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ABSTRACT

We are motivated to model chemical vapor deposition for thetaipolar plates and optimiza-
tion to deposit a homogeneous layer. Moreover a constraitiet deposition process is a very
low pressure (nearly vacuum) and a low temperature (abdut30These constraints need to
have a catalyst process, here in our apparatus we deal widisim@ source and precursor gases,
see (Dobkin and Zuraw 2003). Such a plasma have the advatageelerate the vaporation
process, see (Lieberman and Lichtenberg 2005), and to thengolid materials to a gaseous
phase. Nevertheless there are also some drawbacks, so¢tatiation and adsorption process

can hinder the direct transport to the target, see (Liebem@mna Lichtenberg 2005).

Here, we present a mesoscopic model, which reflects thedetitan, transport and reaction
of the gaseous species through a homogeneous media in thbehaThe models include

immobile gaseous phases, where the transport of the madsleogis species are hindered. Ki-
netically controlled adsorption are included to taken axtoount the multiple species of heavier
and lighter species. Such ideas are also considered in fmanical models, see (Farooq and
Ruthven 1991). Further, the models include the consemvationass and the porous media,
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are in accordance with the Darcy's law, which is an assumpgtiothe flow processes of the
gaseous phase. The transport through the instationaryoamed plasma field is treated as a
diffusion-dominated flow with mobile and immobile zonesg $&obbert and Ringhofer 1998)
and (Lieberman and Lichtenberg 2005), where the metalposiéand the gas chamber, looking
like a porous media, (Rouch 2006; Cao and Burggraaf 1993)h&/e a continuity condition
and an overall balance, where we detailed model the tempexadlopment of sorption pro-
cesses. For the kinetics we apply first order processes #adtieg the different time-scales of
the multi gaseous species. We choose porous ceramic meseskaad gas catalysts like Argon
(Ar), (Cao and Burggraaf 1993), additionally we assume ym&mr gases like Chlor (Cl) and
apply our experience in simulating gaseous flow and moddfiagpenetration of such porous

media, (Jin and Wang 2002).

Numerical methods are developed to solve such multi-saadenaulti-phase models and to
obtain qualitative results of the delicate multi physicalgesses in the gas chamber. To solve
such evolution models, we combine discretization methodgpértial differential and ordinary
differential equations. Sequentially treatment of theiphdifferential equations and ordinary
differential equations allow to discretize with Finite uate methods for the spatial derivatives
of the transport equations, while Runge-Kutta methodssed to discretize the time derivatives
and the ordinary parts of the multi-phase model. With vagisaurce terms we control the
required concentration at the final deposition area. Dafiekinetically parameters allow to
simulate the different time scale of the heavier and liglg@seous species. We present an
expert system based on a multi phase model and embeddeé smartarget controls to present
an accurate computational models for the transport of gasesurations to a plasma media.
For such efficient choose of models an discussion of phygicatrect numerical methods are
important and simulate an optimal homogeneous deposititthredarget with control of the rest
gaseous concentration in the plasma media. The resultssmesded by means of physical

experiments to give a valid model for the assumed growth.

Keywords: Chemical vapor deposition, multi-scale problem, muliape problem, discretiza-

tion methods, multi-species problem.
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1 INTRODUCTION

We motivate our study by simulating a growth of a thin film ticah be done by PE-CVD
(plasma enhanced chemical vapor deposition) processed,isberman and Lichtenberg 2005)
and (Ohring 2002). Further methods based on ionized plasnaeposition methods are PVD
(physical vapor deposition) processes. If we only cone¢aton the macroscopic transport
of gaseous species, we can also lightly modify our modelssandlate also PVD processes,
taken into account clusters of heavier and lighter spesies,(Senega and Brinkmann 2007).
A gas exposed to an electric field in low pressure conditignss Torr) results in a non-
equilibrium plasma, see (Chapman 1980) and (Morosoff 1,29@h ionized media, known as
"cold” plasma or glow discharges, are powerful surface-ification tools in Material Science
and Technology. Low-pressure plasmas allow to modify timfasa chemistry and properties of
materials compatible with low-medium vacuum, through a@\H> process, see applications

(Favia and D’Agostino 2002) and (Morosoff 1990).

Due to control this PE-CVD process has been interested atupiog high-temperature films,

see (Ohring 2002).

While having a powerful deposition process in low-tempaém@iand low-pressure regimes, we
have also taken into account some drawbacks of such a pradessh is driven with ionized

plasma. Here, we deal with multicomponent problems with/tegaand lighter species. Such
conditions have consequences in slower (strongly adspdoéaister traveling (waker adsorbed)

species.

To model the gaseous transport of our deposition procesa ilonized plasma, we present
a multi-phase and multi-species model and deal with the nlyidg plasma as a media with
mobile and immobile phases or groups, see (Favia and D’Agn2002) and (Lieberman and
Lichtenberg 2005). The species of the gaseous transpoMArephase materials, see (Bar-
soum and El-Raghy 1996), (Du and Aldinger 2000) and (Langk Schaaf 2007), and we

concentrate off’i3SiCs molecules, so we havgi, Si andC' in the gas phases.
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For the underlying multiple phase motivation, we apply a foliase model, that was developed
for fluid dynamical problems, see (Fein 2004) and (FarooqRuitiven 1991). We have taken
into account the extension to a gaseous transport moddk déaling with a low-temperature
and low-pressure environment in an ionized plasma, see@faeand Brinkmann 2007). For the
mobile phase we consider a transport models that are ret@tectsoscopic scales, (Gobbert
and Ringhofer 1998), with respect to flows close to the wafeiase. Such a wafer surface can

be modeled as a porous media, (Rouch 2006).

By assuming a ionized plasma that activate the particlespran to the deposition layer, PE-
CVD process can be assumed as a homogeneous media, whilegdedh ionized media
and/or gas catalysts (Argon, Xenon). Such media itself hailsnand immobile phases in
which the gaseous particles are transported or retardedSsedyuk and Gubanski 2005). Fur-
ther we taken into account the different precursor gasgs &laneSiH,), which have addi-
tionally sorbed processes to the deposition gagesyi, '), see an experimental application

(Lemieux and Zhang 2008).

We assume to model the ionized plasma as an underlying medme ichamber with mobile
and immobile phases. Here transport in the plasma with gasgmecies contain of mobile and
immobile concentrations, (Lieberman and Lichtenberg 2086r such a homogenous plasma,

we applied our expertise in modeling multiphase transpodugh a porous medium.

To amplify the modeling of the gaseous flow to the gas chamibechwis filled with ionized
plasma, we deal with the so-called far-field model based ar@ys media. Here the plasma can
be modeled as a continuous flow (Gobbert and Ringhofer 1898&)has mobile and immobile

phases, see (Favia and D’Agostino 2002).

We assume a near vacuum and a diffusion-dominated procesged from the Knudsen dif-
fusion, (Cao and Burggraaf 1993). In such viscous flow regime deal with small Knudsen

Numbers and a pressure of nearly zero.

In Figure 1, the gas chamber of the CVD apparatus is shownghwisidone with a porous

media.
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Figure 1. Gas chamber of the CVD apparatus.

In Figure 2, the mobile and immobile phases of the gas corat#m are shown in the macro-

scopic scale of the porous media.
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Figure 2: Mobile and immobile phase.

In Figure 3, the mobile and adsorbed phases of the gas ceoatentare shown in the macro-

scopic scale of the porous media.
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Figure 3: Mobile-adsorbed phase and immobile-adsorbesgpha
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To solve the model, we concentrate on numerical solvers madatdization methods, that taken
into account the individual time- and spatial scales of eamtation part. To decompose the
time and spatial scales with the different discretizaticethnds are to obtain efficiency in the

solver processes.

The immobile, adsorbed and reaction terms can be treatbdasgit Runge-Kutta solvers, where
the mobile terms are convection-diffusion equations aedsalved with splitting semi-implicit

finite volume methods and characteristic methods, (Ge3@8 )

The numerical results discuss the applications in the prbolu of so-called metallic bipolar

plates. Here we discuss analytical and numerical models.

The paper is outlined as follows.

In Section 2, we present our mathematical model and a pesstiliced model for further ap-
proximations. In Section 3, we discuss the time- and sp&matization methods with respect
to the efficiency and accuracy. The numerical experimertgaen in Section 4. In Section 5,

we briefly summarize our results.

2 MATHEMATICAL MODEL

In the following, the models are discussed in terms of trartgproblem on a macro- or meso-

scopic scale, multiphase model with sorbed and immobilezon

1. Transport model (Gobbert and Ringhofer 1998) (mesosmaile);

2. Multiphase model (Lemieux and Zhang 2008), (Fein 200#)efiic sorption, mobile-

immoble zones).

3. Multicomponent model (Senega and Brinkmann 2007) @#gheavier species).

The modeling is considered by a Knudsen Number, which isdhtie of the mean free path

over the typical domain sizé. For small Knudsen Numbersn ~ 0.01 — 1.0 we deal with



mass conservation, whereas for large Knudsen Numiers> 1.0 we deal with a Boltzmann

equation (Ohring 2002).

We concentrate on a mesoscopic model and assume a contirawnarfid that the fluid equa-
tions can be treated with a Navier-Stokes or especially wittonvection-diffusion-reaction

equation, see:

%c+VF—Rg:0, in Q x [0,1] 1)
F=vc— DVe,

c(x,t) = co(x), onQ, (2)
c(x,t) = ci(x, t), on O x [0,¢], (3)

wherec is the molar concentration arfd the flux of the speciesv is the flux velocity through
the chamber and porous substrate (Rouch 20D63.the diffusion matrix and, is the reaction
term. The initial value is given ag and we assume a Dirichlet boundary with the function

c1(z, t) sufficiently smooth.

The diffusion in the modified CVD process is given by the Krerddiffusion, (Cao and Burggraaf
1993). We consider the overall pressure in the react®d(isPa and the substrate temperature

is about600 — 900 K. The pore size in the porous substrat&is.m.

The diffusion is described as:

2€lL VT
= 4
SRT 4)

wheree is the porosityu is the shape factor of the Knudsen diffusiens the average pore
radius,R andT are the gas constant and temperature, respectively; enthe mean molecular

speed, given by:

V=4 — (5)



wherelV is the molar mass of the diffusive gas.

For the homogeneous reactions, we consider during the C@Eeps a constant reaction.$x,

Ti andC given as:

3Si + Ti + 2C — SiyTiC, (6)

whereSisTiCs is a MAX-phase material, which deposits at the target.

For simplification, we do not consider the intermediate tieaavith the precursor gases, (Lieber-

man and Lichtenberg 2005).

The reaction rate is then given by:

[384)M [Ti)N [201°

A= kr ; ; y
[S’LgTZCQ]L

(7)

wherek, is the apparent reaction constabt, M, N, O are the reaction orders of the reactants.

The velocity in the homogeneous substrate is modeled by @upanedium (Bear 1972; Jo-
hannsen 1999). We have assumed a stationary medium, e-gpmined plasma or non-reactive
precursor gas. Further the pressure can be assumed withathedV distribution as (Lieberman

and Lichtenberg 2005) :

p = pbT, (8)

whereb is the Boltzmann’s constant afidthe temperature.

We have modeled the velocity by partial differential eqoiasi. Here we assume the gaseous

flow is a nearly liquid flow through the porous medium. We cagréifiore derive by Darcy’s



law:

v=—2(Vp—pg). ®)
W

wherew is the velocity of the fluidk is the permeability tensoy, is the dynamic viscosity; is

the pressure; is the vector of the gravity andis the density of the fluid.

We use the continuum equation of the particle density andiolhe equation of the system,

which is given as our flow equation:

d(¢p) +V - (pv) = Q, (10)

wherep is the unknown particle density,is the effective porosity an@ is the source-term of

the fluid. We assume a stationary fluid and consider only demee-free velocity fields, i.e.
V-v(z)=0, xe€. (11)

The boundary conditions for the flow equation are given as:

p=p(t,y), t>0, ~€dQ, (12)

n-v=ms(t,y), t>0, ~e€od, (13)

wheren is the normal unit vector with respectd?, where we assume that the pressyrand

flow concentrationn ; are prescribed by Dirichlet boundary conditions (Johanii$99).

From the stationary fluid, we assume that the conservatiamofientum for velocity is given
(Glowinski 2003; Johannsen 1999). So we can neglect the etatipn of the momentum for

the velocity.

For the kinetically controlled sorption, we apply the Hersgtherms as a simple incorporated
temporal development of our sorption processes.
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The mass transfer rates of the kinetic sorptions are given as

$OiC g = KalCi' = Claa), (14)

wherek, is the exchange ratey,, is the adsorbed concentration to the mobile concentration

L
ciu

Remark 1 For the flow through the gas chamber, for which we assume a gensmus medium
and non-reactive plasma, we have considered a constant Htavdcek and Orlicki 1995). A
further simplification is given by the very small porous stdie, for which we can assume the

underlying velocity in a first approximation as constant (@g 2002).

Remark 2 For an instationary medium and reactive or ionized plasme,have to be taken
into account the relations of the electrons in the thermalildoyium. Such spatially variation
can be considered by modeling the electron drift. Such nuglef the ionized plasma is done

with the Boltzmanns relation, (Lieberman and Lichtenbe€§3).
2.1 Transport model of mobile immobile and adsorbed zones

In the following we present the multiphase transport model.

<b8tcf + V- (VCiL — De(i)VciL) = g(—ciL + cZLZm) + /{:a(—ciL + cﬁad

—)\i,ﬂ?CiL + Z )\i,ksﬁCﬁJer” (15)

k=k(i)

¢atcil:im = g(ch - Czl:zm) + ka(cz‘[:im,ad - Czl:zm) - )‘Z,Zgbczl,/zm + Z )‘i,kQScé,im + Q;Zm? (16)
k=k (i)

10



¢8tCiL,ad = k(e — Cz'L,ad) - )\i,i¢CiL,ad + Z )\i,kébcé,ad + Q;ada 17)

k=k(i)
(b&tcil,/im,ad = kOf(cil:im - cil:im,ad) - )\iyi(bcil:im,ad + Z )\i,k(bcé,im,ad + Qi,i;n,adu (18)
k=k(i)
¢:  effective porosity—|,
ck . concentration of théth gaseous species in the plasma chamber

concentration of théth gaseous species in the immobile zones of the plasma chambe
phasegmol /em?],

v :  velocity in the plasma chambérm /nsec]],
D9 . element-specific diffusions-dispersions tenget?® /nsec]],

Aii : decay constant of thgh speciegl/nsec||,

Q::  source term of théth speciegmol/(cm®nsec)],
g: exchange rate between the mobile and immobile concemrgtiasec],
ke : exchange rate between the mobile and adsorbed concentoatimmobile and

immobile adsorbed concentration (kinitic controlled gmnp) [1/nsec],

withi =1,..., M andM denotes the number of components.

The parameters in equation (15) are further described,Ise€¢@eiser 2003).

The effective porosity is denoted lgyand declares the portion of the porosities of the aquifer,
that is filled with plasma, and we assume a nearly fluid phake.tfansport term is indicated
by the Darcy velocity, that presents the flow-direction and the absolute valubeptasma
flux. The velocity field is divergence-free. The decay comistd theith species is denoted by

Ai. Thereby doeg (i) denote the indices of the other species.

In the following we describe the time- and space-discrétmamethods.
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3 DISCRETIZATION AND SOLVER METHODS

We distinguish between mobile and immobile phases. Herarbleile phase are parabolic
partial differential equations and the immobile phasesoadiary differential equations. So
for the space-discretization of the PDE’s we apply finitddinoe methods as mass conserved
discretization schemes and for the time-discretizatich@PDE’s and ODE’s we apply Runge-
Kutta methods. To accelerate the solver process, we combimerical and analytical parts of

the solutions.

In the next sections we introduce the notation for the sph®eretization and describe the

discretization-methods for each equation-part.

3.1 Discretization method of the convection equation

We deal with the following convection equation

ORc—v-Ve=0, (29)

with the simple boundary conditian= 0 for the inflow and outflow boundary and the initial
valuesc(z;,0) = ¢}(x). We use piecewise constant discretization method with fiveind

discretization done in (Frolkovi¢ and Geiser 2003) and get

V;Rd* = VR —1" g vk ¢ +T" E R Uk

keout(y) kein(j)
V; Rt = cj(RV; —1"v) + 7" Z Cr Ukj s (20)

kein(j)

The explicit time discretization has to fulfill the discretenimum-maximum property (Frol-

kovi¢ and Geiser 2003), and we get the following restricfior the time steps

T = , T < 'minITj . (21)
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To obtain improved spatial discretization methods andyalgwber time-steps, we introduce a

reconstruction with linear polynoms as a higher test-fimmcin the next subsection.

3.2 Higher oder discretization method for the convection egation

The reconstruction is based on the Godunovs method and apipiyter function that fulfilled
the local min-max property. The method is explained in theepgFrolkoviC and Geiser 2003)

and we discuss the algorithm in the following section.
The linear polynomes are reconstructed by the elementgvastient and are given as

u"(x;) =cf (22)
E

n 1 n
Vu'ly, = v Z/Tm Vcdr (23)

e=1
with j=1,...,1.

The piecewise linear functions are denoted as

ujy, = ¢ + P Vu'ly, (x5 — x5) (24)

with j=1,...,1,

wherey; € (0, 1) is the limiter function and based on this, the equation (RIfji the discrete

minimum maximum property, as described in (FrolkoviC aredsér 2003).

We also use the limitation of the flux to get non overshootimigen transporting the mass and

receive the maximal time-step.

We get the correct restriction due to the flux limiter and obthe following concentration as
~n n T/ n n
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Using all the previous schemes the discretization for tteorseé order is written in the dis-

cretized form

RVt = RV;c} —1" Z U vje + 7" Z a5y - (26)

J
keout(j) lein(j)

Based on this discretization method we can embed the reaetjoation as a local effect, de-

scribed in the following subsection.

3.3 Discretization method for the convection-reaction egation based on embedded one

dimensional analytical solutions

We apply Godunovs method for the discretization method(Lafveque 2002), and extend the
formulation with analytical solution of convection-re@met equations. We reduce the multi-
dimensional equation to one dimensional equations ane s@eh equation exactly. The one-
dimensional solution is multiplied with the underlying uate and we get the mass-formulation.
The one-dimensional mass is embedded into the multi-dimeasmass-formulation and we

obtain the discretization of the multi-dimensional eqoiati

The algorithm is given in the following manner

O+ V-vieg=—=Nc+ N_1¢_1,

withli=1,...,m.

The velocity vectow is divided by R;. The initial conditions are given by} = ¢,(z,0) , else

& =0forl=2,...,mand the boundary conditions are trivigl= 0 for [ = 1,..., m.

We first calculate the maximal time step for cgbind concentrationwith the use of the total

outflow fluxes

_ Vi R _
Ti,j = s l/j = 'Ujk: .

Vi
keout(j)
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We get the restricted time step with the local time steps li$ ead their components

We calculate the analytical solution of the mass, cf. (G26€3) and we get

n n
mi,jk,out = mi,out(a'a ba T V1455 VUi4, R17 ceey Ri7 )\17 CII) )\Z) )

n _ n n
mi’jwest = mm (7’ ,1)17]', P 7'Ui,jaR17 .. ~7Ria)\17 . -7)\1') s

wherea = V;R;(c} ), — ¢ ) » b = ViRic}, andmi; = VRl ;. Furtherc?,, is the concen-

tration at the inflow- and, is the concentration at the outflow-boundary of the gell

The discretization with the embedded analytical mass mutatied by

vV, r
n+1 n Jk lj
My = Myrest = — E o My jk,out T E o My 15,0ut »

keout(j) 7 l€in(j)

where”y’—f is the re-transformation for the total mass ;x ... in the partial mass; j;, . In the
next time-step the mass is givema%‘;’;H =V czjl and in the old time-step it is the rest mass
for the concentration. The proof is done in (Geiser 2003). In the next section wévdem
analytical solution for the benchmark problem, cf. (Higaatd Pigford 1980), (Jury and Roth

1990).

In the next subsection we introduce the discretization efdiffusion-dispersion-equation.

15



3.4 Discretization of the diffusion-dispersion-equation

We discretize the diffusion-dispersion-equation with liwiptime-discretization and finite-volume

method for the following equation
ORc—V-(DVe)=0, (27)

wherec = ¢(z,t) with x € Q andt > 0. The diffusions-dispersions-tensbr = D(z,v) is
given by the Scheidegger-approach, cf. (Scheidegger 1961¢ velocity is given as. The

retardation-factor ig2 > 0.0.

The boundary-values are denotedibyD Ve¢(x,t) = 0, wherex € I'is the boundary’ = 09,

cf. (Frolkovi€ 2002a). The initial conditions are given &, 0) = co(x).

We integrate the equation (27) over space and time and derive

tn+1 tn+1

/Q/t O R(c) dt dx:/ﬂ/tn V - (DVe) dt dz . (28)

The time-integration is done by the backward-Euler methutithe diffusion-dispersion term

is lumped, cf. (Geiser 2003)

J

The equation (29) is discretized over the space with reggaecting the Greens-formula.

J,

J

(R(c™™) — R(c™)) dw = " /Q V- (DVY) da (29)

J

(R(¢™Y) — R(c")) dx = = / Dn-Vet dy (30)
Ly

wherel'; is the boundary of the finite-volume cell;. We use the approximation in space,

confer (Geiser 2003).
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The spatial-integration for (30) is done by the mid-poineraver the finite boundaries and

given as

ViR(T) = ViR(S)) =7 Y 0 Y [T, - D5, Ve (31)
eEA kGAe

where|I', | is the length of the boundary-elemdrit,. The gradients are calculated with the

piecewise finite-element-functiaf), cf. (??) and we obtain

Vet =) gt Ve (xS, - (32)

leAe

We get with the difference-notation for the neighbor-pgiand!, cf. (Frolkovi¢ and De Schep-

per 2001) and get the discretised equation

ViR(c]™) = ViR(c}) = (33)
=3 Y (D T Dy Ve ) (¢ = ),
e€Aj leA°\{j}  keAS
wherej =1,...,m.

3.5 Discretization of the mobile, immobile and adsorbed pas

The full equation is given with a PDE and ODE part, see alsaggu (15), (16), (17) and (18).

We present in the following the discretisation of the molaihel immobile equations, the same

can be done for the adsorbed equations.

Oci = Ac; — Q(Cz‘ - Ci,im) s (34)

atci,im = Q(Ci - szm) ) (35)

17



wherec; is the concentration in the mobile phasg;,, is the concentration in the immobile
phase, withi = 1,...,m. Furtherg is the exchange rate between the mobile and immobile

concentrationA is the matrix given by the spatial discretized operatorfiefequation (15).
The equation system is numerically solved by an iteratinese:

Our algorithm is given as:

Algorithm 1 We divide our time interval, 7] into sub-intervals$t™, t" '], wheren = 0,1,... N,

tO=0andtV =T.
We start withn = 0:

1.) The initial conditions are given withy, 0(t"™!) = ¢;(¢") and ¢; ;0 (t" ™) = ¢ im(t"). We

start withk = 0.

2.) Compute the fix point iteration scheme given as:

Ok = Ack — g(cf — by (36)

2,2Mm

atc?,im - g(cf_l - Cﬁzm) ) (37)

wheref is the iteration index, see (Farago | 2005). We apply RungdeKkmethods as ODE

solvers or simple implicit Euler methods.

3.) The stop criterion for the time intervél, t"*! is given as:

et (") = e (E I < e (38)

ek im (") = ()| < e, (39)

i,0m

where|| - || is the maximum norm over all components of the solution veetois a given error

bound, e.gerr = 107,

18



If equation (38) is fulfilled, we have the result

¢ (t”+1) — Ci,k(tn+1),

Civim (t”+1) = Ciim (tn+1)

If n = N then we stop and are done.

If not, we don = n + 1, & = 0 and apply the initial conditions;, 0(¢t"*1)
Ciimo(E" ) = ¢ im (™).

If equation (38) is not fulfilled, we dbo = k£ + 1 and goto 2.).

Numerical Methods to ODEs
For the ODE solvers we apply the following methods.

We use the implicit trapezoidal rule

N[
N[

N[
N[

Further we use the following implicit Runge-Kutta methods:

Lobatto IIA
00 O O
105 1 _1
2 24 3 24
1 2 1
L1g 53 —%
12 1
6 3 6

Remark 3 We can also apply integration methods for the right hand.side

19
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3.6 Discretization of the source-terms

The source terms are part of the convection-diffusion egustand are given as follows:

Oci(x,t) —v-Ve; + VDV = gi(x,t) , (44)

where: = 1,...,m, v is the velocity,D is the diffusion tensor ang;(z,¢) are the source

functions, which can be pointwise, linear in the domain.

The pointwise sources are given as :

Loop<T,
ai(t) = with / ai(0)dt = g (45)
0 t>T, T

whereg, ; is the concentration of speciésit source point y,..; € €2 over the whole time-

interval.

The line and area sources are given as :

%7 t<T andx € Qsource,i7
qi<x7 t) — source,t Y (46)
t>T,

0,
With/ /qz-(x,t)dtdx = (s,
Qsource,i T

whereg; ; is the source concentration of species the line or area of the source over the whole

time-interval.

For the Finite volume discretization we have to compute :

/ ¢i(z,t) doe = / n-(ve;— DVe) dy, (47)
Qsou'r‘ce,i,j T

source,i,j
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wherel's,,,ce.i.; IS the boundary of the finite-volume cél,,,,,..; ; Which is a source area. We
haveu,;Qsource,ij = Qsource,i Wherej € Isoyrce, Wherely,,, .. is the set of the finite-volume cells

that includes the area of the source.

The right hand side of (47) of is also called the flux of the sear see (Frolkovic 2002b).

3.7 Solver method for the sources

The following algorithm is based on the iteration with aduhally sequential splitting methods,

see (Farago | 2005), that can be done parallel, while usirgptausources, see (Tai 1992).

On the time intervalt™, t"*!] we solve the following problems :

oC(t) - n n
—5 = AC(H) + BO(t) + ZQ] ,with C(t") = C (48)
wheregq,, . . ., q,, are the multiple sources adti= (c, ¢;,,,)* consist of the mobile and immobile

concentrations®); = (g, ¢;.m)" is a source term of mobile and immobile source concentration
with 7 = 1,...,m. Further the operatod consists of the spatial discretized parts, where
operatorB consists of the reaction and mobile-immobile parts of tHedquation (15) and

(16). Both parts can be computed independently.
We propose the following parallel scheme :
We computen steps in parallel, foj = 1,..., m we compute in a parallel way:

901
ot

J

and have the summarizing step :

aC(m-i—l(t)

= BChyr (t) ,With Cpyyy (17 ZC”“ (50)
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It we apply linear finite volume methods, we obtain for the-dimaensional problems a con-

vergence order of (7 + h?).

The proof could be found in (Tai 1992).

4 EXPERIMENTS FOR THE MULTIPLE PHASE MODEL

In the following subsections, we present our experimensetban the mobile, immobile and

adsorbed gaseous phases.

We contribute ideas to obtain an optimal layer-depositramich is based on the PE-CVD pro-

cess, while different additional phases are considergdpéasma and precursor media.

The main contributions are an optimal collection of poinurees, line sources or moving
sources to cover the deposition area, with respect to thainelar concentration in the im-

mobile and adsorbed phases.

We simulate the deposition process with our boundary vadhees algorithms and could deal
with many different conditions, that might be impossible fbysical experiments. Such simu-
lation results may benefit the physical experiment and gewe idleas to optimize such deposi-

tion problems of a complicate physical prosces.

The next experiments show the deposition rates for diftesearces and their optimal positions
in the apparatus. We concentrate on different exchange fateéhe immobile and adsorbed
phases, such concentrations are lost in the depositioregsaand they are very important to

simulate.

4.1 Experiments with adsorbed ratea = 4 10~'* and immobile rate g = 8 10~14”

The exchange in the following experiments between the ra@witl immobile concentrations is
very low, it is abouty = 8 10~14,we assume less activities in the plasma environment. &urth
the exchange between the mobile and adsorbed mobile coatiens is also very low it is
abouta = 4 1074, also the exchange rates between the immobile and adsarbedhile
concentration is the same as in the mobile and adsorbed enplhélses. In this part we will
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make some experiments.

4.1.1 Point Sources

In the first experiment we will take just one point source valttort time interval of time steps
equal to 25, and with long time interval of time steps equal@0. In a next experiment, we
apply moving sources. Such different combination of sagiadeow to control the deposition

area.
Here, we apply one point source at the position (50,20). Tmelrer of time steps i5.

In Figure 4, we present the concentration of the one pointcgowith short time interval.
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C (adsorpt-immobile concentr.) C (adsorpt-immobile concentr.)

C (adsorpt-mobile concentr.) C (adsorpt-mobile concentr.)

C (immobile concentration) C (immobile concentration)

C (mobile concentration) C (mobile concentration)

Py

time (in ns): 650000000 time (in ns): 1150000000

Figure 4: Simulation of one point source with immobile,mMeladsorbed-mobile and adsorbed-

immobile phases,the number of time-steps is 25.

In Figure 5, we present the deposition rates of the immobiteentration with point source,the

number of time-steps is 25.
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Figure 5: Deposition rates in case of immobile concentraéind one point source,number of

time-steps is 25.

In Figure 6, we present the deposition rates of the mobileeotnation with one point source,

we apply 25 time steps.

3.5e+06

Si, Mo, point 100 ——
Si. mo, point 20 0
Si. mo, point 30 0
Si. mo, point 40 0
Si mo, point 50 0
Si. mo. point 60 0
3e+06 Si, mo, point 700 - -o--
Si. mo, point 800 e -
Sirmo, point 90 0 &
2.5e+06 [
2e+06
1.5e+06
1e+06
500000
P B G S o i
o e e e e e eeg g
o 2e+08 40408 6408 8e+08 16409 1.20+09

Figure 6: Deposition rates in case of mobile concentratimh @ne point source, number of

time-steps is 25.

In Figure 7, we show the deposition rates of the adsorptaedehile concentration and one

point source, we apply 25 time steps.
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Figure 7: Deposition rates in case of adsorpted-immobiteentration and one point source,

with number of time-steps equal to 25.

In Figure 8, we show the deposition rates of the adsorptebiienooncentration and one point

source, with number of time-steps equal to 25.
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Figure 8: Deposition rates in case of adsorpted-mobile@atnation and one point source, with

number of time-steps equal to 25.

Remark 4 We simulate in the first experiment the lost of concentraitiotine immobile and

adsorpted phases with one point mobile source. Based onthexchange rates for the immo-
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bile and adsorpted phases, we can see that the mobile coatientdeposits without any lost
of its concentration, the lost concentration is at least@n@ 000166 percent, and without any
problems. next experiments have to be done to see that aliplsnsources will not inflect the

deposition rates. Also higher exchange rates have to be tiosee such influences.

4.1.2 Moving Sources

In previus experiments see (Geiser and Arab 2008) we reatiegst results in combining be-
tween point and line sources,and we use moving sources.id@xperiment we will take 11
point sources at the positions Y =20,21,22,23,24,25,28879,30 and these sources are mov-
ing in X direction in step equal to 15, the consintration heslele in each step equal to 1, X
moves fromb0 — 35 — 20 — 35 — 50 — 65 — 80 — 65 — 50, we can switch these sources
on and off. we gain moving soueces in X direction wXtX’ = 15. Concentrations in each step

equal to 1 with short time.

In Figure 9, we present the experiment with 11 moving souatése positions
Y =20,21,22,23,24,25,26,27,28,29,30 and these sourega@ring in X direction in step equal
to 15. The concentration is given value in each step with 19¢es from50 — 35 — 20 —

35 — 50 — 65 — 80 — 65 — 50, with number of timestep equal to 25.
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C (adsorpt-immobile concentr.) C (adsorpt-immobile concentr.)

C (adsorpt-mobile concentr.) C (adsorpt-mobile concentr.)

C (immobile concentration) C (immobile concentration)

C (mobile concentration) C (mobile concentration)

time (in ns): 650000000 time (in ns): 1150000000

Figure 9: Immobile,mobile,adsorpted-mobile and adsakemobile case of 11 moving
sources moving in X direction in step equal to 15, X moves fidgm— 35 — 20 — 35 —

50 — 65 — 80 — 65 — 50, with number of timestep equal to 25.

In Figure 10, we present the deposition rate of immobile eabt@tion of 11 moving sources
28



moving in X direction in step equal to 15,X moves fr@th — 35 — 20 — 35 — 50 — 65 —
80 — 65 — 50,with number of time steps equal to 25.

18000

16000

14000 |- e
12000 |
*****
10000 |
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4e+08 6e+08 8e+08 1le+09 1.2e+09

Figure 10: Deposition rates in case of immobile concertradif 11 moving sources moving in
X direction in step equal to 15,X moves frofh — 35 — 20 — 35 — 50 — 65 — 80 —

65 — 50,with number of time step equal to 25.

In Figure 11, we present the deposition rate of mobile corargan of 11 moving sources
moving in X direction in step equal to 15,X moves fr@th — 35 — 20 — 35 — 50 — 65 —

80 — 65 — 50,with number of time steps equal to 25.
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Figure 11: Deposition rates in case of mobile concentradfdkl moving sources moving in X
direction in step equal to 15,X moves frdit — 35 — 20 — 35 — 50 — 65 — 80 — 65 —

50, with number of time steps equal to 25.

In Figure 12, we present the deposition rate of adsorptedehile concentration of 11 moving
sources moving in X direction in step equal to 15,X moves fi®m- 35 — 20 — 35 — 50 —

65 — 80 — 65 — 50,with number of time steps equal to 25.
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Figure 12: Deposition rates in case of adsorpted-immobiteentration of 11 moving sources
moving in X direction in step equal to 15,X moves fr@th — 35 — 20 — 35 — 50 — 65 —

80 — 65 — 50,with number of time step equal to 25.

In Figure 13, we present the deposition rate of adsorpteddmooncentartion of 11 moving
sources moving in X direction in step equal to 15,X moves fi®m- 35 — 20 — 35 — 50 —

65 — 80 — 65 — 50,with number of time steps equal to 25.
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Figure 13: Deposition rates in case of adsorpted-mobile@oimation of 11 moving sources
moving in X direction in step equal to 15, X moves fr@ih — 35 — 20 — 35 — 50 — 65 —

80 — 65 — 50, with number of time steps equal to 25.

Remark 5 With moving sources we gain improved deposition rates, thiediscussion in see
(Geiser and Arab 2008). Nevertheless the remaining coraton in the immobile and ad-
sorpted phases are important. In figure 13 and 10 we have at Eeemaximum of 18000[mol];
in each phase, but in percentage we lost only 0.00018 peocmrttentration. Du to this fact the
higher deposition rates have at least the same percentafgssofoncentration. Here moving

sources have also the benefit of homogenized depositios rate

4.2 Experiments with adsorbed ratea = 4 10~4, immobile rate g = 8 10714

We change to deal with high exchange rates between the nmatilénmobile gas concentra-
tion. Here we assume a high active plasma environment tflaencte the gaseous flow and
retarded the concentration in the mobile phase. Such arendkican effect the deposition
process . In this next experiments, we simulate the hightik@aplasma influence with point

sources.

We apply one point at (50,20) source with long time behavioeer 100 time steps. Such

experiments can verify the optimum deposition area witfed#int exchange rates.
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In Figure 14, we present the concentration of the one pountcgowith long time behaviour for

all four phases, at different time points.

C (adsorpt-immobile concentr.) C (adsorpt-immobile concentr.)

C (adsorpt-mobile concentr.) C (adsorpt-mobile concentr.)

C (immobile concentration) C (immobile concentration)

C (mobile concentration) C (mobile concentration)

time (in ns): 2400000000 time (in ns): 4900000000

Figure 14: One point source,with immobile, mobile, immelatisorpted and mobile adsorpted

phases,the number of time-steps is 100.
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In Figure 15, we show the deposition rates of the immobileceatration with one point source,

number of time-steps is 100.
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Figure 15: Deposition rates in case of immobile concerredind one point source, with num-

ber of time-steps equal to 100.

In Figure 16, we show the deposition rates of the mobile cotnagon and one point source,

with number of time-steps equal to 100.
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Figure 16: Deposition rates in case of mobile concentratimhone point source, with number

of time-steps equal to 100.
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In Figure 17, we show the deposition rates of the adsorptedebile concentration and one

point source, with number of time-steps equal to 100.
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Figure 17: Deposition rates in case of adsorpted-immoliteentration and one point source,

with number of time-steps equal to 100.

In Figure 18, we show the deposition rates of the adsorptebiHsconcentration and one point

source, with number of time-steps equal to 100.
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Figure 18: Deposition rates in case of adsorpted-mobile@atnation and one point source,

with number of time-steps equal to 100.
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Remark 6 The deposition rates reflect the high exchange rates of th@lenadsorpted phase.
By the way the very lost exchange rates did not influence thesiteon rates of the mobile
concentration. Because of the fast exchange, the retandati the adsorpted-mobile phase is
not strong enough to prohibit to readsorpt to the mobile ghast least high exchange rate do

not influence the deposition processes.

Remark 7 We additionaly also did experiments with low exchange ratesisorpted and mo-
bile concentration and high exchange rates of mobile andabila concentration. At least the

results are equal to our results.

4.3 Experiments with adsorbed ratea = 4 10~8, immobile rate g = 8 108

The next experimnts deal with high exchange rates betweemthbile and immobile gas con-
centration ,and also high exchange rates between the aed@pd mobile/immobile gas con-

centration.

Here we assume a high reactive plasma environment and algh agactive process gasenvi-
ronment, both processes can influence the flow of the molslplgases. To understand delecate

process we simulate with various sources and measser tpsitleo rates of the layer surface.

Here we concentrate on moving sources, because of theifitseioethe homogeneous deposi-

tion rates, see (Geiser and Arab 2008).

To understand the exchange behaviour in the phases, we apphest deposition experiment
with moving sources.In this part we do one experimnt ,andyapfp moving sources at the
positions Y =20,21,22,23,24,25,26,27,28,29,30 and theseces are moving in X direction in
steps equal to 15, the concentration isequal in each stepdaribves fromb0 — 35 — 20 —

35 — 50 — 65 — 80 — 65 — 50, with long time (The number of time steps is 100).

In Figure 19, we present an experiment with 11 moving souaitése positions
Y =20,21,22,23,24,25,26,27,28,29,30 and these sourega@ring in X direction in step equal
to 15. The concentration is equal to 1 in each step, X moves fi® — 35 — 20 — 35 —

50 — 65 — 80 — 65 — 50, with number of timestep equal to 100.
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C (adsorpt-immobile concentr.) C (adsorpt-immobile concentr.)

C (adsorpt-mobile concentr.) C (adsorpt-mobile concentr.)
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Figure 19: Immobile,mobile,adsorpted-mobile and adsaiptnmobile case of 11 moving
sources moving in X direction in step equal to 15, X moves fidgm— 35 — 20 — 35 —

50 — 65 — 80 — 65 — 50, with number of timestep equal to 100.

In Figure 20, we present the deposition rate of immobile eanation of 11 moving sources
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moving in X direction in step equal to 15,X moves fr@th — 35 — 20 — 35 — 50 — 65 —

80 — 65 — 50,with number of timestep equal to 100.
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Figure 20: Deposition rates in case of immobile concertradif 11 moving sources moving in

X direction in step equal to 15,X moves frofh — 35 — 20 — 35 — 50 — 65 — 80 —

65 — 50,with number of timestep equal to 100.

In Figure 21, we present the deposition rate of mobile comagan of 11 moving sources

moving in X direction in step equal to 15,X moves fr@th — 35 — 20 — 35 — 50 — 65 —

80 — 65 — 50,with number of timestep equal to 100.
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Figure 21: Deposition rates in case of mobile concentradfdkl moving sources moving in X

direction in step equal to 15, X moves frai — 35 — 20 — 35 — 50 — 65 — 80 — 65 —
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50,with number of timestep equal to 100.

In Figure 22, we present the deposition rate of adsorptedehile concenration of 11 moving

sources moving in X direction in step equal to 15,X moves fi®m- 35 — 20 — 35 — 50 —

65 — 80 — 65 — 50,with number of timestep equal to 100.

39



8e+07

7e+07 |

6e+07 -

5e+07 |-

4e+07 |-

3e+07 |

2e+07

1e+07

T T
Si,imm, ad, point 1
Si.imm; ad, point 2(

Si.imm. ad, point 30 0 --x---

00
00
00
Si.imm; ad, point 40 0
Si.imm, ad, point 50 0
Siimm, ad, point 60 0
00
00
00

® B Si,imm, ad, point 7¢ o
8 Si.imm. ad, point 8
@ e Si,imm, ad,point 9 e
5 o
® &
I ?
: * :
%
/ ¥ L
; o2 9
o¥ xe .
* 2
g8
o
i ¥y
8/
i1
é%y "
i o4
i o
& A8 .
P % ?
¢ & %
*,
8 .
\ =2
~ X240 228,
— *Req 228
. . e 8
0 5e+08 1le+09 1.5e+09 2e+09 2.5e+09 3e+09 3.5e+09 4e+09 4.5e+09

5e+09

Figure 22: Deposition rates in case of adsorpted-immobiteentration of 11 moving sources

moving in X direction in step equal to 15,X moves fr@th — 35 — 20 — 35 — 50 — 65 —

80 — 65 — 50, with number of timestep equal to 100.

In Figure 23, we present the deposition rate of adsorpteddmooncentration of 11 moving

sources moving in X direction in step equal to 15,X moves fi®m- 35 — 20 — 35 — 50 —

65 — 80 — 65 — 50,with number of timestep equal to 100.
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Figure 23: Deposition rates in case of adsorpted-mobile@oimation of 11 moving sources
moving in X direction in step equal to 15, X moves fr@ih — 35 — 20 — 35 — 50 — 65 —

80 — 65 — 50,with number of timestep equal to 100.

Remark 8 Respecting high exchange rates for all phases , means aernc#uo the gaseous
flow of our deposition gas.Nevertheless the lost exchanyseps measures arereversible, that
means that adsorpted and immobile gas concentartion cashsa@ted to the mobile phase as
we see in figures 20 - 23, that all concentration are nearlyagghat means the influence to the
mobile phase is not so important. We obtain at least the sapedition rates as for the nun
influenced gaseus flow. By the way minimal lost of concentratan be asuumed but this will

not influence the deposition processes.

5 CONCLUSIONS AND DISCUSSIONS

We have presented a continuous model for the multiple phageassumed gaseous behaviour
with exchange rates to adsorpted and immobile phases alovepressere and low temperature

while dealing with catalyst processes, e.g. plasma enwiestt and precursor gases. We have
to taken into acount the remaining gas concentrations in pexcesses.Numerical experiments
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presented the less influence of such catalyst processds,fasti processes did not acure in the
time scales, and slow processes did not prohibit an impbataount of the gas concentration.
In future we are interested on analysing such fast proceksethe very small time scales, e.g

in a micro modell (Molecular dynamics model).
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