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Abstract. In this paper we discuss the extention to exponential split-
ting methods with respect to time-dependent operators. For such exten-
sions, the Magnus integration, see [3], [4] and [5] and the Suzuki’s method
are incorporating ideas to the time-ordered exponential, see [22], [2], [7]
and [8]. We formulate each methods and present their advantages to spe-
cial time-dependent harmonic oscillator problems. An decisive and com-
prehensive comparison on the Magnus expansion with Suzuki’s method
on some problems are given. Here classical and also quantum mechan-
ical can be treated to present the solving in time-dependent problems.
We choose a radial Schrodinger equation as a classical time-dependent
harmonic oscillation which combine classical and quantum calculations
simultaneously. Here we present the different schemes of the integrator
based Magnus scheme and the differential based Suzuki’s method. Based
on the spiked harmonic oscillator case we could analyze the differences.
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1 Introduction

In this paper we concentrate on approximation to the solution of the linear
evolution equation, e.g. time-dependent Schrödinger equation,

∂t u = L(t)u = (A(t) +B(t))u, u(0) = u0, (1)

where L,A and B are unbounded operators and time-dependent operators.
For such equations, we concentrate on comparing the higher order methods

to Suzuki’s and Magnus schemes. Here the Suzuki’s methods apply factorized
symplectic algorithms with forward derivatives, see [7], [8]. Where on the other
hand Magnus schemes apply explicit time integration to obtain higher order
methods, see [3].

Such preliminary comparison are presented in [2], [7], where the benefits of
each method is outlined.

In our paper, we like to see the drawback of each method, so for the Mag-
nus integrator, the spiked harmonic oscillator case, see [8] and for the Suzuki‘s
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method, geometric properties, which are know to be solved with geometric inte-
grator, e.g. Magnus integrators.

At least we like to outline an idea to combine the Magnus integrators and
the Suzuki‘s factorization schemes to optimize the methods.

The paper is outlined as follows.
In Section 2, we present our Magnus expansion and the application to a

Hamiltonian system. In Section 3, we present our Suzuki’s rule for decomposing
time-ordered integrators. In Section 4, we present the error analysis of the multi-
product splitting based on the extrapolation analysis. The numerical experiments
are given in Section 5, here time-dependent Schrödinger equations are discussed
and spiked harmonic oscillator. In Section 6, we briefly summarize our results.

2 Exponential Splitting method based on Magnus
integrators

The Magnus integrator was introduced as a tool to solve non-autonomous linear
differential equations for linear operators of the form

dY

dt
= A(t)Y (t) , (2)

with solution

Y (t) = exp(Ω(t))Y (0) . (3)

This can be expressed as:

Y (t) = T
(

exp(

∫ t

0

A(s) ds

)

Y (0) , (4)

where the time-ordering operator T is given in [10].
The Magnus expansion is given as:

Ω(t) =

∞
∑

n=1

Ωn(t) , (5)

where 1.) Ω′1 = A so that

Ω1(t) =

∫ t

0

A(t1)dt1 , (6)

2.) Ω′2 = −1/2[Ω1, A] so that

Ω2(t) = 1/2

∫ t

0

∫ t1

0

[A(t1), A(t2)]dt2dt1 , (7)

and so on.
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The procedure can be written as Magnus expansion generator:
Ω′2 = −1/2[Ω1, A] so that

Ω1(t) =

∫ t

0

A(τ)dτ , (8)

and

Ωn(t) =

n−1
∑

j=1

Bj

j!

∫ t

0

S(j)
n (τ)dτ , (9)

for n ≥ 2, where Bj i the jth Bernoulli number, and

S(j)
n =

n−j
∑

m=1

[Ωm, S
(j−1)
n−m ] , 2 ≤ j ≤ n− 1, (10)

S(1)
n = [Ωn−1, A], (11)

S(n−1)
n = adn−1

Ω1
(A). (12)

Remark 1. The Magnus expansion can be generalized in different ways, e.g. Vol-
samber iterative method, Floquet-Magnus expansion.

Remark 2. Numerical methods based on the Magnus expansion require the eval-
uation of a matrix exponential which contain nested commutators. Such comput-
ing exponential is frequently a most consuming part of the schemes. So it makes
sense to have a method which do not involve commutators and still preserving
the qualitative properties.

The commutator free Magnus integrators, see [3], is a method, that need not
explicit time integration in addition to evaluating higher order commutators.

To apply that this method to the differential equation (1), we can split into
two parts.

The commutator free Magnus integrators read:

ψ
[q]
k = exp(B̃l) exp(Ãl) · · · exp(B̃1) exp(Ã1), (13)

where the matrices are

Ãi = ∆t

k
∑

j=1

ρijAj , B̃i = ∆t

k
∑

j=1

σijBj exp(B̃1) exp(Ã1), (14)

and the accuracy is given as

ψ
[q]
k = exp(Ω(tq +∆t)) +O(∆tq). (15)

Here the coefficients ρij , σij depending on coefficients of the chosen quadra-
ture rule.



4

The fourth order method is given in [5], see also the coefficients in the ap-
pendix. The convergence results are given in [17].

In the next we present the algorithms for a Hamiltonian application.

Application to a Hamiltonian

The algorithm is given for a Hamiltonian as:

H = T (p, t) + V (q, t) (16)

For example :

H = p2/2 + V (q, t), (17)

where T (p, t) = p2/2 and ∂T (p,t)
∂p = p and ∂V (q,t)

∂q = −F (q, t)

Algorithm 21 Magnus split for the Hamiltonian:

q0 = q(tn), p0 = p(tn)
do i=1,k
V ′i (q) = V ′(q, tn + ciτ);
T ′i (p) = T ′(p, tn + ciτ)
enddo

do i = 1,m
Ṽ ′i (q) = σi1V

′
1(q) + . . .+ σikV

′
k(q);

T̃ ′i (p) = ρi1T
′
1(p) + . . .+ ρikT

′
k(p);

pi = pi−1 − τ Ṽ ′(qi−1)
qi = qi−1 + τ T̃ ′(pi−1)
enddo

Remark 3. The commutator free Magnus expansion and its application to split-
ting methods, can expanded their approximation scheme without commutators.
The work has to be done to compute the matrix exponentials for some quadra-
ture rules. The process will be simplified by assuming additional constraints to
the commutators, e.g. [B(ti), [B(tj), [B(tk), A(tl)]]].

3 Exponential Splitting method based on Suzuki’s
time-ordered exponential (Multi-product splitting
method)

Instead of the Magnus expansion (5), one can also directly implement the time-
ordered exponential as suggested by Suzuki[22]. Rewriting (4) as

Y (t+∆t) = T
(

exp

∫ t+∆t

t

A(s)ds
)

Y (t), (18)
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aside from the conventional expansion

T
(

exp

∫ t+∆t

t

A(s)ds
)

= 1+

∫ t+∆t

t

A(s1)ds1+

∫ t+∆t

t

ds1

∫ s1

t

ds2A(s1)A(s2)+· · · ,
(19)

the time-ordered exponential can also be interpreted more intuitively as

T
(

exp

∫ t+∆t

t

A(s)ds
)

= lim
n→∞

T
(

e
∆t

n

P

n

i=1
A(t+i ∆t

n
)
)

, (20)

= lim
n→∞

e
∆t

n
A(t+∆t) · · · e∆t

n
A(t+ 2∆t

n
)e

∆t

n
A(t+ ∆t

n
). (21)

The time-ordering is trivially accomplished in going from (20) to (21). To enforce
latter, Suzuki introduces the forward time derivative operator

D =

←

∂

∂t
(22)

such that for any two time-dependent functions F (t) and G(t),

F (t)e∆tDG(t) = F (t+∆t)G(t). (23)

Trotter’s formula then gives

exp[∆t(A(t) +D)] = lim
n→∞

(

e
∆t

n
A(t)e

∆t

n
D
)n

,

= lim
n→∞

e
∆t

n
A(t+∆t) · · · e∆t

n
A(t+ 2∆t

n
)e

∆t

n
A(t+ ∆t

n
), (24)

where property (23) has been applied repeatedly and accumulatively. Comparing
(21) with (24) yields Suzuki’s decomposition of the time-ordered exponential[22]

T
(

exp

∫ t+∆t

t

A(s)ds
)

= exp[∆t(A(t) +D)]. (25)

Thus time-ordering can be accomplished by just adding the operator D. For
example, we have the following second order splittings

T2(∆t) = e
1

2
∆tDe∆tA(t)e

1

2
∆tD = e∆tA(t+ 1

2
∆t). (26)

The choice of symmetric products is important, because we archive only odd
powers of ∆t

T2(∆t) = e∆t(A(t)+D) +∆t3E3 +∆t5E5 + . . . (27)

Every occurrence of the operator edi∆tD, from right to left, updates the current
time t to t + di∆t. If t is the time at the start of the algorithm, then after the
first occurrence of e

1

2
∆tD, time is t+ 1

2∆t. After the second e
1

2
∆tD, time is t+∆t.
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Thus the leftmost e
1

2
∆tD is not without effect, it correctly updates the time for

the next iteration. For example

T2(∆t)T2(∆t) = e∆tA(t+ 3

2
∆t)e∆tA(t+ 1

2
∆t) (28)

Higher order factorization of (25) into a single product form

exp[∆t(A(t) +D)] = Πie
ai∆tA(t)edi∆tD (29)

will yield higher order algorithms, but at the cost of exponentially growing num-
ber of evaluations of eai∆tA. Recently, it has been shown that, once one has the
second order algorithm (26), arbitrary higher order algorithms can be built from
the multi-product expansion∗ of (25), with only quadratically growing number
of exponentials at high orders. For example,

T4(∆t) = −1

3
T2(∆t) +

4

3
T 2

2

(

∆t

2

)

(30)

T6(∆t) =
1

24
T2(∆t) −

16

15
T 2

2

(

∆t

2

)

+
81

40
T 3

2

(

∆t

3

)

(31)

T8(∆t) = − 1

360
T2(∆t) +

16

45
T 2

2

(

∆t

2

)

− 729

280
T 3

2

(

∆t

3

)

+
1024

315
T 4

2

(

∆t

4

)

(32)

T10(∆t) =
1

8640
T2(∆t) −

64

945
T 2

2

(

∆t

2

)

+
6561

4480
T 3

2

(

∆t

3

)

−16384

2835
T 4

2

(

∆t

4

)

+
390625

72576
T 5

2

(

∆t

5

)

(33)

In the case of A(t) = T + V (t), the second order algorithm is then

T2(∆t) = e∆tA(t+ 1

2
∆t) = e

1

2
∆tT e∆tV (t+∆t/2)e

1

2
∆tT +O(∆t3). (34)

For the error terms we have the following estimates:

exp((dt/2)T )exp(dtV )exp((dt/2)T ) = exp(dt(T+V )+dt3E3+dt5E5+...), (35)

with
E3 = −(1/24)[TTV ] − (1/12)[V TV ] (36)

E5 = (7/5760)[TTTTV ]+(1/480)[TTV TV ]+(1/360)[V TTTV ]+(1/120)[V TV TV ]
(37)

where [TTV ] = [T, [T, V ]] and [TTTTV ] = [T, [T, [T, [T, V ]]]] etc., denotes the
nested commutators.

This is for the case we have [V V TV ] = 0.
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So an error bound is given as:

||E3|| = || − (1/24)[TTV ] − (1/12)[V TV ]|| (38)

≤ 1

24
||T 2||||V || + 1

12
||T 2||||V 2||,

||E5|| = ||(7/5760)[TTTTV ] + (1/480)[TTV TV ] (39)

+(1/360)[V TTTV ] + (1/120)[V TV TV ]||
≤ (7/5760)||T 4||||V || + (1/180)||T 3||||V 2|| + (1/120)||T 2||||V 3||

The Multiproduct expansion can be derived as . More generally, for a given
set of n distinct whole numbers fk1; k2; :::kng, one can form a 2n-order approx-
imation of eh(A+B) via

exp(A+B) =

n
∑

i=1

ciT ki

2 (
h

ki
) + e2n+1(h2n+1E2n+1) (40)

The expansion coeffcients ci are determined by a specially simple Vander-
monde equation:













1 1 1 . . . 1
k−2
1 k−2

2 k−2
2 . . . k−2

n

k−4
1 k−4

2 k−4
2 . . . k−4

n

. . . . . . . . . . . . . . .

k
−2(n−1)
1 k

−2(n−1)
2 k

−2(n−1)
2 . . . k

−2(n−1)
n

























c1
c2
c3
. . .
cn













=













1
0
0
. . .
0













(41)

with closed form solutions

ci =

n
∑

j=1( 6=i)

k2
i

k2
i − k2

j

(42)

and error coefficient,

e2n+1 = (−1)n−1
n
∑

i=1

1

k2
i

(43)

Here we have closed forms (42) and (43) and are the keys to the multi-product
expansion and its error analysis.

Remark 4. While Magnus expansion are designed as nice higher order splitting
methods, they have also some drawbacks. One of a fundamental weakness of the
Magnus approach is that when we apply time integration, we ended up with
many terms and all of them are still in the exponential. When we apply to
split them, we reach all these terms into individual exponentials. The splitting is
then far more laborious than Suzuki’s method, while having only two operators
to split.
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Remark 5. We stated, that at higher order, say beyond the sixth order, even
direct splitting using Suzuki’s method will become inefficient because the number
of exponentials will grow exponentially with orders.

Here we can improve the Suzuki’s method with multi product expansion.
So our multi-product expansion has a niche, while the number of exponential
operators now only grows quadratically. We see in experiments that 6th, 8th and
10th order calculations have brilliant accuracy. The 10th order is so accurate that
we are running into machine precision problem with using only double precision.

4 Error analysis of the Multi-product expansion

While extrapolation methods are wel-known to tremendous differential equa-
tions, there is a nearly no work done to apply to operators.

While extrapolation methods are known in all details, see [19], we concentrate
on applying our results to the operator equations.

The multi-product expansion is discussed in [9].

Here our method is based on the Richard-Aitken-Neville extrapolation [12].

We assume that Γ l
k =

∑n
i+0 |γni| ≤ Πn

i=1
1+|ci|
|1−ci|

, and ci are the coefficients of

the multi-product expansion.

We have the following stability results to our multi-product scheme.

Theorem 1. 1.) The process that generates {T l
2 (h

k )}n
l=1 is stable in that

sup
j
Γ l

k =

n
∑

i

|ρni| <∞, (44)

2.) Under the condition of monotonicity we have further

lim sup
n→∞

|ρni| ≤ Πn
i=1

1 + |ci|
|1 − ci|

<∞, (45)

where the coefficients ci are given in (42). Here we have consequently a process
that supk Γ

l
k <∞.

Proof. ad 1.) Based on the derivation of the coefficients via the Vandermonde
equation the product is bounded.

ad 2.) Some argument as in 1.).

The convergence analysis based on a Richardson extrapolation process, see
[19] and [9]. Here we have a linear increase of only n + 1 additional force-
evaluation, instead of 2n+ 2 for Romberg’s extrapolation.

Theorem 2. 1.) The process that generates {T l
2 (h

k )}n
l=1 is convergent and we

have a complete expansion, in that
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{T l
2 (
h

k
)}n

l=1 − exp(h(A+B)) = e2n+1(h
2n+1E2n+1), (46)

= O(h2n+1), (47)

as n→ ∞. (48)

where E2n+1 are higher order commutators of A and B.
2.) The process that generates {T l

2 (h
k )}n

l=1 is convergent and we have a com-
plete asymptotic expansion, in that

{T l
2 (
h

k
)}n

l=1 − exp(h(A+B)) ≈ O(h2n+1), (49)

as n→ ∞. (50)

Proof. ad 1.) Based on the derivation of the coefficients via the Vandermonde
equation the product is bounded and we have:

n
∑

k=1

ckT k
2 (
h

k
) =

n
∑

k=1

ck
(

exp((A +B)h) − (k−2h3E3 + k−4h5E5 + . . .)
)

,(51)

=

n
∑

k=1

ck

(

exp((A+B)h) −
n
∑

i

k−2ih2i+1E2i+1

)

,

=

(

exp((A+B)h) −
n
∑

k=1

ck

n
∑

i

k−2ih2i+1E2i+1

)

,

= O(h2n+1),

as n→ ∞.

where the coefficients are given in (42).
ad 2.) Some argument as in 1.), see also [19].

Lemma 1. We assume ||A(t)|| to be bounded in the interval t ∈ (0, T ). Then
T2 is non-singular for sufficient small dt.

Proof. We use our assumption |A(t)| is to be bounded in the interval 0 < t < T .
So we can find ||A(t)|| < C for 0 < t < T .
Therefore T2 is always non-singular for sufficiently small dt.

Theorem 3. We assume T2 is non-singular, see lemma 1. If T2 is non-singular,
then the entire MPE is non-singular and we have a uniform convergence.

Proof. Since
T2 = exp(dtlA(t+ dt/2)), (52)

for sufficient dt << 1, we can derive

T2 = 1 + dt A(t), (53)

If we assume the boundedness of ||A(t)|| in small dt, T2 is nonsingular and
bounded and we have uniform convergence, see [21].
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Remark 6. With the uniform convergence of the MPE method, we are more
general than for the Magnus series with a convergence radius, see [17].

5 Numerical Examples

In the following section, we deal with experiments to verify the benefit of our
methods. At the beginning, we propose introductory examples to compare the
methods. In the next examples, applications to Hamiltonian problems, as Schrödinger
equation and harmonic oscillator, are done.

5.1 Simple Examples: First

To assess the convergence of the Multi-product expansion with that of the Mag-
nus series, consider the well known example[16] of

A(t) =

(

2 t
0 −1

)

, (54)

The exact solution to (2) with Y (0) = I is

Y (t) =

(

e2t f(t)
0 e−t

)

, (55)

with

f(t) =
1

9
e−t(e3t − 1 − 3t) (56)

=
t2

2
+
t4

8
+
t5

60
+
t6

80
+

t7

420
+

31t8

40320
+

t9

6720
+

13t10

403200
+

13t11

178200
(57)

For the Magnus expansion, one has the series

Ω(t) =

(

2t g(t)
0 −t

)

, (58)

with, up to the 10th order,

g(t) =
1

2
t2 − 1

4
t3 +

3

80
t5 − 9

1120
t7 +

81

44800
t9 + · · · (59)

→ t(e3t − 1 − 3t)

3(e3t − 1)
. (60)

Exponentiating (58) yields (55) with

f(t) = te−t(e3t − 1)

(

1

6
− 1

12
t+

1

80
t3 − 3

1120
t5 +

27

44800
t7 + · · ·

)

(61)

→ te−t(e3t − 1)

(

1

9t
− 1

3(e3t − 1)

)

(62)
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Fig. 1. The black line is the exact result (57). The blue lines are the Magnus series
(61). The red lines are the multi-product expansion. The purple line is their common
second order result.

Whereas the exact solution (57) is an entire function of t, the Magnus series (59)
and (61) only converge for |t| < 2

3π due to the pole at t = 2
3πi. The Magnus

series (61) is plot in Fig.1 as blue lines. The pole at |t| = 2
3π ≈ 2 is clearly

visible.

By contrast, the multi-product expansion suffers no such drawbacks. ¿From
(26), by setting ∆t = t and t = 0, we have

T2(t) = exp

[

t

(

2 1
2 t

0 −1

)]

=

(

e2t f2(t)
0 e−t

)

(63)

with

f2(t) =
1

6
te−t(e3t − 1). (64)

This is identical to first term of the Magnus series (61) and is an entire func-
tion of t. Since higher order MPE uses only powers of T2, higher order MPE
approximations are also entire functions of t. Thus up to the 10th order, one
finds

f4(t) = te−t

(

e3t − 5

18
+

2e3t/2

9

)

(65)
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f6(t) = te−t

(

11e3t − 109

360
+

9

40
(e2t + et) − 8

45
e3t/2

)

(66)

f8(t) = te−t

(

151e3t − 2369

7560
+

256

945
(e9t/4 + e3t/4) − 81

280
(e2t + et) +

104

315
e3t/2

)

(67)

f10(t) = te−t

(

15619e3t − 347261

1088640
+

78125

217728
(e12t/5 + e9t/5 + e6t/5 + e3t/5)

−4096

8505
(e9t/4 + e3t/4) +

729

4480
(e2t + et) − 4192

8505
e3t/2

)

. (68)

These MPE approximations are plotted as red lines in Fig.1. The convergence
seems uniform for all t.

When expanded, the above yields

f2(t) =
t2

2
+
t3

4
+ · · ·

f4(t) =
t2

2
+
t4

8
+

5t5

192
+ · · ·

f6(t) =
t2

2
+
t4

8
+
t5

60
+
t6

80
+

t7

384
+ · · ·

f8(t) =
t2

2
+
t4

8
+
t5

60
+
t6

80
+

t7

420
+

31t8

40320
+

1307t9

8601600
+ · · ·

f10(t) =
t2

2
+
t4

8
+
t5

60
+
t6

80
+

t7

420
+

31t8

40320
+

t9

6720
+

13t10

403200
+

13099t11

232243200
(69)

and agree with the exact solution to the claimed order.
Here we have convergence due to the following theorem:

Theorem 4. We have given the initial value problem (2) and the exact solution
of the initial value problem, see (55). Then the approximated g(t, ǫ) done with
the MPE method is convergent with the rate:

|gexact(t) − gMPE,2(i+1)(t)| ≤ CO(t2(i+1)+1), (70)

where C is independent of t and ǫ and 0 ≤ C ≤ 0.25, for i = 0, 1, 2, . . ..

Proof. We apply the difference between exact and approximated solution, due
to the Taylor expansion of both solutions:

We begin with i = 0:

|fexact(t) − fMPE,2(t)| (71)

= |exp(2t)

9
− (1/9 + t/3)exp(−t) − (exp(−t)(exp(3t) − 1)t/6)| (72)

=
t3

4
+ O(t5) ≤ CO(t5), (73)
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and 0 ≤ C ≤ 0.25.
For i ≥ 0: We have the

|fexact(t) − fMPE,2(i+1)(t)| ≤
t2(i+1)+1)

4
(74)

≤ CO(t2(i+1)+1), (75)

and 0 ≤ C ≤ 0.25.

Remark 7. Here we have uniform convergence because of the non singularities
of the MPE products.

5.2 Radial Schödinger equation (highly nonlinear)

We consider the radial Schrödinger equation

∂2u

∂r2
= f(r, E)u(r) (76)

where

f(r, E) = 2V (r) − 2E +
l(l+ 1)

r2
, (77)

By relabeling r → t and u(r) → q(t), (76) can be viewed as harmonic oscillator
with a time dependent spring constant

k(t, E) = −f(t, E) (78)

and Hamiltonian

H =
1

2
p2 +

1

2
k(t, E)q2. (79)

Thus any eigenfunction of (76) is an exact time-dependent solution of (79). For
example, the ground state of the hydrogen atom with l = 0, E = −1/2 and

V (r) = −1

r
(80)

yields the exact solution
q(t) = t exp(−t) (81)

with initial values q(0) = 0 and p(0) = 1. Denoting

Y (t) =

(

q(t)
p(t)

)

, (82)

the time-dependent oscillator (79) now corresponds to

A(t) =

(

0 1
f(t) 0

)

=

(

0 1
0 0

)

+

(

0 0
f(t) 0

)

≡ T + V (t), (83)
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with

f(t) = (1 − 2

t
). (84)

In this case, the second-order midpoint algorithm is

T2(h, t) = e
1

2
hT ehV (t+h/2)e

1

2
hT

=

(

1 + 1
2h

2f(t+ 1
2h) h+ 1

4h
3f(t+ 1

2h)
hf(t+ 1

2h) 1 + 1
2h

2f(t+ 1
2h),

)

(85)

and for q(0) = 0 and p(0) = 1, (setting t = 0 and h = t), correctly gives the
second order result,

q2(t) = t+
1

4
t3f(

1

2
t) = t− t2 +

1

4
t3. (86)

Higher order multi-product expansions, using (85), then yield

q4(t) = t− t2 +
7t3

18
− t4

9
+
t5

96

q6(t) = t− t2 +
211t3

450
− 31t4

225
+

17t5

600
+ · · ·

q8(t) = t− t2 +
32233t3

66150
− 5101t4

33075
+

3139t5

88200
+ · · ·

q10(t) = t− t2 +
88159t3

1786050
− 143177t4

893025
+

91753t5

2381400
+ · · · (87)

Comparing this to the exact solution (81):

q(t) = t− t2 +
t3

2
− t4

6
+
t5

24
− t6

120
+

t7

720
− t8

5040
· · · ,

= t− t2 +
t3

2
− 0.1667t4 + 0.0417t5 − 0.0083t6 + 0.0014t7 · · · (88)

one sees that MPE no longer matches the Taylor expansion beyond second-order.
This is due to the singular nature of the Coulomb potential, which makes the
problem a challenge to solve. Since A(t) is now singular at t = 0, the previ-
ous proof of uniform convergence no longer holds. Nevertheless, from the exact
solution (81), one sees that force (or acceleration)

lim
t→0

f(t)q(t) = −2 (89)

remains finite. It seems that this is sufficient for uniform convergence as the
coefficients of the t3 and t4 terms do approach 1/2 and 1/6 with increasing
order:

7

18
= 0.3889,

211

450
= 0.4689,

32233

66150
= 0.4873,

88159

1786050
= 0.4936, (90)

1

9
= 0.1111,

31

225
= 0.1378,

5101

33075
= 0.1542,

143177

893025
= 0.1603. (91)
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Fig. 2. The uniform convergence of the multi-product expansion in solving for the
hydrogen ground state wave function. The black line is the exact ground state wave
function. The numbers indicates the order of the multi-product expansion. The blue
lines denote results of various fourth-order algorithms.

Similarily with all other coefficients. To see this uniform convergence, we show
in Fig.2, how higher order MPE, up to the 100th order, matches against the
exact solution. The calculation is done numerically rather than by evaluating the
analytical expressions such as (87). For orders 60, 80 and 100, it is necessary to
use quadruple precision to circumvent rounding errors. Also shown are some well
know fourth-order symplectic algorithm FR (Forest-Ruth, 3 force-evaluations),
M (MacLachlan, 4 force-evaluations), BM (Blanes-Moan, 6 force-evaluations),
Mag (Magnus integrator, see below, ≈ 2.5 force-evaluations) and 4B (a forward
symplectic algorithm with only ≈ 2 evaluations). These symplectic integrators
steadily improves from FR, to M, to Mag, to BM to 4B. Forward algorithm 4B
is noteworthy in that it is the only fourth-order algorithm that can go around
the wave function maximum at t = 1, yielding

q4B(t) = t− t2 +
t3

2
− 0.1635t4 + 0.0397t5 − 0.0070t6 + 0.0009t7 · · · , (92)

with the correct third-order coefficient and comparable higher order coefficients
as the exact solution (88). By contrast, the FR algorithm, which is well know to
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have rather large errors, has the expansion,

qFR(t) = t− t2 − 0.1942t3 + 3.528t4 − 2.415t5 + 0.5742t6 − 0.0437t7 · · · , (93)

with terms of the wrong signs beyond t2.
For non-singular potentials such as the radial harmonic oscillator with

f(t) = t2 − 3, (94)

and exact ground state solution

q(t) = te−t2/2 = t− t3

2
+
t5

8
− t7

48
+

t9

384
− t11

3840
+ · · · , (95)

the multi-product expansion now gives,

q2(t) = t− 3t3

4
+
t5

16

q4(t) = t− t3

2
+

29t5

192
+ · · ·

q6(t) = t− t3

2
+
t5

8
− 13t7

576
+ · · ·

q8(t) = t− t3

2
+
t5

8
− t7

48
+

20803t9

7741440
+ · · ·

q10(t) = t− t3

2
+
t5

8
− t7

48
+

t9

384
− 50977t11

193536000
+ · · · , (96)

and matches the Taylor expansion up to the claimed order, as it is in the previous
case of (69).

A fourth-order Magnus algorithm is given by

T4(∆t) = ec3∆t(V2−V1)e∆t(T+ 1

2
(V1+V2))e−c3∆t(V2−V1) (97)

where

c1 = 1/2 −
√

3/6, c2 = 1/2 +
√

3/6, c3 =
√

3/12

and

V1 = V (t+ c1∆t), V2 = V (t+ c2∆t).

Normally, one would need to further split the central exponential in (97) to
fourth-order. In the general case, this would require at least three force eval-
uations. However, because it is an harmonic oscillator, it can be splitted to
fourth-order via

e∆t(T+ 1

2
(V1+V2)) = ece∆t 1

2
(V1+V2))ecm∆tT ece∆t 1

2
(V1+V2) (98)

where

ce =
1

2
− fa∆t

2/24 and cm = 1 + fa∆t
2/6
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Fig. 3. Comparison between Magnus expansion and Suzuki’s expansion.

where fa = 1
2 [f(t + c1∆t,E) + f(t + c2∆t,E)]. Thus the entire algorithm (97)

only needs two evaluations of the potential in f(t, E). In Fig.1, algorithm B also
only requires two evaluations of the potential.

In Figure 3, we present the comparison between Magnus and Suzuki’s method.

The radial Schrödinger equation is know to be highly nonlinear and therefore
an optimal example to compare our methods.

While we apply an improved Magnus expansion due to the commutator free
scheme, the underlying Suzuki’s method that can be done with only applying
extrapolation schemes. We have reductions in computing exponential matrices
for both methods.

One the one hand Magnus expansion achieve his accuracy while applying
a composition method based on optimal choose of quadrature points to the
time-dependent matrices, while Suzuki’s expansion apply multiplications of one
standard matrix.

Here we see the benefit of the Suzuki’s method, while dealing with only one
matrix type, where on the other hand Magnus expansion has to compute multiple
time-points for each matrix.
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6 Conclusions and Discussions

We have presented time-dependent splitting methods, based on Magnus and
Suzuki’s ideas. Numerical examples confirm the applications to Schrödinger
equations. We present the benefits of our multi-product expansion related to
the extrapolation analysis. The benefits are in less force-evaluations, which are
necessarily with Magnus expansion or extrapolation schemes based on Romberg.
In the future we will focus us on the development of improved operator-splitting
methods with respect to their application in nonlinear differential equations.

References

1. D. Baye, G. Goldstein and P. Capel. Fourth-order factorization of the evolution

operator for time-dependent potentials, Phys. Letts, A 317, 337, 2003.
2. G. Goldstein and D. Baye. Sixth-order factorization of the evolution operator for

time-dependent potentials, Phys. Rev, E 70, 056703, 2004.
3. S. Blanes and P.C. Moan. Fourth- and sixt-order commutator free Magnus integra-

tors for ,inear and nonlinear dynamical systems, Applied Numerical Mathematics,
56, 1519-1537, 2006.

4. S. Blanes and P.C. Moan. Splitting Methods for Non-autonomous Hamiltonian

Equations, Journal of Computational Physics, 170, 205-230, 2001.
5. S. Blanes and F. Casas. Splitting Methods for Non-autonomous separabel dynamical

systems, Journal of Physics A: Math. Gen., 39, 5405-5423, 2006.
6. S. Blanes, F. Casas, J.A. Oteo and J. Ros. The Magnus expansion and some of its

applications, http://www.citebase.org/abstract?id=oai:arXiv.org:0810.5488, 2008.
7. S.A. Chin and C.R. Chen. Gradient symplectic algorithms for solving the

Schrdinger equation with time-dependent potentials, Journal of Chemical Physics,
117(4), 1409-1415, 2002.

8. S.A. Chin and P. Anisimov. Gradient Symplectic Algorithms for Solving the Radial

Schrödinger Equation, J. Chem. Phys. 124, 054106, 2006.
9. S.A. Chin. Multi-product splitting and Runge-Kutta-Nyström integrators, Applied

Numerical Mathematics, under review, 2008.
10. F.J. Dyson. The radiation theorem of Tomonaga. Swinger and Feynman, Phys.

Rev., 75, 486-502, 1976.
11. J. Geiser. Higher order splitting methods for differential equations: Theory and

applications of a fourth order method. Numerical Mathematics: Theory, Methods

and Applications. Global Science Press, Hong Kong, China, accepted, April 2008.
12. E. Hairer, S.P. Norsett and G. Wanner. Solving Ordinary Differential Equations I

- Nonstiff Problems. Second Edition, Springer Verlag, Berlin,1993.
13. M. Hochbruck and A. Ostermann. Explicit Exponential Runge-Kutta Methods for

Semilinear Parabolic Problems. SIAM Journal on Numerical Analyis, Vol. 43, Iss.
3, 1069-1090, 2005.

14. E. Hansen and A. Ostermann. Exponential splitting for unbounded operators. Math-
ematics of Computation, accepted, 2008.

15. T. Jahnke and C. Lubich. Error bounds for exponential operator splittings. BIT
Numerical Mathematics, 40:4, 735-745, 2000.

16. P.C. Moan and J. Niesen. Convergence of the exponential Lie series, Technical
report, La Trobe University, September 2006.



19

17. P.C. Moan and J. Niesen Convergence of the Magnus series J. Found. of Comp.
Math., 8(3):291–301, 2008.

18. S. Paul Raj, S. Rajasekar and K. Murali. Coexisting chaotic attractors, their

basin of attractions and synchronization of chaos in two coupled Duffing oscillators

Physics Letters A, 264(4): 283-288, 1999.
19. A. Sidi. Practical extrapolation methods. Cambridge monographs on applied and

computational mathematics, Cambridge University Press, 2003.
20. G. Strang. On the construction and comparision of difference schemes. SIAM J.

Numer. Anal., 5, 506-517, 1968.
21. K. Yoshida. Functional Analysis Classics in Mathematics, Springer-Verlag, Berlin-

Heidelberg-New York, 1980.
22. M. Suzuki. General Decomposition Theory of Ordered Exponentials Proc. Japan

Acad., vol. 69, Ser. B, 161, 1993.


