- or meso-

scopic scale, multiphase model with sorbed and immobile zones:

1. Transport model (Gobbert and Ringhofer 1998) (mesoscopic scale);

2. Multiphase model (Lemieux and Zhang 2008), (Fein 2004) (kinetic sorption, mobile-

immoble zones).

3. Multicomponent model (Senega and Brinkmann 2007) (lighter-heavier species).

The modeling is considered by a Knudsen Number, which is the ratio of the mean free pathλ

over the typical domain sizeL. For small Knudsen NumbersKn ≈ 0.01 − 1.0 we deal with
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mass conservation, whereas for large Knudsen NumbersKn ≥ 1.0 we deal with a Boltzmann

equation (Ohring 2002).

We concentrate on a mesoscopic model and assume a continuum flow, and that the fluid equa-

tions can be treated with a Navier-Stokes or especially witha convection-diffusion-reaction

equation, see:

∂

∂t
c+ ∇F − Rg = 0, in Ω × [0, t] (1)

F = vc−D∇c,

c(x, t) = c0(x), on Ω, (2)

c(x, t) = c1(x, t), on ∂Ω × [0, t], (3)

wherec is the molar concentration andF the flux of the species.v is the flux velocity through

the chamber and porous substrate (Rouch 2006).D is the diffusion matrix andRg is the reaction

term. The initial value is given asc0 and we assume a Dirichlet boundary with the function

c1(x, t) sufficiently smooth.

The diffusion in the modified CVD process is given by the Knudsen diffusion, (Cao and Burggraaf

1993). We consider the overall pressure in the reactor is200 Pa and the substrate temperature

is about600 − 900 K. The pore size in the porous substrate is80 nm.

The diffusion is described as:

D =
2ǫµKνr

3RT
, (4)

whereǫ is the porosity,µK is the shape factor of the Knudsen diffusion,r is the average pore

radius,R andT are the gas constant and temperature, respectively, andν is the mean molecular

speed, given by:

ν =

√

8RT

πW
, (5)
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whereW is the molar mass of the diffusive gas.

For the homogeneous reactions, we consider during the CVD process a constant reaction ofSi,

T i andC given as:

3Si+ T i+ 2C → Si3T iC2, (6)

whereSi3T iC2 is a MAX-phase material, which deposits at the target.

For simplification, we do not consider the intermediate reaction with the precursor gases, (Lieber-

man and Lichtenberg 2005).

The reaction rate is then given by:

λ = kr

[3Si]M [T i]N [2C]O

[Si3T iC2]L
, (7)

wherekr is the apparent reaction constant,L,M,N,O are the reaction orders of the reactants.

The velocity in the homogeneous substrate is modeled by a porous medium (Bear 1972; Jo-

hannsen 1999). We have assumed a stationary medium, e.g. non-ionized plasma or non-reactive

precursor gas. Further the pressure can be assumed with the Maxwell distribution as (Lieberman

and Lichtenberg 2005) :

p = ρbT, (8)

whereb is the Boltzmann’s constant andT the temperature.

We have modeled the velocity by partial differential equations. Here we assume the gaseous

flow is a nearly liquid flow through the porous medium. We can therefore derive by Darcy’s
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law:

v = −
k

µ
(∇p− ρg) , (9)

wherev is the velocity of the fluid,k is the permeability tensor,µ is the dynamic viscosity,p is

the pressure,g is the vector of the gravity andρ is the density of the fluid.

We use the continuum equation of the particle density and obtain the equation of the system,

which is given as our flow equation:

∂t(φρ) + ∇ · (ρv) = Q , (10)

whereρ is the unknown particle density,φ is the effective porosity andQ is the source-term of

the fluid. We assume a stationary fluid and consider only divergence-free velocity fields, i.e.

∇ · v(x) = 0 , x ∈ Ω . (11)

The boundary conditions for the flow equation are given as:

p = pr(t, γ), t > 0 , γ ∈ ∂Ω , (12)

n · v = mf (t, γ), t > 0 , γ ∈ ∂Ω , (13)

wheren is the normal unit vector with respect to∂Ω, where we assume that the pressurepr and

flow concentrationmf are prescribed by Dirichlet boundary conditions (Johannsen 1999).

From the stationary fluid, we assume that the conservation ofmomentum for velocityv is given

(Glowinski 2003; Johannsen 1999). So we can neglect the computation of the momentum for

the velocity.

For the kinetically controlled sorption, we apply the Henryisotherms as a simple incorporated

temporal development of our sorption processes.
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The mass transfer rates of the kinetic sorptions are given as:

φ∂tc
L
i,ad = kα(cLi − cLi,ad), (14)

wherekα is the exchange rate.cLi,ad is the adsorbed concentration to the mobile concentration

cLi .

Remark 1 For the flow through the gas chamber, for which we assume a homogeneous medium

and non-reactive plasma, we have considered a constant flow (Hlavacek and Orlicki 1995). A

further simplification is given by the very small porous substrate, for which we can assume the

underlying velocity in a first approximation as constant (Ohring 2002).

Remark 2 For an instationary medium and reactive or ionized plasma, we have to be taken

into account the relations of the electrons in the thermal equilibrium. Such spatially variation

can be considered by modeling the electron drift. Such modeling of the ionized plasma is done

with the Boltzmanns relation, (Lieberman and Lichtenberg 2005).

2.1 Transport model of mobile immobile and adsorbed zones

In the following we present the multiphase transport model.

φ∂tc
L
i + ∇ · (vcLi −De(i)∇cLi ) = g(−cLi + cLi,im) + kα(−cLi + cLi,ad

−λi,iφc
L
i +

∑

k=k(i)

λi,kφc
L
k + Q̃i, (15)

φ∂tc
L
i,im = g(cLi − cLi,im) + kα(cLi,im,ad − cLi,im) − λi,iφc

L
i,im +

∑

k=k(i)

λi,kφc
L
k,im + ˜Qi,im, (16)
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φ∂tc
L
i,ad = kα(cLi − cLi,ad) − λi,iφc

L
i,ad +

∑

k=k(i)

λi,kφc
L
k,ad + ˜Qi,ad, (17)

φ∂tc
L
i,im,ad = kα(cLi,im − cLi,im,ad) − λi,iφc

L
i,im,ad +

∑

k=k(i)

λi,kφc
L
k,im,ad + ˜Qi,im,ad, (18)

φ : effective porosity[−],

cLi : concentration of theith gaseous species in the plasma chamber

cLi,im : concentration of theith gaseous species in the immobile zones of the plasma chamber

phase[mol/cm3],

v : velocity in the plasma chamber[cm/nsec]],

De(i) : element-specific diffusions-dispersions tensor[cm2/nsec]],

λi,i : decay constant of theith species[1/nsec]],

Q̃i : source term of theith species[mol/(cm3nsec)],

g : exchange rate between the mobile and immobile concentration [1/nsec],

kα : exchange rate between the mobile and adsorbed concentration or immobile and

immobile adsorbed concentration (kinitic controlled sorption) [1/nsec],

with i = 1, . . . ,M andM denotes the number of components.

The parameters in equation (15) are further described, see also (Geiser 2003).

The effective porosity is denoted byφ and declares the portion of the porosities of the aquifer,

that is filled with plasma, and we assume a nearly fluid phase. The transport term is indicated

by the Darcy velocityv, that presents the flow-direction and the absolute value of the plasma

flux. The velocity field is divergence-free. The decay constant of theith species is denoted by

λi. Thereby doesk(i) denote the indices of the other species.

In the following we describe the time- and space-discretization methods.
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3 DISCRETIZATION AND SOLVER METHODS

We distinguish between mobile and immobile phases. Here themobile phase are parabolic

partial differential equations and the immobile phases areordinary differential equations. So

for the space-discretization of the PDE’s we apply finite-volume methods as mass conserved

discretization schemes and for the time-discretization ofthe PDE’s and ODE’s we apply Runge-

Kutta methods. To accelerate the solver process, we combinenumerical and analytical parts of

the solutions.

In the next sections we introduce the notation for the space-discretization and describe the

discretization-methods for each equation-part.

3.1 Discretization method of the convection equation

We deal with the following convection equation

∂tR c− v · ∇c = 0 , (19)

with the simple boundary conditionc = 0 for the inflow and outflow boundary and the initial

valuesc(xj, 0) = c0j (x). We use piecewise constant discretization method with the upwind

discretization done in (Frolkovič and Geiser 2003) and get

Vj R cn+1
j = Vj R cnj − τn

∑

k∈out(j)

vjk c
n
j + τn

∑

k∈in(j)

cnk vkj ,

Vj R cn+1
j = cnj (R Vj − τnνj) + τn

∑

k∈in(j)

cnk vkj , (20)

The explicit time discretization has to fulfill the discreteminimum-maximum property (Frol-

kovič and Geiser 2003), and we get the following restriction for the time steps

τj =
R Vj

νj

, τn ≤ min
j=1,...,I

τj . (21)
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To obtain improved spatial discretization methods and apply larger time-steps, we introduce a

reconstruction with linear polynoms as a higher test-function in the next subsection.

3.2 Higher oder discretization method for the convection equation

The reconstruction is based on the Godunovs method and applya limiter function that fulfilled

the local min-max property. The method is explained in the paper (Frolkovič and Geiser 2003)

and we discuss the algorithm in the following section.

The linear polynomes are reconstructed by the element-wisegradient and are given as

un(xj) = cnj , (22)

∇un|Vj
=

1

Vj

E
∑

e=1

∫

T e∩Ωj

∇cndx , (23)

with j = 1, . . . , I .

The piecewise linear functions are denoted as

un
jk = cnj + ψj∇u

n|Vj
(xjk − xj) , (24)

with j = 1, . . . , I ,

whereψj ∈ (0, 1) is the limiter function and based on this, the equation (27) fulfills the discrete

minimum maximum property, as described in (Frolkovič and Geiser 2003).

We also use the limitation of the flux to get non overshooting,when transporting the mass and

receive the maximal time-step.

We get the correct restriction due to the flux limiter and obtain the following concentration as

ũn
jk = un

jk +
τj
τn

(cnj − un
jk) . (25)
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Using all the previous schemes the discretization for the second order is written in the dis-

cretized form

RVjc
n+1
j = RVjc

n
j − τn

∑

k∈out(j)

ũn
jkvjk + τn

∑

l∈in(j)

ũn
ljvlj . (26)

Based on this discretization method we can embed the reaction equation as a local effect, de-

scribed in the following subsection.

3.3 Discretization method for the convection-reaction equation based on embedded one

dimensional analytical solutions

We apply Godunovs method for the discretization method, cf.(Leveque 2002), and extend the

formulation with analytical solution of convection-reaction equations. We reduce the multi-

dimensional equation to one dimensional equations and solve each equation exactly. The one-

dimensional solution is multiplied with the underlying volume and we get the mass-formulation.

The one-dimensional mass is embedded into the multi-dimensional mass-formulation and we

obtain the discretization of the multi-dimensional equation.

The algorithm is given in the following manner

∂t cl + ∇ · vl cl = −λl cl + λl−1 cl−1,

with l = 1, . . . , m .

The velocity vectorv is divided byRl. The initial conditions are given byc01 = c1(x, 0) , else

c0l = 0 for l = 2, . . . , m and the boundary conditions are trivialcl = 0 for l = 1, . . . , m.

We first calculate the maximal time step for cellj and concentrationi with the use of the total

outflow fluxes

τi,j =
Vj Ri

νj

, νj =
∑

k∈out(j)

vjk .
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We get the restricted time step with the local time steps of cells and their components

τn ≤ min
i=1,...,m

j=1,...,I

τi,j .

The velocity of the discrete equation is given by

vi,j =
1

τi,j
.

We calculate the analytical solution of the mass, cf. (Geiser 2003) and we get

mn
i,jk,out = mi,out(a, b, τ

n, v1,j , . . . , vi,j, R1, . . . , Ri, λ1, . . . , λi) ,

mn
i,j,rest = mn

i,j f(τn, v1,j , . . . , vi,j, R1, . . . , Ri, λ1, . . . , λi) ,

wherea = VjRi(c
n
i,jk − cni,jk′) , b = VjRic

n
i,jk′ andmn

i,j = VjRic
n
i,j. Furthercni,jk′ is the concen-

tration at the inflow- andcni,jk is the concentration at the outflow-boundary of the cellj.

The discretization with the embedded analytical mass is calculated by

mn+1
i,j −mn

i,rest = −
∑

k∈out(j)

vjk

νj

mi,jk,out +
∑

l∈in(j)

vlj

νl

mi,lj,out ,

where vjk

νj
is the re-transformation for the total massmi,jk,out in the partial massmi,jk . In the

next time-step the mass is given asmn+1
i,j = Vj c

n+1
i,j and in the old time-step it is the rest mass

for the concentrationi. The proof is done in (Geiser 2003). In the next section we derive an

analytical solution for the benchmark problem, cf. (Higashi and Pigford 1980), (Jury and Roth

1990).

In the next subsection we introduce the discretization of the diffusion-dispersion-equation.
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3.4 Discretization of the diffusion-dispersion-equation

We discretize the diffusion-dispersion-equation with implicit time-discretization and finite-volume

method for the following equation

∂tR c−∇ · (D∇c) = 0 , (27)

wherec = c(x, t) with x ∈ Ω andt ≥ 0 . The diffusions-dispersions-tensorD = D(x,v) is

given by the Scheidegger-approach, cf. (Scheidegger 1961). The velocity is given asv. The

retardation-factor isR > 0.0.

The boundary-values are denoted byn ·D ∇c(x, t) = 0, wherex ∈ Γ is the boundaryΓ = ∂Ω,

cf. (Frolkovič 2002a). The initial conditions are given byc(x, 0) = c0(x).

We integrate the equation (27) over space and time and derive

∫

Ωj

∫ tn+1

tn
∂tR(c) dt dx =

∫

Ωj

∫ tn+1

tn
∇ · (D∇c) dt dx . (28)

The time-integration is done by the backward-Euler method and the diffusion-dispersion term

is lumped, cf. (Geiser 2003)

∫

Ωj

(R(cn+1) − R(cn)) dx = τn

∫

Ωj

∇ · (D∇cn+1) dx , (29)

The equation (29) is discretized over the space with respectof using the Greens-formula.

∫

Ωj

(R(cn+1) − R(cn)) dx = τn

∫

Γj

D n · ∇cn+1 dγ , (30)

whereΓj is the boundary of the finite-volume cellΩj . We use the approximation in space,

confer (Geiser 2003).
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The spatial-integration for (30) is done by the mid-point rule over the finite boundaries and

given as

VjR(cn+1
j ) − VjR(cnj ) = τn

∑

e∈Λj

∑

k∈Λe
j

|Γe
jk|n

e
jk ·D

e
jk∇c

e,n+1
jk , (31)

where|Γe
jk| is the length of the boundary-elementΓe

jk. The gradients are calculated with the

piecewise finite-element-functionφl, cf. (??) and we obtain

∇ce,n+1
jk =

∑

l∈Λe

cn+1
l ∇φl(x

e
jk) . (32)

We get with the difference-notation for the neighbor-pointj andl, cf. (Frolkovič and De Schep-

per 2001) and get the discretised equation

VjR(cn+1
j ) − VjR(cnj ) = (33)

= τn
∑

e∈Λj

∑

l∈Λe\{j}

(

∑

k∈Λe
j

|Γe
jk|n

e
jk ·D

e
jk∇φl(x

e
jk)

)

(cn+1
j − cn+1

l ) ,

wherej = 1, . . . , m.

3.5 Discretization of the mobile, immobile and adsorbed parts

The full equation is given with a PDE and ODE part, see also equation (15), (16), (17) and (18).

We present in the following the discretisation of the mobileand immobile equations, the same

can be done for the adsorbed equations.

∂tci = Aci − g(ci − ci,im) , (34)

∂tci,im = g(ci − ci,im) , (35)
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whereci is the concentration in the mobile phase,ci,im is the concentration in the immobile

phase, withi = 1, . . . , m. Furtherg is the exchange rate between the mobile and immobile

concentration.A is the matrix given by the spatial discretized operators of the equation (15).

The equation system is numerically solved by an iterative scheme:

Our algorithm is given as:

Algorithm 1 We divide our time interval[0, T ] into sub-intervals[tn, tn+1], wheren = 0, 1, . . .N ,

t0 = 0 andtN = T .

We start withn = 0:

1.) The initial conditions are given withci, 0(tn+1) = ci(t
n) andci,im,0(t

n+1) = ci,im(tn). We

start withk = 0.

2.) Compute the fix point iteration scheme given as:

∂tc
k
i = Acki − g(cki − ck−1

i,im) , (36)

∂tc
k
i,im = g(ck−1

i − cki,im) , (37)

wherek is the iteration index, see (Farago I 2005). We apply Runge-Kutta methods as ODE

solvers or simple implicit Euler methods.

3.) The stop criterion for the time intervaltn, tn+1 is given as:

||cki (t
n+1) − ck−1

i (tn+1)|| ≤ err, (38)

||cki,im(tn+1) − ck−1
i,im(tn+1)|| ≤ err, (39)

where|| · || is the maximum norm over all components of the solution vector. err is a given error

bound, e.g.err = 10−4.
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If equation (38) is fulfilled, we have the result

ci(t
n+1) = ci,k(t

n+1), (40)

ci,im(tn+1) = ci,im(tn+1) (41)

If n = N then we stop and are done.

If not, we don = n + 1, k = 0 and apply the initial conditionsci, 0(tn+1) = ci(t
n) and

ci,im,0(t
n+1) = ci,im(tn).

If equation (38) is not fulfilled, we dok = k + 1 and goto 2.).

Numerical Methods to ODEs

For the ODE solvers we apply the following methods.

We use the implicit trapezoidal rule

0

1 1
2

1
2

1
2

1
2

(42)

Further we use the following implicit Runge-Kutta methods:

Lobatto IIIA

0 0 0 0

1
2

5
24

1
3

− 1
24

1 1
6

2
3

−1
6

1
6

2
3

−1
6

(43)

Remark 3 We can also apply integration methods for the right hand side.
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3.6 Discretization of the source-terms

The source terms are part of the convection-diffusion equations and are given as follows:

∂tci(x, t) − v · ∇ci + ∇D∇ci = qi(x, t) , (44)

wherei = 1, . . . , m, v is the velocity,D is the diffusion tensor andqi(x, t) are the source

functions, which can be pointwise, linear in the domain.

The pointwise sources are given as :

qi(t) =











qs,i

T
t ≤ T,

0 t > T,
,with

∫

T

qi(t)dt = qs,i, (45)

whereqs,i is the concentration of speciesi at source pointxsource,i ∈ Ω over the whole time-

interval.

The line and area sources are given as :

qi(x, t) =











qs,i

T |Ωsource,i|
, t ≤ T andx ∈ Ωsource,i,

0, t > T,
, (46)

with
∫

Ωsource,i

∫

T

qi(x, t)dtdx = qs,i,

whereqs,i is the source concentration of speciesi at the line or area of the source over the whole

time-interval.

For the Finite volume discretization we have to compute :

∫

Ωsource,i,j

qi(x, t) dx =

∫

Γsource,i,j

n · (vci −D∇ci) dγ , (47)
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whereΓsource,i,j is the boundary of the finite-volume cellΩsource,i,j which is a source area. We

have∪jΩsource,i,j = Ωsource,i wherej ∈ Isource, whereIsource is the set of the finite-volume cells

that includes the area of the source.

The right hand side of (47) of is also called the flux of the sources, see (Frolkovič 2002b).

3.7 Solver method for the sources

The following algorithm is based on the iteration with additionally sequential splitting methods,

see (Farago I 2005), that can be done parallel, while using multiple sources, see (Tai 1992).

On the time interval[tn, tn+1] we solve the following problems :

∂C(t)

∂t
= AC(t) + BC(t) +

m
∑

j=1

Qj(t) ,with C(tn) = Cn (48)

whereq1, . . . , qm are the multiple sources andC = (c, cim)t consist of the mobile and immobile

concentrations.Qj = (qj , qj,im)t is a source term of mobile and immobile source concentrations

with j = 1, . . . , m. Further the operatorA consists of the spatial discretized parts, where

operatorB consists of the reaction and mobile-immobile parts of the full equation (15) and

(16). Both parts can be computed independently.

We propose the following parallel scheme :

We computem steps in parallel, forj = 1, . . . , m we compute in a parallel way:

∂Cj(t)

∂t
= ACj(t) +Qj(t) ,with Cj(t

n) = Cn
j (49)

and have the summarizing step :

∂Cm+1(t)

∂t
= BCm+1(t) ,with Cm+1(t

n) =

m
∑

j=1

Cn+1
j (50)
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It we apply linear finite volume methods, we obtain for the one-dimensional problems a con-

vergence order ofO(τ + h2).

The proof could be found in (Tai 1992).

4 EXPERIMENTS FOR THE MULTIPLE PHASE MODEL

In the following subsections, we present our experiments based on the mobile, immobile and

adsorbed gaseous phases.

We contribute ideas to obtain an optimal layer-deposition,which is based on the PE-CVD pro-

cess, while different additional phases are considered, e.g. plasma and precursor media.

The main contributions are an optimal collection of point sources, line sources or moving

sources to cover the deposition area, with respect to the remainder concentration in the im-

mobile and adsorbed phases.

We simulate the deposition process with our boundary value solver algorithms and could deal

with many different conditions, that might be impossible for physical experiments. Such simu-

lation results may benefit the physical experiment and give new ideas to optimize such deposi-

tion problems of a complicate physical prosces.

The next experiments show the deposition rates for different sources and their optimal positions

in the apparatus. We concentrate on different exchange rates for the immobile and adsorbed

phases, such concentrations are lost in the deposition process and they are very important to

simulate.

4.1 Experiments with adsorbed rateα = 4 10−14 and immobile rate g = 8 10−14”

The exchange in the following experiments between the mobile and immobile concentrations is

very low, it is aboutg = 8 10−14,we assume less activities in the plasma environment. Further

the exchange between the mobile and adsorbed mobile concentrations is also very low it is

aboutα = 4 10−14, also the exchange rates between the immobile and adsorbed immobile

concentration is the same as in the mobile and adsorbed mobile phases. In this part we will
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make some experiments.

4.1.1 Point Sources

In the first experiment we will take just one point source withshort time interval of time steps

equal to 25, and with long time interval of time steps equal to100. In a next experiment, we

apply moving sources. Such different combination of sources allow to control the deposition

area.

Here, we apply one point source at the position (50,20). The number of time steps is25.

In Figure 4, we present the concentration of the one point source with short time interval.
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time (in ns): 650000000

C (mobile concentration)

C (immobile concentration)

C (adsorpt-mobile concentr.)

C (adsorpt-immobile concentr.)

time (in ns): 1150000000

C (mobile concentration)

C (immobile concentration)

C (adsorpt-mobile concentr.)

C (adsorpt-immobile concentr.)

Figure 4: Simulation of one point source with immobile,mobile,adsorbed-mobile and adsorbed-

immobile phases,the number of time-steps is 25.

In Figure 5, we present the deposition rates of the immobile concentration with point source,the

number of time-steps is 25.
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Figure 5: Deposition rates in case of immobile concentration and one point source,number of

time-steps is 25.

In Figure 6, we present the deposition rates of the mobile concentration with one point source,

we apply 25 time steps.
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Figure 6: Deposition rates in case of mobile concentration and one point source, number of

time-steps is 25.

In Figure 7, we show the deposition rates of the adsorpted-immobile concentration and one

point source, we apply 25 time steps.
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Figure 7: Deposition rates in case of adsorpted-immobile concentration and one point source,

with number of time-steps equal to 25.

In Figure 8, we show the deposition rates of the adsorpted-mobile concentration and one point

source, with number of time-steps equal to 25.
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Figure 8: Deposition rates in case of adsorpted-mobile concentration and one point source, with

number of time-steps equal to 25.

Remark 4 We simulate in the first experiment the lost of concentrationin the immobile and

adsorpted phases with one point mobile source. Based on the low exchange rates for the immo-
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bile and adsorpted phases, we can see that the mobile concentration deposits without any lost

of its concentration, the lost concentration is at least ander 0,000166 percent, and without any

problems. next experiments have to be done to see that also multiple sources will not inflect the

deposition rates. Also higher exchange rates have to be doneto see such influences.

4.1.2 Moving Sources

In previus experiments see (Geiser and Arab 2008) we recieved best results in combining be-

tween point and line sources,and we use moving sources. In this experiment we will take 11

point sources at the positions Y =20,21,22,23,24,25,26,27,28,29,30 and these sources are mov-

ing in X direction in step equal to 15, the consintration hasevalue in each step equal to 1, X

moves from50 → 35 → 20 → 35 → 50 → 65 → 80 → 65 → 50, we can switch these sources

on and off. we gain moving soueces in X direction with∆X = 15. Concentrations in each step

equal to 1 with short time.

In Figure 9, we present the experiment with 11 moving sourcesat the positions

Y =20,21,22,23,24,25,26,27,28,29,30 and these sources are moving in X direction in step equal

to 15. The concentration is given value in each step with 1,X moves from50 → 35 → 20 →

35 → 50 → 65 → 80 → 65 → 50, with number of timestep equal to 25.
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time (in ns): 650000000

C (mobile concentration)

C (immobile concentration)

C (adsorpt-mobile concentr.)

C (adsorpt-immobile concentr.)

time (in ns): 1150000000

C (mobile concentration)

C (immobile concentration)

C (adsorpt-mobile concentr.)

C (adsorpt-immobile concentr.)

Figure 9: Immobile,mobile,adsorpted-mobile and adsorpted-immobile case of 11 moving

sources moving in X direction in step equal to 15, X moves from50 → 35 → 20 → 35 →

50 → 65 → 80 → 65 → 50, with number of timestep equal to 25.

In Figure 10, we present the deposition rate of immobile concentration of 11 moving sources
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moving in X direction in step equal to 15,X moves from50 → 35 → 20 → 35 → 50 → 65 →

80 → 65 → 50,with number of time steps equal to 25.
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Figure 10: Deposition rates in case of immobile concentration of 11 moving sources moving in

X direction in step equal to 15,X moves from50 → 35 → 20 → 35 → 50 → 65 → 80 →

65 → 50,with number of time step equal to 25.

In Figure 11, we present the deposition rate of mobile concentartion of 11 moving sources

moving in X direction in step equal to 15,X moves from50 → 35 → 20 → 35 → 50 → 65 →

80 → 65 → 50,with number of time steps equal to 25.
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Figure 11: Deposition rates in case of mobile concentrationof 11 moving sources moving in X

direction in step equal to 15,X moves from50 → 35 → 20 → 35 → 50 → 65 → 80 → 65 →

50, with number of time steps equal to 25.

In Figure 12, we present the deposition rate of adsorpted-immobile concentration of 11 moving

sources moving in X direction in step equal to 15,X moves from50 → 35 → 20 → 35 → 50 →

65 → 80 → 65 → 50,with number of time steps equal to 25.
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Figure 12: Deposition rates in case of adsorpted-immobile concentration of 11 moving sources

moving in X direction in step equal to 15,X moves from50 → 35 → 20 → 35 → 50 → 65 →

80 → 65 → 50,with number of time step equal to 25.

In Figure 13, we present the deposition rate of adsorpted-mobile concentartion of 11 moving

sources moving in X direction in step equal to 15,X moves from50 → 35 → 20 → 35 → 50 →

65 → 80 → 65 → 50,with number of time steps equal to 25.
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Figure 13: Deposition rates in case of adsorpted-mobile concentration of 11 moving sources

moving in X direction in step equal to 15, X moves from50 → 35 → 20 → 35 → 50 → 65 →

80 → 65 → 50, with number of time steps equal to 25.

Remark 5 With moving sources we gain improved deposition rates, alsothediscussion in see

(Geiser and Arab 2008). Nevertheless the remaining concentration in the immobile and ad-

sorpted phases are important. In figure 13 and 10 we have at least a maximum of 18000[mol];

in each phase, but in percentage we lost only 0.00018 percentconcentration. Du to this fact the

higher deposition rates have at least the same percentage oflost concentration. Here moving

sources have also the benefit of homogenized deposition rates.

4.2 Experiments with adsorbed rateα = 4 10−14, immobile rate g = 8 10−14

We change to deal with high exchange rates between the mobileand immobile gas concentra-

tion. Here we assume a high active plasma environment that influence the gaseous flow and

retarded the concentration in the mobile phase. Such an influence can effect the deposition

process . In this next experiments, we simulate the high reactive plasma influence with point

sources.

We apply one point at (50,20) source with long time behaviourover 100 time steps. Such

experiments can verify the optimum deposition area with different exchange rates.
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In Figure 14, we present the concentration of the one point source with long time behaviour for

all four phases, at different time points.

time (in ns): 2400000000

C (mobile concentration)

C (immobile concentration)

C (adsorpt-mobile concentr.)

C (adsorpt-immobile concentr.)

time (in ns): 4900000000

C (mobile concentration)

C (immobile concentration)

C (adsorpt-mobile concentr.)

C (adsorpt-immobile concentr.)

Figure 14: One point source,with immobile, mobile, immobile adsorpted and mobile adsorpted

phases,the number of time-steps is 100.
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In Figure 15, we show the deposition rates of the immobile concentration with one point source,

number of time-steps is 100.
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Figure 15: Deposition rates in case of immobile concentration and one point source, with num-

ber of time-steps equal to 100.

In Figure 16, we show the deposition rates of the mobile concentration and one point source,

with number of time-steps equal to 100.
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Figure 16: Deposition rates in case of mobile concentrationand one point source, with number

of time-steps equal to 100.
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In Figure 17, we show the deposition rates of the adsorpted-immobile concentration and one

point source, with number of time-steps equal to 100.
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Figure 17: Deposition rates in case of adsorpted-immobile concentration and one point source,

with number of time-steps equal to 100.

In Figure 18, we show the deposition rates of the adsorpted-mobile concentration and one point

source, with number of time-steps equal to 100.
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Figure 18: Deposition rates in case of adsorpted-mobile concentration and one point source,

with number of time-steps equal to 100.
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Remark 6 The deposition rates reflect the high exchange rates of the mobile adsorpted phase.

By the way the very lost exchange rates did not influence the deposition rates of the mobile

concentration. Because of the fast exchange, the retardation in the adsorpted-mobile phase is

not strong enough to prohibit to readsorpt to the mobile phase. At least high exchange rate do

not influence the deposition processes.

Remark 7 We additionaly also did experiments with low exchange ratesof adsorpted and mo-

bile concentration and high exchange rates of mobile and immobile concentration. At least the

results are equal to our results.

4.3 Experiments with adsorbed rateα = 4 10−8, immobile rate g = 8 10−8

The next experimnts deal with high exchange rates between the mobile and immobile gas con-

centration ,and also high exchange rates between the adsorpted and mobile/immobile gas con-

centration.

Here we assume a high reactive plasma environment and also a high reactive process gasenvi-

ronment, both processes can influence the flow of the mobile gas phases. To understand delecate

process we simulate with various sources and measser the deopsition rates of the layer surface.

Here we concentrate on moving sources, because of their benefits to the homogeneous deposi-

tion rates, see (Geiser and Arab 2008).

To understand the exchange behaviour in the phases, we applyour best deposition experiment

with moving sources.In this part we do one experimnt ,and apply 11 moving sources at the

positions Y =20,21,22,23,24,25,26,27,28,29,30 and thesesources are moving in X direction in

steps equal to 15, the concentration isequal in each step to 1, X moves from50 → 35 → 20 →

35 → 50 → 65 → 80 → 65 → 50, with long time (The number of time steps is 100).

In Figure 19, we present an experiment with 11 moving sourcesat the positions

Y =20,21,22,23,24,25,26,27,28,29,30 and these sources are moving in X direction in step equal

to 15. The concentration is equal to 1 in each step, X moves from 50 → 35 → 20 → 35 →

50 → 65 → 80 → 65 → 50, with number of timestep equal to 100.
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time (in ns): 2400000000

C (mobile concentration)

C (immobile concentration)

C (adsorpt-mobile concentr.)

C (adsorpt-immobile concentr.)

time (in ns): 4900000000

C (mobile concentration)

C (immobile concentration)

C (adsorpt-mobile concentr.)

C (adsorpt-immobile concentr.)

Figure 19: Immobile,mobile,adsorpted-mobile and adsorpted-immobile case of 11 moving

sources moving in X direction in step equal to 15, X moves from50 → 35 → 20 → 35 →

50 → 65 → 80 → 65 → 50, with number of timestep equal to 100.

In Figure 20, we present the deposition rate of immobile concenration of 11 moving sources
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moving in X direction in step equal to 15,X moves from50 → 35 → 20 → 35 → 50 → 65 →

80 → 65 → 50,with number of timestep equal to 100.
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Figure 20: Deposition rates in case of immobile concentration of 11 moving sources moving in

X direction in step equal to 15,X moves from50 → 35 → 20 → 35 → 50 → 65 → 80 →

65 → 50,with number of timestep equal to 100.

In Figure 21, we present the deposition rate of mobile concentration of 11 moving sources

moving in X direction in step equal to 15,X moves from50 → 35 → 20 → 35 → 50 → 65 →

80 → 65 → 50,with number of timestep equal to 100.
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Figure 21: Deposition rates in case of mobile concentrationof 11 moving sources moving in X

direction in step equal to 15, X moves from50 → 35 → 20 → 35 → 50 → 65 → 80 → 65 →

50,with number of timestep equal to 100.

.

In Figure 22, we present the deposition rate of adsorpted-immobile concenration of 11 moving

sources moving in X direction in step equal to 15,X moves from50 → 35 → 20 → 35 → 50 →

65 → 80 → 65 → 50,with number of timestep equal to 100.
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Figure 22: Deposition rates in case of adsorpted-immobile concentration of 11 moving sources

moving in X direction in step equal to 15,X moves from50 → 35 → 20 → 35 → 50 → 65 →

80 → 65 → 50, with number of timestep equal to 100.

In Figure 23, we present the deposition rate of adsorpted-mobile concentration of 11 moving

sources moving in X direction in step equal to 15,X moves from50 → 35 → 20 → 35 → 50 →

65 → 80 → 65 → 50,with number of timestep equal to 100.
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Figure 23: Deposition rates in case of adsorpted-mobile concentration of 11 moving sources

moving in X direction in step equal to 15, X moves from50 → 35 → 20 → 35 → 50 → 65 →

80 → 65 → 50,with number of timestep equal to 100.

.

Remark 8 Respecting high exchange rates for all phases , means an influence to the gaseous

flow of our deposition gas.Nevertheless the lost exchange process measures arereversible, that

means that adsorpted and immobile gas concentartion can readsorpted to the mobile phase as

we see in figures 20 - 23, that all concentration are nearly equal, that means the influence to the

mobile phase is not so important. We obtain at least the same deposition rates as for the nun

influenced gaseus flow. By the way minimal lost of concentration can be asuumed but this will

not influence the deposition processes.

5 CONCLUSIONS AND DISCUSSIONS

We have presented a continuous model for the multiple phases, we assumed gaseous behaviour

with exchange rates to adsorpted and immobile phases at verylow pressere and low temperature

while dealing with catalyst processes, e.g. plasma environment and precursor gases. We have

to taken into acount the remaining gas concentrations in each processes.Numerical experiments
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presented the less influence of such catalyst processes, while fast processes did not acure in the

time scales, and slow processes did not prohibit an important amount of the gas concentration.

In future we are interested on analysing such fast processesdue the very small time scales, e.g

in a micro modell (Molecular dynamics model).
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