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Abstract

This paper presents a sequential estimation procedure for the unknown parameters
of a continuous-time stochastic linear regression process. As examples the sequen-
tial estimation problem of two dynamic parameters in stochastic linear systems with
memory and in autoregressive processes is solved. The estimation procedure is based
on the least squares method with weights and yields estimators with guaranteed ac-
curacy in the sense of the L,—norm for fixed ¢ > 2.

The proposed procedure works in the mentioned examples for all possible values
of unknown dynamic parameters on the plane R? for the autoregressive processes
and on the plane R? with the exception of some lines for the linear stochastic delay
equations. The asymptotic behavior of the duration of observations is determined.

The general estimation procedure is designed for two- or more-parametric models.
It is shown, that the proposed procedure can be applied to the sequential parameter
estimation problem of affine stochastic delay differential equations and autoregres-
sive processes of an arbitrary order.
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1 Introduction
In this article we consider a linear regression model of the type
dz(t) = da(t)dt + dW (t), t >0 (1)

with the initial condition z(0) = z¢. Here we assume (W (t),¢ > 0) is an adapted
one-dimensional standard Wiener process on a filtered probability space (2, F,
(Fi)i>0, P), ¥ an unknown parameter from some subset © of RPTL, (a(t),t > 0)
an observable adapted (p + 1)-dimensional cadlag process and z = (z(¢),t > 0)
solves the equation (1). We assume p > 1.

The described model includes several more concrete cases like linear stochastic
differential equations of first or of higher order (CARMA-processes) linear stochastic
delay differential equations. They can be found e.g. in [2], [3], [6], [7], [9]-[13], [16].

In the sequel we will study the problem of sequential estimating the parameter 9
from © based on the observation of (x(t),a(t)):>o-

We shall construct for every € > 0 and arbitrary but fixed ¢ > 2 a sequential
procedure ¥(e) to estimate 9 with e—accuracy in the sense

19(e) =9I <e. (2)

m
Here the L,—norm is defined as || - ||, = (Ey]| - ||q)%, where ||a|| = (Z a%)% and Ey
i=0
denotes the expectation under Py for ¥ € © (the number of ¢ > 2 is fixed in the
sequel).

Moreover, we shall determine the rate of convergence of the duration of observa-
tions T'(g) to infinity and almost surely convergence of 9(e) if ¢ — 0.

The new results presented here consist in the greater generality of the conditions
on a(t) than in previous papers of [9]-[12]. A similar estimation problem for a more
general model was investigated in [3]. The authors have considered the problem
of sequential estimation of parameters in multivariate stochastic regression mod-
els with martingale noise and an arbitrary finite number of unknown parameters.
The estimation procedure in [3] is based on the least squares method with a special
choice of weight matrices. The proposed procedure enables them to estimate the
parameters with any prescribed mean square accuracy under appropriate conditions
on the regressors (a(t)). Among conditions on the regressors there is one limiting
the growth of the maximum eigenvalue of the symmetric design matrix with respect
to its minimal eigenvalue. This condition is slightly stronger than those usually
imposed in asymptotic investigations and it is not possible to apply this estima-
tion procedure to continuous-time models with essentially different behaviour of the
eigenvalues (if, for example, the smallest eigenvalue growth linearly and the largest
one - exponentially with the observation time).

The paper [3] also includes extended hints to earlier works of different authors
on sequential estimations for parameters of both continuous as well as discrete time
processes.

The methods applied in this paper to (1) were inspired by the following basic
examples for (1):



1. Stochastic differential equations of autoregressive type given by

b .
dzl?) = 3" 9,2 Vdt + dw (1), t > 0, (3)
i=0
zy =2 (0), i = 0p. (3)
II. Stochastic delay differential equations given by
P
dX(t) =Y 90Xt —r)dt +dW(t), t >0, (4)
i=0
X (s) = Xo(s),s € [-r,0]. (4"
The parameters 9J;, r;, 1 = 0,...,p are real numbers with 0 = ryg < r; < ... <

rp =:r,if p>1and rg = r = 0 if p = 0. The initial process (Xo(s), s € [—r,0])
also defined on (2, F', P) is supposed to be cadlag and all X¢(s), s € [—r,0] and

wgp _i), 1 = 0, p are assumed to be Fy—measurable. Moreover it is assumed that

, 0
E|xgp_z)|q <oo, i =0,p, FE | Xo(s)|%ds < .
T

The sequential parameter estimation problem of the process (3) was solved in
[7] under some additional condition on the roots of its characteristic equation (and
as follows, on the corresponding parameters). Similar to [3], in [7] obtained the
sequential estimators of the parameter ¢ with given accuracy in the mean square
sense.

Our paper considers the sequential parameter estimation problem of the process
(3) with p = 1 as an example of the general estimation procedure, elaborated for
linear regression model (1). It is shown, that the presented sequential estimation
procedure works for all parameters ¥ € R2\ {¢ € R? : ¥; = 0}. The asymptotic
behaviour of the estimation procedures is investigated.

The problem of sequential parameter estimation for the process (4) was considered
in [9]-[12] under some additional conditions on the underlying parameters. The
general estimation procedure, presented in this paper, works under the most weakest
possible assumptions on the parameters. Thus it is shown, that in the case p =1 in
the model (4) the constructed general estimation procedure gives the possibility to
solve the parameter estimation problem with guaranteed accuracy for all parameter
points 9 € R? except for some curves Lebesgue of measure zero.

The estimators with such property may be used in various adaptive procedures
(control, prediction, filtration).

2 The general case of regression process

2.1 Assumptions and definitions

In this section we shall consider the linear regression model (1)

dz(t) = ¥a(t)dt + dW (t), t > 0.



The problem is to estimate the unknown vector ¢ with a given accuracy in the
sense (2) from the observation of (z(t),a(t)):>o-

The differential equation (3) is covered by a(t) = (x%p),xgpfl), ...,x¢)" and the
equation (4) by a(t) = (X (¢), X (t —r1),..., X(t —1p))".

In Sections 3 and 4 we shall consider the models (3) and (4) in detail.

A natural candidate for estimating ¢ is the least squares estimator (LSE)

T T
3(T) = (/ a(t)a’(t)dt)_l/a(t)dm(t), T > 0.
0 0

T
It turns out in examples that the information matrix [a(t)ad’(t)dt has different
0

asymptotic properties for different parameters 9. Thus e.g., the information ma-
trix normalized by a scalar function may tend to a singular limit matrix.

To avoid this problem we rewrite the expression of the LSE @(T) above in such a

way, that as the inverse matrix factor there appears an appropriate chosen normal-
ized matrix for which the asymptotic behaviour of its maximal eigenvalue for T" — oo
is under control. To do this we apply a certain matrix V' as a weight matrix to a(t)
to obtain the new process (Va(t)) with better asymptotic properties in the sense of
Assumption (V) below (see formula (7)). The concrete form of V' is determined by
the kind of regressor a(t) and cannot specified for the general case. Moreover V' may
depend on the unknown . To overcome these problem we shall construct a process
(V (t)) based on the observations of (z,a) up to ¢, which estimates V' and keeps the
property (7) for the observed process (b(t)):>0, where b(t) = V (t)a(t).
To get a first estimation of V' by V (-) and some rates of convergence which defined
below, we use the observation (x,a) from 0 to some time S. The properly estimation
of the parameter ¥ starts from S.

The weighted LSE of ¢ for the given observation from S to T' has the form:

(S, T) = G~Y(S, T)®(S,T), T >8>0, (5)
where

A T
®(S,T) = / b(s)de(s), G(S,T) = /S b(s)d!(s)ds,
S

b(s) = V(s)a(s). Put ®(T) = ®(0,T), G(T)=G(0,T), b(s) = Va(s).
Let the weight process (V (t));>0 be (Fy)—adapted and for all ' > 0 the following
integrals be finite:

T
/Eﬁ||b(t)||th < oo. (6)
0

We shall write in the following f(z) ~ C asz — oo (fe ~ C as e — 0...) instead
of the limiting relations:

0< lim f(z) < lim f(z) <oo (0< lim fgﬁgiir(l)fg<oo...).

T—00 T—00 e—0




T

The rates of increase of the integrals / b?(t)dt, i = 0,p in general depend on
0

some vector parameter a € R".

ASSUMPTION (V) : Let A be a non-empty subset of R", such that, for everyi=0,p
there exists a family of unboundedly increasing positive functions {p;(a, T), T >
0}aeca with the following properties: for every ¥ € © and a(d) € A

T
o: Ha,T) /i)?(t)dt ~C, as T =00 Py—as., (7)
0

where bi(+) equals b;(+) or b;(+), i =0, p.
For example, the function ¢(a,T) =TT, where
A = {(vo,v1) : [{0} x (0,400)] U[(0, +00) X (=00, +00)]}

cover all possible cases of asymptotic behavior of solutions of linear SDE’s and
SDDE’s (see our main examples below).

Often we shall omit the dependence @;(a,T) of the parameter a in our nota-
T

tion. The functions ¢;(c, T) are called rates of increase of integrals / b (t)dt and
0

b2(t)dt i =0,p.

o g

Our sequential plans will be constructed by using first hitting times of the pro-

T
cesses / b?(s)ds, i =0,p, T > 0. To investigate the asymptotic properties of these
0

hitting times, we will use the rates ;(T") of increase of these integrals.
Without loss of generality we suppose in Assumption (V), that the function
wo(a, T) is the smallest rate of increase in the following sense:
—— po(eT)

lim
T—00 QDZ'(O(, T)

<1, i=1p.

Otherwise we shall renumber the lines in the weight matrices V, V(T') to obtain
this property.

In Sections 3 and 4 we will get the weights V, (V' (¢)) and the rates (¢;(«,T), i =
0,p) for both our basic examples in the case p = 1.

From (1) and (5) we find the deviation of the estimator J(S, T from 4 :

(S, T) —9 = G~(S, T)¢(S,T), (8)
where

T
(8, T) = / b(t)dW (1).
S



Assumption (V) motivated by two our basic examples provide the asymptotic be-
havior of the integrated squares of the function b(¢). It should be noted that the
second moment of the noise ((S,7) is a functional of b(-), which is assumed below
to be controlled:

T
EIC(S, T = By [ 11b6e) 2t
S

Our sequential plans will be constructed by using first hitting times of the processes
T
/ b?(s)ds.
s

To investigate the asymptotic properties of the estimator 19(5’, T), we introduce
the matrices

P(T) = diag{po(a. T), 01 (a, T), ..., 0p(e, T)}, @3 (T) =3 (T) (V')

-

G(S,T)=¢

NI
Sy

(T)G(S.T)¢ 3(T), G(S,T) =% 3(T)G(S.T)p, *(T),

T
G(T) =G(0,T), G(T)=G(0,T), C(S,T) :@*%(T)/b(t)dW(t).
S

The reader can easily check, that for calculation of G(S,T) the knowledge of V
(which is unknown) is not necessary, as it was for the calculation of G(S,T).

First we investigate the rate of convergence of the estimator 19(.5’, T) using the
following form of its normalized deviation from ¢ :

L1 3 1 —
As follows from our basic examples, the matrix G(T) may be get degenerated as
T — oo (see Table 1, region ©14 and Table 4, region O7F;). In this case, the limit of

@é(T) (9(S,T) —9) for T — oo can be calculated if we know the rate of decreasing

of the smallest eigenvalue of el (T)G(T) for T — oo. The following Assumption (G)
below gives this rate.
To formulate Assumption (G) we define the following sets of functions

Po=A{f(): =~

= ~(Casz — oo},

S ) o S
Po=1{f(): 770 ~Cif T & Casa oo}

Go={g(-) € Py: Tling(T)>0}

and for g(-) € Gy the sets
Pi(g) = {y(-) : such that y(S) = o(g~"/>(T)y(T)) if S = o(T) as T — oo},
Pi(g) = {y() : such that S = o(T) if y(S) = o(g *(T)y(T)) as T — oo},
Gi={g()€Go: Pi(g) #0}, Gi={g()€Go: Pilg) #O}.



Note, that the functions g(-) given in Tables 2 and 4 below belong (see our ex-
amples) to the sets Gy and G;.

ASSUMPTION (G): Let the functions b(t) and b(t) satisfy Assumption (V) and let
wi() € Pi(g), i = 0,p, g(-) € G1. We suppose that the following property for the
matriz function G(T) and g(T) = g(¢o(T)), g(-) € G1 holds:

Tim g(T)AminlG (T)G(T)} > 0 Py —as.,
T—oo
According to Assumptions (V) and (G), the variances of the components of
the vector of noises ((T) are asymptotically bounded from above and the matrix
g_%(T)éfl(S, T) is bounded Py — a.s. on the norm from above for all S,T large
enough with 7" > S. Then we can say that the components of the vector estimator

9(S,T) have rates of convergence to the true value 9 equals to the corresponding
diagonal elements of the matrix g_%(T)(fJ%(T).

Consider two extreme cases. If V = I then the estimator U has the fastest rate
of convergence g_%(T)cﬁl/Q(T) = g_%(T)E% (T). If, on the contrary, the matrix V'
has more complicate structure, then the rates of convergence of all the compo?ents
of the vector estimator J(S,T) may proportional to the slowest rate yfé(T)gog (T).

Our purpose is to consider the most general case of non-constant weights V'(t)
with an unknown non-degenerate limit matrix V' of an arbitrary structure (according

to planned applications). Therefore we shall use the following normalized represen-
tation for the deviation of the LSE ¢(S,T) :

08 (T)(D(S,T) — ) = GH(S, T)E(S, T), (9)

where we use the matrix G(S, T'), which does not depends from the unknown matrix
V (in contrast to the matrix G(S,T)). At the same time, as we show below, the
matrices G(S,T) and G(S,T) have similar asymptotic properties under following
assumption and condition (12) (see below).

We will use in the sequel the notation T': S 1 oo for S = o(T), T — oc.

Assumption (G) is more convenient for verification for the matrix G(-) than for
the matrix G(-). At the same time it gives the possibility to control the behaviour
of the matrix G='(S,T) in the representation (9) of the deviation of the estimator
19(5’, T) from 9 by the construction of sequential estimation plans.

This is true in view of the following inequalities for the norm ||G~'(S,T)
obtained in Proposition 1 (see Appendix):

1%,

—_ 1 A1 2
T g D)6 S DI < o (10)
and the lower limiting bound
lim_ ||G7Y(S,T))|?>0 Py—as. (11)
T:StTo0

can be obtained under the following additional condition on the functions ¢;(T'), i =
0,p and on the matrix V :

lim Amar{vla_l(T)‘PO(T)V} > 0. (12)

T—o00



By the definition, the noise ((S,T) is bounded from above in the L,—norm.
Thus, according to (9) and (10) we can say that the estimator J(S,T) has the rate
1

of convergence g—'/?(T)pZ (T) and, as follows, it is oriented on the at most "bad
case” (on the second of the mentioned just before (9) extreme cases). This is the
payment for the lower level of a’priori information on the observed process (a(t)).

Now we introduce different parametric classes for the functions ¢;(c,T') which
reflect, in particular, all possible cases of asymptotic behavior of solutions of linear
stochastic differential equations (SDE’s) and stochastic delay differential equations
(SDDE’s).

In the sequel we say that functions f and g are equivalent asymptotically for T'
large enough (f(T) ~ ¢g(T)) if f(T)/g(T) — C as T — oo for some positive number
C.

ASSUMPTION (pW¥): Assume @i(a,T), i« = 0,p, a € A are functions as de-
scribed in Assumption (V). We put Vo(a,x) = = and suppose, that there exist
so-called positive rate gemerating functions W;(-,-), i = 1,p on A x (0,00), such
that @;(a, T) ~ ;(r, po(T)), 2= 1,p for all « € A.

To formulate the forthcoming assumptions we need some special classes of just
introduced rate generating functions ¥;(«,T') which we shall define in following

DEFINITION (D1). For every vector i, = (i1,...,i) of increasing integers i; €
[0,p], 7 = 1,k,k = 1,p+1 and fized « € A as well as for every vector of rate
generating functions Vo, 1] == (V;, (o, z), ..., ¥;, (o, z)), we define Y (V[a,ix]) to
be the set of all real functions y(-) on (0,00) such that

Wiloy@) | Wiloy)

_l’_

~(C asz —
\Ijil (O[,.’E) \Ijlk (Oz,fL‘)

and Y'(V[a, ix]) to be the set of all real functions y(-) on (0,00) with the property

\Ijil (Oé,fl?) + \ylk (O[,:E)

iy (a,y(e) mﬁc as T — 0o.

For every k =1,p+ 1 and i = (i1,...,1k), a € A we define
P(a) = {¥[oig] : Y (Ple,ig]) C Y (P]er,ix])}.

We say that the functions @;, (T), ..., (T) are Py(a)-equivalent if their rate gen-
erating functions ¥;, (a, ), ..., 9, (a, ) are components of some vector V[a, iy €
Py(a).

Fix a certain « € A. In some sense one could say, that the set Pj(«) consists of
vectors of functions, the increase rates of which differ not essentially. For example,
Tla,is] = (z,2%) € Py(a) for every a € RY, U[ay,io] = (e2207,e?1%) € Py(a) for
a = (g, 1), ag >0, a; >0 and Ula,is] = (z,e%*?) ¢ Py(a) for a > 0.

Let S and T be two reals with 0 < S < T. The part of observations (z(s),a(s), 0 <



s < S) will be used to estimate «, the part (z(t),a(t), S <t < T) to estimate 9.
The problem of estimation a will be observed in the next point 2.2. Now we consider
the problem of estimation .
Our aim is to construct sequential plans for estimating the parameters 9;, 1 = 0, p.
T

This will be done below by using the processes /b?(t)dt, i = 0,p. The rate of

S
increase of these processes is connected with the behavior of ¢;(T") for T' — oo and
may be different for different 7, see Assumption (V). Similar to our previous papers,

T R—
we will construct stopping times based on the sums of the integrals [ b2(¢)dt, i = 0, p.

In the case, when the rates of increase of these integrals may differ gssentia,lly, we can
not derive asymptotic properties of these stopping times. Thus we shall construct
different systems of stopping times on the basis of these processes (which are by
the way the quadratic variations of the martingales (;(S,T'), i« = 0,p) to control the
moments of the noise ((S, 7).

Our following purpose is to divide the set of functions ¢o(T'), p1(T),. .., vp(T)
into some groups of size [; say, such that the rates of increase of these functions do
not differ essentially within. To this aim we introduce some notation. Let

I, ::{gk:(il,...,ik): 0<in<ig<...<ix<p, k=1p+1}

be the set of all the vectors of indexes of the dimension less or equal p + 1.
Choose recurrently a sequences of numbers I, and vectors j' as follows: [_; = —1,

lo :=max{k =1,p+1: ¥[a, iy € Pr(), i € Ip,i1 =0},

50 is the corresponding vector, satisfying \If[a,jo] € P ();
Denote s; = Y1, 1;, j > —1. For r > 1 we define
I :=max{k =T1,p— s, 1: V]e,ix] € Pp(a), ix € I, \ (U_g5")}
if s,_1 < p and 0 otherwise; j is one of the vectors 1, satisfying the relation
Ula,i;,] € Py, () and having the smallest first component.

Put
m:=min{j >0: s; =p}.

It is obviously, that 0 < m < p.

Thus we have defined the lengths I;, i+ = 0,m of mentioned above groups of
functions. Then we unify all the functions ¢y (T"), 1(T), ..., ¢p(T) in m + 1 groups
Gj=1[,...,:] of Py, (a)-equivalent functions respectively, 7 = 0,m, and without loss
of generality can introduce, for simplification of our notation, the ordering of these
groups in such a way that G; = [¢s,_,+1(T),- .., ©s;(T)], 2 = 0, m (it can be achieved
by permutation of the lines in the weight matrix V).

Consider one simple example to explain the introduced notation. Assume we
have five (p = 4) functions, defined as follows:

0o(T) =T, ¢1(T) = T, o(T) = &™),



03(T) =T, ou(T) =T, ; >0, i=1,3.

Then a = (a1, a9,a3), the functions ¢o(T') and @3(T) are Py(«)-equivalent, the
functions ¢ (T') and @4(7T) are Ps(«)-equivalent and we can find the vectors:

7 =10,3)} 5 ={14}, " ={2)}
Then lg =2, Iy =2, ls =1, m = 2 and we obtain three groups of functions:

Gy = {T, T}’ Gy = {ealT’eagT}’ Gy = {e(eaQT)}.

We give now an additional assumption on the functions ¥;(-,-), i = 0,p for the
case m > 0.

ASSUMPTION (¥): Assume ¥;(a,z), i = 0,p, @ € A are the functions from As-
sumption (o¥) and m > 0. We suppose, that there exist some integers i € [sj_1 +
1,s;] for every j = 0,m such that the functions ¥;, (c,-) € Py and ¢o(-) € P1(g),

gegl.

For example, the function ¥ (a, z) = 2"'e"” belongs to the class Py if

A= {(vo,v1) : [{0} x (0,+00)] U[(0, +00) x (=00, +-00)]}.

By the construction of our sequential plans we shall define m + 1 systems of stop-
T

ping times on the bases of the sums of appropriately normalized integrals [ b%(t)dt,
S

having the rates of increase ¢;(T'), i = s;_1 + 1,s; with the rate generating func-
tions from the corresponding groups G;, j = 0,m.

To take this aim into account we introduce a ”multidimensional time scale”
T = (To,...,T(),Tl,...,Tl, ...,Tm,...,Tm) ifm>0T= (T(),...,T()) if m = 0.

~ AN ~ v N ~ ———

lo I Im ptl
We shall substitute in the following the components of the vector 1" on the special
stopping times.

Denote Tyer = max T; and Ty, = min T;. We shall construct our sequential
1=0,m 1=0,m

estimation plans on the bases of the estimator 19(8, T) with T' = T,,ipn, which has

1
the rate of convergence equals to gfé (T)pi (T') as T' — co. At the same time we will
use for estimation the sample of the size Ty,q,. To keep the order of the convergence

1

rate g‘%(Tmm)@g (Tpnin) it is natural to demand the following property:

: L
mg_ 51 (Tmam ) ‘P(i (Tmaa: )
Troo 7 2(Thin) o (Tnin)

In view of the definition of the function g(7T'), g € Gy, this relation holds true on the

following admissible set for the time-scales T :

T:= {(T) : EWO(Tmam)/@O(Tmin) < oo} (13)

T—o0

10



2.2 Construction of sequential estimation plans

Let us return to the study of the equation (1) and assume that the Assumptions
(V), (G), (¢¥) and (¥) are valid.

Let € be any positive number being fixed in the sequel. Now we construct a
sequential estimation plan SEP(e) = (T'(¢), ¥%) where T'(¢) and 9} are the duration
of estimation and the estimator of ¥ with the e-accuracy in the sense of Lg-norm
(2) respectively.

To construct a sequential estimator ¥(e) of ¥ with preassigned accuracy e first
we introduce a random time substitution for the weighted least square estimator
9(S,T) from (5). This enables us to control the moments of the process ¢(S,T) in
the representation (9) of its deviation. To do that, we have to take into account the
fact, that the L,—norms of the components of the vector b may have different rates
of increasing. The knowledge of these rates gives the possibility to construct the
system of stopping times belonging to the admissible set T.

For every positive ¢ let us fix two unboundedly increasing sequences (v, (€))n>1
and (cg)n>1 of positive (Fy)—adapted stopping times (or real numbers) and real
numbers respectively, satisfying the following conditions: as n — oo and/or € — 0

©o(vn(€)) = o(g™?(e7 ep)een) Py — as., (14)
S " < (15)
n>1

and for every fixed ¢ > 0

> g7 (e en) = oo, (16)

n>1

where g(T') = g(¢o(T)), 9(-) € Gu.

Assume that « is a parameter of the functions ¢;(c,T'), i = 0,p from Definition
(D1), which can be estimated consistently by observation of (z(t),a(t));>o. It is the
case in all of our examples below.

Denote by a;(n, ), i = 1,7, n > 1 some estimators of the parameters «;, i = 1,7,
which we assume to be constructed using the trajectory of the observation process
(z,a) of the duration v, (e). Define

U(a,n,e) = diag{e 'en, Ui(a,e ten), oo, Up(a, e ten)l,

U(n,e) = U(a(n,e),n,e), bu(t) =T 2(n,e)b(t) = (bon(t),.. b (1))

ASSUMPTION («): Let the condition (14) be fulfilled. The estimators a(n, ) of the
parameter o are supposed to have the properties:

ASSUMPTION (al): for everye >0 andi=1,p

\i/“‘ (7’1,, 6)

————~(C asn—> o0 Py—as,;
\Iiii(oz,n,e)

11



ASSUMPTION (a2): for everyn > 1 andi=1,p

‘ijii(na 5)

— 1 _~C — 0 Py—a.s.
\Ijii(aa n, 6) e ! >

In Section 3 Assumption (a) will be verified for the autoregressive process (3),
considered in Example I and in Section 4 for the time delayed process (4) from
Example II.

Let us define the sequences of stopping times (7j(n,e),n > 1), j = 0, m as follows

s T q/2
Ti(n,e) = mf{T > vn(e) 1 3 / 2 nat| =1}, (17)
i:s]'_l—l—l n(5)
where inf{®} = oo and denote
Tmin(n, €) = min{7y(n, €), 11(n,€),...,Tm(n,e)}.

Note, that for ¢ = 2 and m = 0 the definition (17) can be written in the form

1ba ()2t = 1}.

—

10(n, ) = inf{T > v, (e) :

—

€)
Moreover, in the case (1) = ... = ¢,(T) we can put V(t) = I, vy(e) =0 and

Un

To(n,e) = inf{T > 0: tr G(T) = ¢y}

(see, for comparison, [9]).

All these stopping times are finite and tend to infinity Py—a.s. if n - oo ore — 0
due to the Assumption (V). The stopping times 7j(n,¢€), are constructed by using
different sequences (¥;(n,¢), n > 1), i = sj—1+ 1,54, j = 0,m, because, according

T
to the Assumption (V), the rates of increase of functions / b? (t)dt from different
0

groups are different essentially.
From the condition (6), the definition (8) of the martingales (;(S,T) and the
Burkholder-Gundy inequality it follows that for any ¢ > 2 the sequences

(Ci(vn(e),Tj(n,€)), n>1), i =sj_1+ 1,55, 7=0,m
satisfy for n > 1 the inequalities
i () 4/2
EoGl(vn(e).milme) <beBy | [ Wt |
vn(€)

where b, is some positive constant. The value of b, can be obtained by making use
of inequalities for local martingales (see Theorem 7 of Chapter 1 in [17] and [11]):

q+1 ]3

bq = 2(]71[3(]71 + 2% (1 + qq)] |:(q—1)ql

12



for ¢ > 2 and by = 1.
As follows, for the vector of noises

Gne = U2 (n, )¢ (vn(€), Tmin (1, €))

for n > 1 we have

P q/2 g2 p [ Tmin{me) o2
mmwwz%< @@ﬁ <E)TumY | [ Ron] <
i=0 1=0
vn(e)

m s; 7i(N,8) a/?
<p+1)ThEY S /Z%@ﬁ <p+1)F (m+ b, (18)
)

j:() i:Sj,1+1

Thus we have got the wanted control of the moments of the noises mentioned in
the Introduction. Note that for ¢ = 2 and m = 0 we have the equalities

T0(n,e)
Bollcael P =By [ ba(®)ldt =1, 0> 1.

vn(e)

Put

T(n,e) = (To(ﬂ,€), .y 1o(n, 6)473-1(7176)’ ooy i(n, 5)1, cesTm(ny€)y ooty Tm(ny €))

Io I Im
and
Tmaz (N, €) = max{my(n,e), 11(n,€),...,Tm(n,€)}.

We shall prove below, that the vector-sequence (7(n,¢)) belongs to the set Y.
The inequalities (18) suggest that the estimation of the parameter ¥ should be
performed on the intervals [v,(€), Tmin(n, €)] with the weights V() :

(n,e) = I vn(€), Tmin(n,€)), n > 1.
For the construction of sequential plan we put
o(e) =inf{N >1:S(N,e) > o}, (19)
where
N
S(Na 6) = Z ﬁQ(n’ 8)
n=1

and f(n,¢) is defined as
Bln,e) = |IG, LI~

if the matrix

N

\i],

N

9

(n,e)G(vp(€), Tmin(n, €))

13



is invertible; 0 in the other case,

0=by(p+ )T (m+1) 3 e,
n>1
DEFINITION (D2) The sequential plan (T'(e), ¥(e)) of estimation of the vector
9 € © will be defined by the formulae

o(e)
T(e) = Tmaz(o(€),€) , I(e) = S_l(a(g)’ £) Z B(n,e)d(n,e), (20)
n=1

where T'(¢) is the duration of estimation, and V() is the estimator of 9 with given
accuracy € > 0.

By construction the sequential estimator 9(e) is a random weighted mean of the
weighted LSE’s (-, ), calculated on the intervals [y, (€), Tmin(n, €)], n > 1.
The following theorem summarizes the main result concerning the sequential plan

(T'(e), 9(e))-

THEOREM 1. Suppose Assumptions (V), (G), (¢¥), (¥) and (o) hold and the con-
ditions (14)—(16) are fulfilled. Then for every ¢ > 0 and every 9 € © the sequential
plan (T(e),9(g)) from Definition (D2) is closed, i.e. it holds T'(¢) < oo Py — a.s.
Moreover, the following statements are true:
1°. for any € > 0 it holds
sup [[9(e) — 97 < &;
J€O

2°. if, in addition, the Assumption (a2) is valid, then for every ¥ € ©

a) im h(e) - po(T(e)) < o0 Py —a.s.,
e—=0
where the function h(-) is defined in (33) below, and, moreover, if the condition (12)
18 valid, then
b) lim ¢ po(T(e) >0 Py—as.
e—0
3°.if g(T) = o(T) as T — oo then under the conditions from 2° b) the estimator
9(e) is strongly consistent:
limdJ(e) =9 Py — a.s.
e—0
Proof. Fix an arbitrary 9 € ©. Let us verify the finiteness of T'(¢) = Typaz(0(€), €).
While the stopping times 7;(n,e) due to Assumption (V) are finite for all ¢ =
0,m, n > 1 and € > 0, it suffices to establish the finiteness of the stopping times
o(e).
From Assumptions (V), (pv,) (al), (114), (14) and the representation
, 2
> (MmmmmW»W Wiglo,mye) )72
\Ilii(oz,n,s) \Ilii(n,z?)

’i:$j_1-|—1

14



1 Tj(”:"f) q/2
N 2 -
<wi<q(n,e)) / bl“”“) L

vn(€)

J = 0,m which is only the form of the definition (17), it follows that Py — a.s.

Sj

Z <\I’i(a=¢0(7j(”’5)))>q/2 ~(C asn — oo,

2 T e e)

j =0, m and, as follows,
i Ui(a, po(Tj(n,€)))

\Ili(av 671671)

~ (C asn — oo,
i:Sj,1+1

j = 0,m. Then, by the definition, the functions ¢;(7;(n,€)) € Y (¥[a,iy]), 4, =
(sj—1+1,...,8§), 1 = sj_1 + 1,54, j = 0,m and, according to the definition of Elj
and the property W[a,i;;] € Py, (a), the functions ¢;(7;(n,€)) € Y'(¥[a,i;,]) and
the following relations for ¢ = s;_1 + 1,85, 7 = 0,m Py — a.s. hold true:

Wi(a, po(Ti(n,€)))
U (a, e ey)

~(C asn — 0. (21)
Then, take into account Assumption (¥), from (21) we obtain with Py—probability
one:

wo(Tj(n,€))
e~le,

~(C asn—oo, j=0,m. (22)

Then for m > 0 we have

©0(Tmin(n, €))

. ~(C asn— oo Py—a.s., (23)
e le,
M:C asn — oo, Py —as. (24)
‘;00(7_3'(”75))

1,7 = 0,m and, as follows,

©0(Tmaz (1, €))

~(C asn— oo Py—a.s. (25)
@O(Tmin(na €

Then, by the definition (13), the vector-sequence (7(n,¢)) belongs to the set Y.
From (21), (24) and Assumption (al) we can get with Pyg-probability one, for all
1 = 0, p, the relations

<¢_1(Tmm(n, £))¥(n,e))y; ~C asn — co. (26)

For sufficiently simple and smooth functions ¥; (see, for example, Tables 3 and 6
below), the relations (26) lead to knowledge of exact asymptotic behavior for the
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stopping times 7;(n, ), i = 0,m, see examples below.
From (14) and (23) it follows, that ¢o(v,(€)) = 0(G 2 (Tmin (1 €)) 00 (Trmin (1, €)))
asn — oo Py —a.s. and, by the definition of the class G, we obtain:

vn(€) = o(Tmin(n,€)) as n — oo Py — a.s. (27)

Note, that all the obtained relations (21)-(27) are also true Py—a.s. under As-
sumption («2) for every n > 1 as ¢ — 0. From (25) it follows, that the vector-
sequence (7(n,¢)) belongs to the set T as a function of n or ¢ Py—a.s.

In the sequel, we denote ci,Ci,cij,Cij,C’i,é’ij,éij, ... %,7,= 1,2,... nonnega-
tive constants or random numbers, and ¢;;(7T), Cij(T),éij(T), Cii(T),... 0, 5,= 1,
2,... nonnegative continuous periodic functions, possibly random and different even
within the same index.

By making use of the relations (10), (23), (26) and (27) and definition (19) of

functions 3(n, e) we get the lower limiting bound for n large enough for these func-
tions:

B2 n,8) = [|Gutll 2 = (e ten) L 16 (nle), Tnin(n, )02 (m, )| 2 = (L) -

00 (Tmin(1,€)) - || G (v (), Tnin (1, €)) - (@ (Fin (m,€)) W (1, €)) 2| |72 >
> C1-||GH (wne), Tmin(n, )72 - [ (i (n, €)) Uy )71 >

> Gy 167 0 i DI 2 s B Py s, (28)

where [, is some Py — a.s. positive and finite random number.

Then for all € > 0, according to (16), the stopping times o(g) and T'(¢) are finite
Py — a.s.

Analogously, using the condition (12) and relations (11), (23), (26), (27), for some
Py — a.s. positive and finite random number §* we can obtain the inequalities with
Pg—probability one

F(n,e) = (e en) " po(Tmin(n, €))
{IG™H (vn(E), Tmin (1 €)): (@ (Fmin (1, €)) ¥ (m, £)) 3|72 =
= (7" en) " 00 (Timin (1, €))- {1 [G™" (Vn(€), Trmin(n, €)):
© (Timin(n,€)) ¥ (n, €)- (G (v (€), Tmin(n,€))) 1} <
< (7 en) " 00(Tmin(n, €)) A {® " (Tmin (n, €)) ¥ (1, €) }-
Aaa A G (n(€), Trin (1, €))-(G' (Vn(€) Tinin (n, €))) 71} <
< (p+ 1) (e en) ™ 00 (Tmin (1, €))- Amaz (@(Tmin (1, €))

U, )G (va(e), Tmin(n,€)) |72 < B < o0 (29)

for n large enough.
In a similar way, using the Assumption («2), we can get the inequalities (28)
for every n > 1 and small enough ¢ and, using in addition the condition (12), the
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inequalities (29).
1°. Now we estimate the L;—norm of the deviation of J(e). From (1) and the
definition (20) it follows that

QN

19() = 92 = (By (S H(o(e)s2) - I Y B7(n,2) (F(n,e) = D))
n=1

According to the Holder inequality
1

> anby < (Za,‘% qu 0
n n

where we put a, = B7 '(n,e) and b, = B(n,e)||¥(n) — 9|, we may enlarge this
expression and continue the estimations by

1N

196) = 912 < (Bos 0(0).0) - ( X . e)otnee) = 91)) " <

n>1

Q[

(Eﬁs &) Y Bi(n,e)||6(n, <) — 19||q>

n>1
Then by definitions of o(e), B(n,e), ¥(n,e), o and from (18) we have

19(e) = 9112 < (07" 3 Eaft(n. €)|G™ (n(€), Tmin (1,€)) - C (v (E), Tanin (1. €)) [ 4) &

n>1
2
= (9_1 Z Eﬂﬂq(n, 6)( n)_EHGns : )q <
n>1
2
o™ chzEﬁﬁq(n Gt el =
n>1
2 _ q-2 o2
=elo™ Y P EyllGe )t <ele M p+1) T - (m Dby Y )i =
n>1 n>1

2°. The second assertion follows from the Definition (D2) of T'(¢), the definition (19)
of o(e), Assumptions (G) and (a2), condition (12) and relations (22), (28), (29).
Indeed, according to (22) for ¢ — 0 under the Assumption («2) for every n > 1

€00 (Tmaz(n,€)) ~C ase -0 Py —a.s. (30)

Denote
oy =inf{N >1:N > o(3*)~9?},

N
oz(e) = inf{N >1: Zg_q/Q(E_lcn) > gﬁ;qm}.
i=1

Using the definition (19) of o(e) and (28) for £ small enough we have

o(e) <o2(e) Py—as. (31)

17



and, in addition, under the condition (12) from (29) for ¢ small enough we obtain

ole) > 01 Py—as. (32)
Denote
h(e) = 60;21(6). (33)

Take into account, that by Definition (D2), T'(¢) = Tmaz(o(€),e) and from the
relations (30)—(32) we obtain the second assertion of Theorem 1:

lim h(g) - po(T(e)) < oo ase —0 Py—as.
e—0

and

lm e-po(T(e)) >0 ase -0 Py —as.
e—0

The lower and upper bounds exist under the Assumption (G) and, in addition, under
the condition (12) respectively.

Note, that for the constant function g(-) = const, the stopping time o9(e) =~
Case— 0 Py—a.s.and in this case we have

e-po(T(e)) ~C ase —0 Py—as.

3°. First we establish the strong consistency of ¥(n,e) as ¢ — 0. By the definition
of 9(n,e) we can write

I(n,€) =9 = (7 en) T 2G Llne = [00(Tmin(n, €)) e '] [g7* (Tmin (n, €))- G ]

(8 (n, )(Timin (1,€))] Y2 - [ (i (1, €))-

00 (T (1,€))7™/2 (inin (1, €)) - € (v (&), T (m, ©))].
According to (23), (26) and (28) the first three factors in the right-hand side of this
equality are bounded Py —a.s. on the norm from above for € small enough or n large
enough.
In the sequel we will use the notation li\r/n which means, that the corresponding
nve

relation holds for lim as well as for lim .
n—o0 e—0

The last factor vanishes in Py — a.s. sense in view of (27), condition ¢(T') =
o(T), T — oo of Theorem 1, and by the properties of the square integrable martin-
gales (;(0,T) for all i =0,p:

e 72 onin(1:2)) - G0 € Tmin (1,0) _ p g 0(T)) - GUO.T) _ oy

e (,0(1)/2(7'mm (na 5)) ) wiz/Q(Tmzn(n, 6)) T—00 (10(1)/2 (T) . @1/2 (T)

i

Then the estimators ¥(n, e) are strongly consistent as e — 0 for every n > 1 and as
n — oo for every € > 0.

Moreover, taking into account for ¢ small enough the relations (29)—(32) for the
weights G(n,e) and times o(e) we can see that the weighted arithmetical mean J(¢)
of estimators ¥(n, €) is strongly consistent as well.

Hence Theorem 1 is proved.
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3 Sequential parameter estimation of an autoregressive
process

As an application, in this section we will use the general estimation procedure,
presented in Section 2 for sequential parameter estimation of a second-order autore-
gressive process.

Define p = 1, z(t) = &, ag(t) = &, a1(t) = 4. Then the equation (1) has the
form (3):

diy = ozrdt + V1xedt + dW (t), t > 0. (34)
Denote by Ag and A; the roots of its characteristic polynomial
qg(\) = N2 — 9o\ — V1.
Now we write equation (34) in the matrix form:

dX (t) = AX(t)dt + BdW (1), (35)

dg U Ty 1
(1 2). w0 (2). (1)

It is obviously, that the roots Ag, A; are the eigenvalues of the matrix A and

o [ (90?2 Y [ (00?2
— + <2> +’l91, )\1—?— <2> +’l91.

For this model we can define the following parametric sets

where

01 =01, UB1UB13UO1y,
O ={9 € R?: 9y <0,9; <0},
O = {0 € R?: 9> 0,9 < —(99/2)*},
O3 ={9 € R?: 9y=0,9; <0},
O ={9 e R?: 9y>0,01 =—(9/2)%},
Oy ={9 € R?: 95> 0,— (05/2)* < 91 <0},
O3 = {9 € R*: ¥, >0}

and we put o } 5
©=0,U6,UB3 = RQ\{'ﬁER2 791—0}

Remark 3.1. As usual, the condition ¢#; # 0 means the knowledge of the order
(p = 1) of the process (34). It should be noted that the problem of sequential
estimation for the case © \ { € R?: 9y = 0} has been solved, in principle, in [6],

[7].
Now we show, that the smallest Ay, (G(T)) and the largest Amw (G(T)) eigenval-

ues respectively of the empirical information matrix G(T / X ()X’ (t)dt have

the given in Table 1 asymptotic rates of increase:
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Table 1

Amin(G(T)) Amaiﬂ(G(T))

Region

S T T

@12 e’l?oT eﬂOT

©13 T T°

0. T—290T T2et0T

@2 62)\1T eQAOT

é3 T eﬂoT

We shall find the weight matrices V' and V(¢) for all the defined regions. Intro-
duce following notation: v; = Re);, 8 =ImA;, i =0, 1.

The sets @11, e 614, ég, é3, defined above can be rewritten in terms of eigen-
values Ag, A1 in the following form:

(:)11:{196}22: —OO<1)1SU()<0}, élgz{ﬁERQ: 0<U1:U()<OO,,37£0},

(:313={19€R2! vg = 0, B#O}, é14={’19€R2: 0< v =v9 <00, BZO},
(:)2:{796122: 0 <wv <wy < oo}, (:)3:{19€R2: —00 < v <0<y < oo}

The linear rates of increase for Apin(G(T)) and ez (G(T)) in the case ©1, follow
from the equality

lim T7'G(T) = Fi1 Py — a.s., (36)

T—o0

obtained in [7], where F; is a non-degenerate constant matrix. Assumption (V) is
fulfilled if we put @o(T7) = p1(1) =T,V (t) =V =1.
From Lemma 3 in [7] it follows, that for ¥ € ©15 U ©4
lim e ATQ(T)e 4T = F1y Py—a.s., (37)
T—oo

where o ~
Fio = / e MuUe Mdt, U= / e AdW (t)B
0 0

and Fjy is random Fg — a.s. positive definite matrix.
Consider the case ©;5 of complex eigenvalues \g = vy + 8, A\ = vg — 83, vg =

19 9o\ 2
?07 B = <20> + 1. In this case we can find the diagonal form of the matrix A
5 A0 A ~ A0
— 01 1 _ 1 "1
4=0n ( 0 X > Q2 where Q12 = ( X 0 ) ' (38)

Then in the case O3, using of the equality (37) and the representation (38), we have
with Py—probability one

lim |le22°TG(T) — Fio(T)|| = 0, (39)
T—o00
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where, for T' > 0,
Fi2(T) = Q12715 (1) Q15 Fi2(Q1) ™ T (T) Q'

[ (cosBT +isinfBT) 0
Ji2(T) = ( 0 (cos BT — isin BT > '

The eigenvalues of the limiting positive definite matrix function Fj9(7") have
positive finite constant bounds. As follows, Assumption (V) is fulfilled with ¢, (7) =
01(T) =e®T V(t)=V =1.

Consider the case ©13. The following diagonal representation for the matrix A

A=Q13<éﬂ (iiﬁ)Q1317 Q13=<7§lﬂ 1—2'5)’ B = /]

holds true. Then et = Q13.J12(t)Q 5 and

X(t) = Qu3J12(t) Q15 X (0) + Q13J13(t) Q13 B,

_ [ Aime 0 [ &
J13(t)_<0 Bémt>’ mt_(m ’

[ cospt+isinft [t
Ae = ( —sin Bt — i cos Bt )’ ft_/o cos BsdW (s),

B, = ( Cosﬂt—iSinﬁt >’ n = /OtSiHﬁSdW(s)'

where

—sin Bt + i cos Bt

Using the strong law for martingales (see [16]), we can obtain the following Py —
a.s. equation:

Jim [[¢7 X (6)X'(t) ~ R(#)]| =0, (40)

where

—7(t) 1+ 6

From (40) it follows that Py — a.s.

_ 172
R(t)=4;2Q13<1_T(t) ! )Q’lg, r(t)zl p cos 203t + i sin 203t.

) 1
Jim 5 G(T) = Fis, (41)

where
1 0 1 ,
Fi3 = 87ﬁ2Q13 < 10 > Q13

and Assumption (V) holds with ¢o(T) = ¢1(T) = T2, V)=V =1.
In the case ©14 we can find the following Jordan form for the matrix A :

A=Qy} < 80 11)0 >Q14, Q4 = ( i (_1@;1)0) )
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and, as follows, the representation for the matrix exponent
_ _ 1t _
e M = Q141 ( 0 1 ) Quae™"".

Then, from (37), denoting
—vy V3
—1 v

we obtain with Py—probability one,

o :
Tll_r>lgO WG(T) = Fi4, F14 = 514F12514, (42)

. 1
Tlgréo Wdet(G(T)) = vgdet(Fa). (43)

In the sequel we say that functions f and g are equivalent asymptotically for T'
large enough (f(T') ~ ¢(T)) if f(T)/g(T) — C as T — oo for some positive number
C.

From (42) and (43) it follows that Apaz (G(T))) ~ T?€*"7, Xpin(G(T)) ~ T~%e0"
in the case ©14 and Assumption (V) holds true if we put ¢g(T) = ¢1(T) = T?e?"T,
V)=V =1 . }

Consider the cases O3 and ©3. Denote

QQS = ( 80 ) ) QO = (17 _UO)a Ql = (13 _vl)a
1

g (A) = A —wvo, qi(A) = A — 1.
Following an idea of [14], in the case of real eigenvalues \; = v;, i = 0,1 the
characteristic polynomial g(\) can be written in the form g(\) = go(A) - ¢1(A) and

’U()—{—1)12790, vo - V1 = —1.

The matrix Qo3 for ¥y # ¥ is non-degenerate and

_ 0
A =Qy3 J23Qa3, Joz = < 81 o ) : (44)
Similar to [7] we can get following decomposition (45) for the process Z(t) =
QX(t) in the cases @2 U @3 H Z(t) = (Zl(t),ZQ(t)),, Zl(t) == Q()X(t) == Xl(t) -
voXa(t), Z2(t) = QX (1) = Xy1(t) — vi Xa(t),
le(t) == ’01Z1 (t)dt + dW(t), (45)
dZQ(t) = 9Ly (t)dt + dW(t)

This decomposition is similar to that, obtained in [14] for discrete-time autoregres-
sive processes.
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In view of Lemma 3 in [7], putting @o(T) = 21T, 1 (T) = e**7 in the case O

and po(T) =T, ¢1(T) = e**7 in the case O3 we get with Py—probability one

lim & /%(T)QusG(T) Qa3 /*(T) = Fis, (46)
T—o0
where Fb3 is some positive definite matrix with random elements, which is differ in
differ cases éQ and ég.
From (46) can be find the rates of increase of A\p,in(G(T)) and e (G(T)) for
the cases O and O3, given in Table 2.
Of course, the sign of the reals v; and vy define the asymptotic properties of the
components Z;(t) and Zs(t) respectively. As we can see below, Assumption (V) is
fulfilled if we put

[ 1T —0(t) _
for ¥ € O and
1 —vo(t) 1 —ug
vin={, (") v={, ; (48)
for 63, where R R
oo(t) =log Ao(t), D1(t) =log Ai(t),
¢ t o~ o~
A TeTs_1dS A _1ds
Ao(t) = Jo stra-1ds S M) = Jo Gss-15 Pobor 1
0 LTs_1ds Jo U5 1ds

s = Ts — 5\0(3):165,1 is an estimator of the process ys = x5 — Agzs_1, s > 0.

Note that we use in the case ©3 the matrix V, defined in (48) instead of Q3
because both the processes Zs(-) and Xa(-) are unstable.

Now we define the processes Z;(t) = X (t) — 9o(t)X2(t) and Zo(t) = X1(t) —
01(t) X2(t) estimating of Z;(t) and Z3(t) respectively.

Now we will find the rates of convergence for all the introduced in (48) estimators
;(t) and Xi(t), i = 0,1 and verify Assumptions (V) and (G) for the case ©,.

From the definition of the set Oy it follows that the solutions Z,(¢) and Z(t) of
the equations (45) have the following asymptotic properties for ¢ — oo :

e U Z1(t) = Z1 + o(e™ ) Py —a.s.,
eivotZQ(t) =7y + O(ef’yot) Py — a.s.,
where 0 < 41 < v, 0 < v9 < vo, Z1 = Z1(0) + [y e "5dW (s), Zo = Z(0) +
oo
/ e "%dW (s), Z1(0) = £(0) — vox(0), Z2(0) = £(0) — v1z(0).
0

Denote (T') = diag{yo(T), ¢1(T)}, ¢o(T) = e, p1(T) = e*™.
Using obtained above asymptotic properties of the functions Z;(t), Z2(t) and the
definition of B(T") a short calculation shows that Py — a.s.

lim @ Y/2(T)- /0 ' Z(t)Z'(t)dt - V(T = Z, (49)

T—o00
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1 72 1
Z= ( % i1 )
vo+v1 212y ZQ

2v9

The solution of the equation (35) has the form:
¢
X(t) = X(0) + [ eAdaw(s) B
0
and, according to (44), it can be rewritten as

t
X(t) = Qya e’ Qo3 X (0) + Qp /0 e?23(79) qW (5) Qa3 B.
As follows, for t — oo,
Xi(t) = Coievot + Clievlt + 0(6717&),

where v, € (0,v1), i =1,2,

o
Coi =< Qo3 [1Q23X (0) + Q53111/0 e AW (5)Q23 B >,

Q=<Q§b@wﬂm+Q£bA e~ (5) Q3B >4,

0 0 1 0
Il_(o 1)’ IQ_(O 0)'

Then, by the definition of ©9, as t — oo, with Py—probability one we have

e !X, (t) = Cor + Chie~(wo—vi)t 4 0(6_(v0_v1_71)t)7
eVl = Cpy + Cpge—(vo—v1)t 4 0(9—(00—111—71)15)’ (50)
ey, = Ciy + o(e” (=1,

where

012 = 012(1 — )\0)\1_1).
From (50), as t — oo, putting v = 2(vo — v1) A (vo — v1 + 1), we get

. .

) o iyeds 2 w o

o(t) = Ao = 0Fe19eds 200G o-ury
Jo z2_ds (vo + v1)Co2

v9C1oC9e?v0 1
2
010G

Then, as t — oo, with Py—probability one we have

e~ 2vo—v)t | O(e—Q(Uo—Ul)t) + O(Q_(UO_W)t) Py — a.s.

N 2 V1 — Vo =
9t =yt — (holt) — Xo)w—1 = ———Choe™ '+

Vo + V1
1 Gy~ (W0=201)t | e~ (2ro=300)t) 4 ooty (51)

24



where ~
v9C12C12eV0 "1 evo 2

Cyy =
Co2 v1Cho2 v + 1

and denoting C’QQ = 022(1 — >\0>\1_1), as t — oo we obtain
Yy — A\Yp—1 = 02267(1)0721]1)15 + O(ef(%oi?wlﬁ) + O(eiwt) Py — a.s. (52)
From (47), (51) and (52), as t — oo, for the estimator A (t) we get

. o R
Mt) = n = Jo(s = Mfs1)gs1ds _ (vo +v1)e” Cy e (wovn)t

Jo 93-1ds (v1 — v0)Cha

+O(e 2=ty | p(e= () Py —as,

Then, by the definition (47) of the estimators 9y and 91, as € — 0 we have

iip(t) — vg = Cppe™ (07! 4 O (e~ 2(o=v0)ty, (53)
b1 (t) — vy = Crpe” Wt L O(e=2o—v)ty 4 (e~ (1t Py —as., (54)
where . )
_ 2099C1 o = (vo + v1)Cao
Ov — 7 N~ lv — 77— ~

(vo + v1)Co2’ (v1 —v9)Cia

_ From (50), (53) and (54) by the definition of Zi(t) = X1 (t) — 0o(t)X2(t) and
Zy(t) = X4 (t) — 01(t) X2(t) with Py-probability one, for ¢ — oo, it follows

efvltzl(t) = Zl + O(e*(UO*’Ul)t) + O(efyﬁ)’
e ! Zy(t) = Zo + O(e(07v1)t) 4 g(e™0t),

Zl =7, — CyCyy and Py — a.s., as T — oo,

T . . -
g AT [ 202 Wt HT) > 2, (55)
0
where L s L
Z = ( WIIZI~ U(1)+v1221Z2 ) .
vo+v1 ZlZQ %ZQ

Then, according to (49) and (55) Assumption (V) holds true. Moreover, it can
be shown by using the definition of G(T) in point 2.1 and the equation (46), that in
the Py — a.s. sense

lim G (T) =

2(7)0 + ’U1) ' 1)1(’[)0 + vl)Zlefl —21}01}1Z1_122_1
T—o00 (Uo — U1)2 '

—2v0012f1Z51 Uo(’Uo + vl)Zglzgl
From this it follows Assumption (G) by g(7T) = 1 and with Py-probability one

: -1 _ 1/2 1=—1/2 a1 _
Jim G(ST) = lim oy *(@)(V'E AT)E(T) = 6, (56)
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o — 2(1)0 + ’01) < Ul(’l)() + 1)1)21_121_1 —2’[}01}1Z1_122_1 )

(vg —v1)? ' —vou1(vg + vl)Zl_lZl_l 21}8’1)1Z1_122_1

Now we verify Assumptions (V) and (G) for the case O3.

In this case the solution Z;(t) = Xi(t) — voX2(t) of the first equation in (45)
and the solution X (t) of the system (35) have the following asymptotic Py — a.s.
properties:

T
. 1 2 _
fm o [ Zit)dt = fz, (57)
X;(t) = Coe™ + Chiiy + O(e™) i=1,2, t — oo,

where (Z;) is a stationary process, which is a linear combination of the integrals
oo

t
/e”o(t*s)dW(s) and / "' (=8)dW (s);  f, is some positive constant. As follows,

t —00
with Py—probability one,

. L Fo Chy
A, e [t = i (58)
yp = ChroTy — NChoTi—1 + O(evlt), t — o0,

where the process y; = x; — Adgzy 1, Ao = e”* and for some positive constant f,,

.1
TIEE;T/ vidt=f, Py—as. (59)
0
Define
T T
Y*(T): /y;efvo(Tft)dt’ Yl*(T) _ / Z{(t)efvo(T—t)dt,
o .

where (yf)t>—0o and (Z7(1))e>—oco are stationary Gaussian processes, continuous in
probability and having a spectral density, such that, as T — oo,

Ly — wi?dt — 0, LT1Z(t) - Zi(t)Pdt = 0 Py —as.

Then the processes Y*(T') and Y{*(T') are stationary and ergodic (see [19]) and
we have with Py-probability one:

e?

T
lim | ir ({ 71 (t)evoldt — Yl*(T)‘ =0,

—00

T
Jim | [ et = YX(T) | = 0. (60)

From (47), (57)-(60), as t — oo,

Ao(t) — Ao =
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2’00
Co2
Then, by the definition (47) of the estimators 99 we have

Cou(t) = Z=Y™(t).
g (t) — vy = Cuy (t)efvo LR O(tei%ot). (61)

From (57) and (61) by the definition of Z;(t) = X (t) — o(t)X2(t) with Py-
probability one, as t — oo, it follows

Z0(t) = Z{ (1) + AZi (1) + Ofte ™),
ZT(t) = Z7(t) — 200Y*(t), AZ(t) = Z1(t) — Z7(t) and denoting

Z** / Z** —vo (T—t) dt,

we obtain for stationary process (Z**(T')) with Py-probability one the following
properties of the process (Z1(t)) :

lim
T—00

evo T—00

T T

7 [ Zi(t)er'dt — Z**(T)‘ =0, lim 7 [ Z(t)dt = By(Z{*(0))*. (62)
0 0

From (57), (60) and (62) we find with Py-probability one:

T
lim |k ale(t)xtdt — Co2Y(T)

T—o0

=0,

T—o0

T
lim el,%({zl(t)xtdt — COQZ**(T)‘ =0.

By the definition of the processes Y (T') and Z**(T') it immediately follows, that for
h — 0 we have E[Y*(T+h)— Y7 (T))?> = O(h) and E[Z**(T +h) — Z**(T)]?> = O(h).
Then, from Proposition 2 in the Appendix it follows that |Y*(T')| = O(vInT),
|Z*(T)| = O(VInT), as T — oo Py — a.s. Then, putting b(t) = (Z;(t),z:)’, b(t) =
(Z1(t), 21)', o(T) =T, @1 (T) = e?*°T we can find the Py — a.s.—limit
* *k
i 5 = BAOTO 8

2
T—oo 0 Coz

2v0

Thus for @ = vy, ¥y (a, z) = e?0% Assumptions (V) and (G) hold true and, similarly
o (56), with Pg-probability one,

T}:lgr%loo G~Y(S8,T) = Gs, (63)
Gs = (B9 20) 2 (0)] ( L ) .
Vg

Thus all the Assumptions (V), (G), (¢¥) and (¥) are fulfilled if we put the set
A= (0 +00) in the cases O, UO U @3, A = {(vg,v1): 0 <wv; <y < oo} in the
case @2 and
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Reglon b() (t) bl (T) b() (t) 51 (T)

B | X0 X0 X1 (8] Xat)

O | Xi()| Xa(t) || X1(8)| Xa(t)

(?13 Xl(t) Xg(t) Xl(t) XQ(t)

Ou | Xi()| Xa() | X1 ()] Xa(t)

O3 Z1(t) | Zo(t) || Z1(t) | Zo()

O3 Z)(t) | Xo(t) || Z1(t) | Xo(?)

Table 3

Region | eo(a. 7] pile D] @ | Ui(a.o)] o(e)
O11 T T - x 1
612 e21}0T e2v0T v0 T 1
O13 T* 1?2 - T 1
él4 T2 eQUQT T262v0T _ T 1118 ©
(;)2 621;1T 62U0T (anvl) 20/ V1 1
@3 T €2U0T 0 621101‘

Then [y = 2, szforz?EC:)lu(:)g and lp=1, 1 =1, m:1f0r19663.

Further we shall construct sequential estimation plans in all cases O, 05 and
O separately. Then we shall use these plans for the construction of the sequential
estimator, which works on the whole plane R? except of the set {9 € R? : 1 = 0}.

3.1 Estimation procedure for the case (:)1

From Table 3 it is clear, that the functions ¢o(T') and ¢1(T') are equal if ¢ varies
in 811, i = 1,4. They are different for 9 from different 6. Moreover, in all these
subsets we have V(t) =V = I. Thus we can define a sequential estimation plan of
the type (20) for all set ©;, where v, (¢) = 0, n > 1 and in the definition of stopping
times 79(n, ) we take Uy (a(n,e),e te,) = e te,.

Denote SEP1(e) = (T1(e),91(¢)) the sequential plan (20) with these parameters,
which in the considered case has the form:

S

—

€)

1

T1(6) = 7—1((71(6)75)7 791(5) = Sfl(al(g)vg) ﬁi](n,g)ﬁl(n,e), (64)
n=1
where
T q/2 T q/2
mi(n,e) = inf{T >0 : ( X2(t)dt) +( X2(t)dt) = (e en)??Y,
[riwa) (]

o1(e) =inf{N >1: Si(N,e) > 5;191}

01 € (0,1) is an arbitrary chosen constant and p; = b, 2 T > cn ;
n>1

N
=Y Bine), filne) =[G (o)), Gi(n,e) = (e en) T G(mi(n,€)),

n=1
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T
:/X(t)X’(t)dt, X (t) = (4, 24)';
0

91(n,e) = G~ (1 (n,€)) - B(mi(n, €)), /X VaX, (¢

Now we introduce the following notation: [a]; is the integer part of a; a A
b =min(a,b), a V b =max(a,b);

fm=[<Fn >%2 + < Fip >%2]2/q7 Ay = fi1 - [|FL )
—1
7“,11 = f11 'C[(sl—lAglgl_lhvp 7"11 - f11 ’ 5 A1191]1+1a
2

fla = [sup(< Fio(T) > + < Fua(T) >,
= [Inf (< Fia(T) >17 + < Fia(T) >3/,

12 = f1a - jnf IFG (D)), Ay = fiy-sup ||F5 (T,

>0 T>0

1
! 1 \—1 1 nmny—1

S—— e = _— In G .

T12 200 (f12) Clortpr(al)e—1vie 712 200 (f12) Clo7 pr(AY)a] 1415

fi3 =[< Fui3 >q/ + < Fi3 >gé ]2/qa A13:f13||F1_31||,

riz = \/f13 STl AL 1 v i3 = \/f13 ST o AL 1

fla=[< Fuu >q/ + < Fiu >q/ ]2/q, Arg = fra(vg|Fra]) ™ | Frall,
o14(e) = [67 L orvg AL, In*T e 1) + 1,

1
! 1 " -1
T —1In Crs—1 T = —1In .
= 209 Jua [0, prAf—1hvir T4 209 T

The next corollary concentrate the basic properties of the considered estimators.

Corollary 3.1 Let the parameter 9 in (34) belongs to the set ©1. Then for any e > 0
the sequential plan SEP1(e) defined in (64) is closed. It has the following properties:
1°. for any e >0
sup [|91(e) — ’19||3 < edy;

YEO,
2°. the foll~0wing relations hold with Py — probability one:
— f07‘ 9 e @11
0 <7y <lim eTy(e) < lim €Ty (g) < rf) < oo,
e—0 e—0
- fO?“ VS C:)12

. T L
0 <rip < lim [Ti(e) = g o dne ) < T [Ta(e) = 5 Ine] < vy < oo,
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*fO'r‘ﬁ S C:)13

0 <1l < lim VETy(e) < Tim VET () < rff < oo,
£—

e—0
ffOTﬂEC:)M
lim [Ti(e) + —InTi(e) — =—Ine™ '] > rf, >0,
e—0 Vo Vo
1'7[T()+11T() Lmeto b 1<, <
81_1’)[(]_) 1€ % nij(e 2/00 ne 2/00 nch(g) 7114 0035

3°. the estimator ¥1(e) is strongly consistent:
lim © =19 Py—as.
vy (€) 9 — a8

Proof. The proof of Corollary 3.1, except of the second assertion, follows directly
from Theorem 1. Now we verify assertion 2°.

From (36), (39), (41)-(43) and the definitions of 71(n,¢) and F;(n,¢e) it follows
with Py-probability one: for n > 1

— for 9 € (:)11

. -1 . -1
gl_{% 67—1(”7 6) = f11 * Cn, ;l_rf(l) ﬁl(na 6) = All )

*forﬁec:)lz

(fla) ™" -en < 1iH(1) ee™ () < lim ee™ ) < (f15) 7" - cn,
E—r

( 112)_1 S him ﬁl(na‘g) S m /81(”’ 6) S ( 11,2)_17
e—0 e—0

— for 9 € (:)13

. _ [ . S|
glg(l) Veri(n,e) =1/ fiz - cn, gg% Pi(n,e) = Ay,
— f07‘ 9 € 614

. 1 . 1 .1
gir% [Tl(n,e)—i—%lnﬁ(n,e)—%lng ]:%lnfm —{—%lncn,

(200)'A < lim et Bi(nie), Ty fr(ne) < Ay
&

Then by the definition of o1 (g) we have:
- f07‘ 9 e éu

(07" Ayt = 1) V1< lim oy(e) < Tim oi(e) < [0 'Afyorli +1 Py —ass,

e—0

*fO’I“?? € (:)12

[51_191A({2 — 1]1 V1<lim 01(8) < TH(I) 01(6) < [(51_1Q1A(f2]1 +1 Py —a.s.,
e—

e—0
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*fO'r‘ﬁ S C:)13

([0, 'o1 Al = 1) VI < lim o(e) < E o1(e) <[, 'aAl i +1 Py —as,

e—0

*fO’r‘19 € C:)14

(07 01 A1 —1) V1 < lim oy(e) Py — ass.
e—=0
and for € small enough
o1(e) < o14(e) Py —a.s.

From the definition of 7% (&) we finally get the second assertion of Corollary 3.1.
Hence Corollary 3.1 is proved.

Remark 3.2. Similar to [6], the asymptotic constants r}; and r{; in the station-
ary case ©1; can be changed by |, = ¥, = f;' (it coincides with the optimal
convergence rate of the MLE) by appropriate chosen sequences (¢,) and (ky).

If in the case O14, ¢, = o(e{™)) as n — oo, a = 1/4¢, then Inc (6) = o(lne™t),
as € = 0 and

014

. T1(8) 1
1 = — Py—a.s.
50 Ine-1 2vg v as

3.2 Estimation procedure for the case O,

Now we define the sequential plan SEP2(g) for estimation 9 € O,.

Put
Inele,

Vn(‘s) 7n2178>0

Inlne1le,

and in the definition of the stopping times 7(n, ) we take
a(n,€) == az(n,e) = (01(vn(€)), o (vn(e)),
Uy (da(n,e),e tey) = (6 Lep) ™),

a(n,€) = Do (vn(e))/01(vn(e)),

where 0g(+) and 91(-) are defined in (47).

Therefore, using (53) and (54) a short calculation gives for ¢ = 1,2 the equalities
\ijii )

liy —ii(€)

=1, Py—a.s.
nVe \I/ii(oz,n, E) ’ v a8

and, as follows, Assumptions (al) and (a2) are fulfilled. Thus all conditions of
Theorem 1 hold true.

Denote SEP2(g) = (T(e),¥2(¢)) the sequential plan (20) with these parameters,
which in considered case has the form:

oa(g)
Ty(e) = ma(02(e)€),  D2(e) = 83 (02(e),€) D A3(n,e)da(n,e), (65)

(
=1

3
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where

T
T2(n,e) = inf{T > 0: = / Z2(t)dt +
nun(s)
T a/2
1 -
" vn(e)

o9(e) = Inf{N > 1: Sy(N,e) > 8; 01},

d2 € (0,1) is some arbitrary chosen constant;

N
Sa(N,e) = B3(n.e), Ba(n,e) = |Gy (n,e)|| 7,

n=1

Ga(n,e) = (e Len) 202 (n, 6)G(un(e), 72(n, €)),

T
o(S,T) = /S Z(1)dX1(1).

Now we introduce following notation: let s, be the positive root of the equation

59\ 4/2 q/2
S, - ﬁ + SUO /Ul . Z722 — 1
T 20, a 2v9 ’

_ votvg

S*:diag{sgl,sq LA Ay = |G- S|

and define
1 " 1

rh = 2—01 Ins, - Cloy o1 A1) V1 Ty = 2T)1 Insg- Clor o AL +1°
Corollary 3.2 Let the parameter ¥ in (34) belongs to the set ©,. Then foranye >0
the sequential plan SEP2(¢) defined in (65) is closed. It has the following properties:
1°. for any € > 0
sup [|92(e) — 19||3 < €dy;
YEO,

2°. the following relations hold with Py — probability one:

. 1 . — 1 _
0<rh Sil_% [Ty(e) — ﬂlng d Sggr(l) [Ty(e) — Elne <7l < oo;
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3°. the estimator ¥2(e) is strongly consistent:

limdy(e) =9 Py —a.s.

e—0

Proof. The proof of Corollary 3.2, except of second assertion, follows from Theorem
1. Assertion 2° can be verified similar to the second assertion of Corollary 3.1.
Indeed, from the definition (65) of stopping times 7(n, ) and (53)-(56) we can find
the limits

621)1 T2 (n75)

}ZI\I/IEI ﬁ = Sq Pﬁ — a.s., (66)

lim Gyl(n,e) = G*-§* Py—as. (67)
and, by the definition of fa(n,¢) :
lim Bo(n,e) = A;' Py —as. (68)

The second assertion of Corollary 3.2 follows from (66)—(68).
The proof of Corollary 3.2 is complete.
3.3 Estimation procedure for the case O

Let (vn(€))n>1, € > 0 be some chosen non-random function, satisfying the condition
(14) and such that

lim Vn(E) _
nVe Ine~le,

(69)

In the definition of stopping times 7(n,e) we take a(n,¢e) := az(n,e) = vo(vn(e)),
Uy (a(n,e), e tey) = e20n(@)e en where dg(-) is defined in (48).
Therefore, the Assumptions (al) and («2) are fulfilled, because according to (61)
and (69) }
lim M — lim eX(P0(n(e)=vo)e ™ en _ g Py — a.s.
nVe Woyg (a’ n, 5) nVe
and therefore all conditions of Theorem 1 hold true.
Denote SEP3(e) = (T3(e),3(e)) the sequential plan (20) with these parameters,
which in considered case has the form:

T5(e) = max{73i(o3(¢),¢€), m32(03(€),€)},
(70)

)

—

3(¢)

793(5) = 551(03(5)75) 53?(”,5)?93(”’5)7
1

3
Il

where

T
o(nye) = inf{T > 0 ; / Z2(t)dt = e Ven),
vn(€)
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T
T32(n,€) = inf{T >0 : / zidt = e%‘)(””(g))s_lc’l},
vn(e)
o3(e) = inf{N >1: S3(N,e) > 25501},

d3 € (0,1) is some arbitrary chosen constant;
N
S3(Ne) =Y Bi(n,e), Ba(n,e) = IG5 (n,e)|| 7,
n=1

Tmin(n,€) = min{131(n, €), T32(n, €)},

Gs(n,e) = (5710n)71/2®71/2(a3(nv5)a5710n) - G(vp(€), Tmin(n, €)),

T _ T
[ 7 (t)2dt [ Z1(t)zdt
G(S’ T) = Ag“ % s
fit.’l,‘tdt fl‘%dt
S s
I3(n,e) = Gil(un(&t), Tmin (1, €)@ (v (€), Trmin(n, €)),

/

(l)\H
g
Y
g8
&
\_/

T
®(S,T) = ( Zy(t)diy,
/

We introduce the following notation: put

172 1V Eg(Z1*(0))*
| By Z7(0) Z7*(0)]

Ag = (1 + 1}8)
and define
7“3 = ([Eﬂ(Zf*(O))Q] N 1)710[25;191Ag71hv1’
ry = ([Bg(Z1*(0))*] A 1)710[25;191Ag]1+1'

Corollary 3.3 Let the parameter ¥ in (34) belongs to the set ©s. Then foranye >0
the sequential plan SEP3(e) defined in (70) is closed. It has the following properties:

1°. for any e >0
sup [|93(e) — 19||g < J3¢;
Y€O3

2°. the following relations hold with Py — probability one:

0 <7y <lim eT3(e) < lim eT3(e) < rjy < oo;
e—=0 e—0

3°. the estimator ¥U3(e) is strongly consistent:

limJ3(e) =9 Py —a.s.
e—0
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Proof. The proof of Corollary 3.3, except of the second assertion, follows from The-

orem 1 directly. Assertion 2° can be verify similar to the second assertion of Corol-
laries 3.1 and 3.2. Indeed, from the definition of stopping times 731(n,€), 732(n, €)
and (14), (58), (61), (62), (63) and (69), we can find the Py — a.s. limits

tim B gz (0)) ! (1)

nVve g—lcn
and
%I\I/IEI [T32(n,€) — e tep] = IHQ’U()COEQ, %1351 G?jl(n, e) = [Ey(Z7(0))2 V1] -Gs (72)
and, by the definition of B3(n,e) and Ajz :

lim B3(n,e) = Azt Py —as. (73)
The second assertion of Corollary 3.3 follows from (71)-(73) and definition (70)
of stopping times T3(e) and o3(e).
Hence Corollary 3.3 is proved.

3.4 General sequential estimation procedure of the second-order
autoregressive process

In this point we construct the sequential estimation procedure for the parameters
Y9 and ¥; of the process (34) on the bases of estimators, presented in the points
3.1-3.3.

Denote j = arg ]II_liI% T;(e). Because in general it is unknown to which region ¢

belongs to, we define the sequential plan (T'(g), 9(¢)) of estimation ¢ € © on the
bases of all constructed above estimators by the formulae

SEP(e) = (T'(e),9(¢)), T(e) =T:(e), 9(e) = I:(e).

THEOREM 2. Assume that the underlying process (xy) satisfies the equation (34),

and for the numbers 61,029,953 in the definitions (64), (65) and (70) of sequential
3

plans the condition Zéj =1 is fulfilled. Then for any e > 0 and every 9 € © the
7j=1
sequential estimation plans (T'(¢),9(e)) of ¥ are closed (T'(¢) < oo Py —a.s.). They
possess the following properties:
1°. for any e > 0 N
sup [[9(e) — 912 < &
JeO
2°. the following relations hold with Py — probability one:
i) ford € ©1:
— for 9 € ©1; (stationary case)

lim eT'(e) < 7} < oo;
e—0
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— for ¥ € ©1y (purely explosive "complez” case)

T [T 1 -1 "
- < .
gl_rf(l) [T(e) S0 Ine™] < riy < oo
— for 9 € (:)13 : L }
i V/ET(e) < 11y < o,
— for ¥ € O (purely explosive “real” case) the following relations hold with Py
— probability one:

— 1. - 1 1 1 "
_ - - < .
;I_I}(l) T(e) + o InT(e) S0 Ine S0 Inc,,, (o)) < iy < oo;

ii) for 9 € Oy (purely explosive “real” case) the following relations hold with Py
— probability one:

T [T 1 -1 "
- < .
&1111% [T(e) 20, Ine™] <ry < oo

i) for 9 € O3 (mized case):

Tim eT'(e) <Y :
lim e (e) < rg < oo;

3°. for 9 € © the estimator 9(¢) is strongly consistent:

!1_{% d(e) =19 Py—as.
Proof. The closeness of sequential plans SEP (e) and assertions 2° and 3° of Theorem
2 follow from Corollaries 3.1-3.3 directly.

Now we prove the first assertion. To this end we show first, that all the stopping
times 7(n, €), Ta(n,€), 731(n, ) and 732(n, ) are Py — a.s.-finite for every ¥ € O.
The Py — a.s.-finiteness of stopping times 7 (n, &), 732(n,€) for every 9 € © and
To(n,€), 731(n,e) for ¥ € O9 U O3 can be verified by making use of the definitions
of these stopping times and the properties of the process under observation.

Then we will verify the finiteness of stopping times 7o(n,e) and 731(n,e) for
¥ € ©1. According to definitions (65) and (70) of these stopping times it is enough
to show the divergence of the following integral

w ~
/ Z(t)dt = 0o Py —as., (74)
0

where Zl (t) = X1 (t) — ’lA)o(t)XQ(t).

In the subsets of the set ¥ € © the estimator 9g(t), defined in (48) has the
following Ps — a.s. limits:

— for ¥ € é1j

A
BN ~ ~ <e’Fi; >
lim 99(t) = 015, 01; =In il Rk 2

;=134
t—00 < Fyj >99 I ’
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— for ¥ € (:)12

< GAFlg(t) >99
< Flg(t) >99 '

Define le(t) = Xl(t) - 1~)11X2(t), Zn(t) = (le(t),dft)l and

s 1 —011
VH—(O 1 )

From (36) it follows that Py — a.s.

lim |0g(t) — 012(¢)| = 0, 012(t) = In

t—o00

o S
tim [ 20021 ()t = Vi Fu V)

T—o0

and

T

) 1

Tlgrgo f/z 1(t)dt >0 Py — as.
0

Then by the definition of (Z(t)),

T—00

T T A

R . 1 2

lim T/Z%(t)dt: lim [T/zfl(t)dt T/ (Do(t) — v11) 211 (F)zedt+
0 0 0

and the relation (74) for the case ©4; holds true.

The relation (74) can be verified in a similar way in the case ©13 U O14. In the
case O3 the relation (74) is obviously.

Now we can prove the property 1° of the estimator ’l§(8) Define the constants
p2 = p1, p3 = 2p1. By the definition of stopping times o;(¢), j = 1,3, similarly to
the proof of Theorem 1 we get

19(e) = 91lg < (3 Eops '6;6%(n, ) - [[95(n, ) = 9|)*/7 <

n>1

Zp;%s S Byl (n, o)|[9; (n.e) — 9][1)".

n>1

Due to the obtained ﬁnlteness properties of all the stopping times in these sums all
the mathematical expectations are well-defined and following to the line of the proof
of the first assertion of Theorem 1, we can estimate finally

3
19(e) =92 < (3 8;)%e = <.

J=1

Hence Theorem 2 is proved.
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4 Sequential parameter estimation of a time delayed
process

In this section the general estimation procedure, constructed in the point 2.2 will be
applied to the parameter estimation problem of a time delayed process (4).

Define p = 1, z(t) = X(t), ao(t) = X(t), a1(t) = X(¢t —1). Then the equation
(1) has the form (4):

dX (t) = 9o X (t)dt + 91 X (£ — 1)dt + dW (t). (75)

To define © = ©* we introduce the following notation, see [4] for details.
Let s = u(r) (r < 1) and s = w(r) (r € R') be the functions given by the
parametric representation (r(¢),s(¢)) in R? :

r(€) = Ecot g, s(§) = —£/sing

with ¢ € (0,7) and £ € (w, 2m) respectively.

Now we define the parameter set ©* to be the plane R? without some lines.

It seems to be not possible to construct a simple sequential procedure which has
nice properties under Py for all ¥ € ©*. Thus we are going to divide ©* in some
smaller regions where it is possible to do.

To do it, let us consider the set A of all (real or complex) roots of the so-called
characteristic equation corresponding to (75)

A=ty — e =0
and put vg = vo(¢¥) = max{ReA|\ € A},
v; = v1(9) = max{ReA|\ € A, ReX < vp}.

It can be easily shown that —oo < v < vy < 0o. By m(\) we denote the multiplicity
of the solution A € A. Note that m(\) = 1 for all A\ € A beside of the cases where
91 = —e% !, Then we have A = 99 — 1 € A and m(Jy — 1) = 2.

Now we are able to divide ©* into some appropriate for our purposes regions.
Note, that this decomposition is very related to the classification used in [4], where
can be found a figure giving an imagination of these sets. They have decomposed
the plane R? in sets which they denoted by N, P1, P2, M1-M3, Q1-Q5. Here we use
another notation, the Gushchin and Kiichler notation is added for convenience.

DEFINITION (©*). The parameter set ©* will be divided as

©* =01 Ue;ue:,

where
O] =07, U}, UBT;, O3 =03 U6y,
with
07, = {9 € R?| vo(¥9) < 0}, (N)
1y =1{0 € R% vo(9) > 0 and vo(9) € A}, (P2)
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13 = {9 € R vy(9) > 0; vo(9) € A, m(vg) = 2}, M3)
5.={0 € R?| vp(9) > 0,v9(9) € A, m(vg) =1, v1(9) >0 and v1(9) € A}, (M2)
O3, = {¥ € R2| vo(9) > 0,v9(9) € A, m(vg) =1, v1(9) >0 and v1(J) € A}, (P1)
0% = {9 € R?| vo(9) >0, wvo(9) € A, m(vg) =1 and v1(d9) < 0}, (M1)
and introduce, in addztwn,

05, = {9 € R?| vp(¥) =0, vo(9) € A, m(vy) = 1}, Q1)
Ol = {0 € B[ vo(9) =0, vo(¥) € A, 1m(vo) =2}, (Q2)
O3 = {9 € R?| vg(9) > 0, vo(9) € A, m(vg) =1, v1(9) = 0 and v1(9) € A}, (Q4)

—~

—~

The parameter set ©* equals the plane R? without the bounds of the set ©%, U
O3 U O%. In particular, O], is the set of parameters ¢} for which there exists a
stationary solution of (75).

Obviously, by all sets ©7,, O], ©]5, O3, ©3,, OF are pairwise disjoint, the closure
of ©* is the whole R? and the exceptional set R?\ ©* has Lebesgue measure zero.

We shall consider the sequential estimation problem for the one-parametric set
O} = 03, UBOj), UBOj}; as well. This case is of interest in view of that the set ©}
is the bound of the following regions: ©7,, ©7,, ©3;,0%. In this case ¥; = —Jp and
(75) can be written as a differential equation of the first order. We do not consider
the scalar case ©} as an example of the general estimation procedure because our
method is intend for two- or more-parametric models. Moreover, for similar one-
parametric model a sequential estimation procedure is constructed and investigated
n [16], [18]. We shall use this procedure in point 4.5 with applications to the case
O3.

It is well known, that the LSE, which equals here to the maximum likelihood
estimator is of the form

where G(T) = gTqﬁ(t)qﬁ’(t)dt

T
#t) = ( oy ) RE / HOAX (1)

has the optimal rate of convergence and is optimal in an asymptotic minimax sense
for the cases ¥ € ©F, U O3, see [4].

If T'— oo, then the smallest and the largest eigenvalues of the information matrix
G(T) tend to infinity but the rates of increase depend on ©J. Using [4] and [9]-[12]
one can show that these eigenvalues have the following rates of increase (in the a.s.
sense) for unboundedly increasing T in the following considered regions:

Table 4
Region Amin (G(T)) Amaz(G(T))
11 T T
TQ 62U0T 621)0T
T3 T—262U0T TQ 62’[}0T
@; 62U1T 621)0T
®§ T 621}0T
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Now we will use this knowledge for the investigation of the asymptotic properties
of the weighted LSE. To this aim we introduce the weight matrices V' and V() to
obtain the transformed design matrix with equal rates of increase of its eigenvalues.

Let A\=¢e", Y(t) = X(t) — AX(t—1) and put V =1, (I - 2 x 2 identity matrix)

in the case ©7 and
1 —-A
v-(1 ) (70
in the cases ©3, ©3.
The parameter A = e’ is a priori unknown because vy = vo() depends on ¥.

Thus we cannot use the matrix V, defined in (76) as a weight matrix. Therefore we
shall change the parameter A in definition (76) by its estimator

X(s)X(s—1)ds

Ot

A=

[ X?%(s—1)ds
0

and define the weight matrix V (¢) in the cases ©% and 03 as follows:

vm:(i (;At>.

Now we define the process Y; = X (t) — Ay X (¢t — 1) as an estimator of Y (¢).

Let us verify Assumptions (V) and (G) for the case ©7.

In the case ©7 the minimal and maximal eigenvalues of the information matrix of
the process (75) have equal rates of increase only in the cases ©7; and 07,. Indeed,
according to [9] we have with Py — a.s. probability one

— for ¥ € ©F;

lim T7'G(T) = Fy;
T—o0

— for ¢ S @TQ
lim |27 G(T) — Fio(T) | = 0.

T—o0

The matrix FY; is non-degenerate and the matrices Fy5(T), T > 0 are positive
definite, periodic with the period A = 27 /&, & € (0,7) and inf |F}%,(T)| >

Te[0,A]
0, sup [[F{y(T)|] < oo (see [4], [9]).
T€[0,A]

Similar to [11] we can get in the case O] the following asymptotic relations for
the processes X (t) and Y () = X (t) — e X (t —1) :
lim t e ™' X (t) =2Uy Py — a.s.,

t—o0

(77)
lim e”'Y (t) = 2Uy Py — a.s.,

t—00

where

0
Uy = Xo(0) +191/

o200 ) X (5)ds + / =M qVY (s).
1 0
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As follows, with Py-probability one, we have

T

) 1 5 22U
Jim o [ V@a= "0, (78)
0
o 2e W0UE 1
€
li ——— [ Y()X(t — 1)dt — 0 11— =
e |tre2v07’g/ (HX(t=1) v { QUOJ’]| 0 (79)
1 5 20208 1 1
A | T2e2UOT0/X (8= 1)dt - — {1 Tl ngTJ =0 (80
From (78)-(80) we can find the Py — a.s. limits:
3 1 * * 2(]()2 1 e~ vo
Th_{%o WG(T) =Fp3, Fi3= oo < e—v0 o200 ) ;

4
lim f%ﬂ@uG@»:<Uﬂ =

T—00 Vo

Then Assumptions (V) and (G) are fulfilled, where the functions g (-) and ¢ (-)
have the form

T 11
o(T) = p1(T) = e*7, i2;
TQeQ’UoT’ >1k3

and U1 (o, z) = z, g(p) =1 in the cases ©%, U©O%, and ¢(po(T)) = In® o(T) ~ T®
if ¥ € ©7;.

Now we verify Assumptions (V) and (G) for the case ©3.

Similar to [11] we can get the following asymptotic relations for the processes
X(t), Y(t)=X(t) —e"X(t—1):

— for ¥ € ©F
lim |e "X (t) — Co| =0 Py — a.s.;
t—o00

— for ¢ S 651
lim e 'Y (t) — Co1| = 0 Py — a.s.;
t—o00

— for ¥ € O3,

gpwﬂﬂyw—(@un=0f@—&&

where Cas(t) is a periodic bounded function.
Define \; the estimator of A = e¥0 as

ftX(s)X(s —1)ds
A= (81)
J X2%(s—1)ds
0
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and Y; = X (t) — Ay X (t — 1). Then we have, similarly to the case O, with Py — a.s.

probability one

— for ¥ € ©}
T
lim e 20T / X2(t)dt = Cs,
T—00
0
- fOI' ’19 S 651
r C
lim e*%lT/Y?(t)dt =2
T—00 2’01

0

T
o e Y e, fim < [ ¥t =
o0
0

— for o S 632

T
lim [e=27 / Y2(t)dt — Cn(T)| = 0,

T—o00
0

t—00 T—o00

where C’QQ(T), co2(t) and é9o(T) are some periodic bounded function.

T
lim ‘e*”ﬂ Y, — c22(t)‘ =0, lim ‘e’zvlT/Ytht - 522(:/*)‘ — 0.
0

(86)

Put (T) = diag{e®"'T, e2"0T} o = (vg,v1), 0 < v; < vg and ¥y (o, z) = 2%, & =

vo /1.

By making use of the obtained limiting relations we can find the following Py—a.s.

limits
— in the case ¥ € O3, :
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The matrices Ggl,égl are constant and the matrix G»; is non-degenerate; the
matrices Goa(T'), G22(T) are periodic and Ga(T') is non-degenerate for all 7' >
0 Py—a.s. and such that inf |ApinG22(T)| > 0, inf ||G22(T)|| > 0, sup ||G22(T)|| <

>0 >0 T>0

oo. Then, in particular, Assumptions (V) and (G) are fulfilled with g(T") = 1.
The case O3 was yet not fully considered in our previous papers. Then consider
this case in more detail.
According to [4], [9] for the process X (¢) we have
lim |e "X (t) — C3] =0 Py — a.s.
t—00
and the process Y (t) = X (¢) — AX (¢t — 1), X\ = €' is stationary. Here Cs is some
constant defined in [4].
We now verify all the assumptions of Theorem 1.
Introduce following notation:

yo(s) = zo(t — s) — Axo(t —s — 1),

t T
£ = / yo(8)dW (s),  Zo(T) = / =0T 7, (1),
7ooT —o0 (91)
Z4(T) = / e=T=0 70 (1Vdt,  Z4(T) = Zo(T) — Z4(T).

It should be noted that in the considered case ©F the processes Z;(t),i = 1,3 are
stationary Gaussian processes, continuous in probability, having a spectral density
and, as follows, ergodic (see [19]).

According to the properties of the processes X (¢) and Y (¢) in considered case we
have the following limiting relations with Py-probability one:

T T

1 9 3 ) 1 _ Cie ™

Jim o [ X0 =g im o [ XX 1= T 92
0

lim |Y () — Z1(t)| = 0, lim /Y2 t)dt = EZ3(0),

t—00 Tooo T
T
N/ -
Jim [ [Y@x@a sz <o
0
T
. v w
Jim 6UO/ X(t—1)dt — Cse ZQ(T)‘ 0.
0

We can get the following asymptotic properties with Py-probability one for the
estimators A, defined in (81) and for the process V; = X (¢) — A\ X (t — 1) :

lim
t—o00

e (A — \) — Cglevozg(t)‘ =0, lim |(\ = NX(t—1) - Zg(t)‘ — 0,
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T

i [ [YiX (@t~ Cozu(T) =0, Jim [~ (Z2() ~ Zo(#))] =0,
0
lim f/y; dt——/Zl ) Z1(t) — Zg(t)]dt‘ =0
T—00
and, as follows,
lim —/Y} t)dt = 019, hm —/Y dt = 099, (93)
T—oo T
0 i
where 012 = EZ1(0)[Z1(0) — Z2(0)] = [ [y3(t)—e®! [ y3(s)ds]dt, o2 = E[Z1(0)—
Z5(0))?.
Then, putting
! — A (1 —-A
and, using Proposition 3 from Appendix, we get the following relation
lim G(T)=G; Py—as., (94)
T—00

G3 = diag{o12,C%/2vp} and Assumptions (V), (G), (%) and (¥) hold true with
©0o(T) =T, o1(T) = e®T  g(T) = 1, U1 (a, ) = 2, a = vy, VU[a, i3] = (z,e2°%) ¢
PQ(O[), l() = 1, ll = 1, m = 1.

Thus all the Assumptions (V), (G), (¢¥) and () for the set ©* are fulfilled by
lp=2, m=0ford eO®]UB and [p =1, [y =1, m =1 for ¥ € O3 as well as if we
put the set A = (0, +00) in the cases O7, UBOI; UB3, A = {(vg,v1): 0 < v <vp <
oo} in the case ©3 and

Table 5
Region b() (t) b1 (T) 60 (t) 51 (T)
| X@) | X(-1) || X() | X(t—1)
2 || X(Q@) | X(-1) || X() | X(t—1)
s e | X(@®) Y(t) | X(®)
o5 | v, X0 Y0 | X®
O3 i | X() Y(t) | X(2)
Table 6
Region QOO(O"T) (101(a7T) - \111(05,.’17) g(<,0)
[T T - z 1
ﬂlﬁz eZvoT eZUOT o z
T3 T? 62110T TQeQUOT 0 T 1n8 ©
; 62U1T €2U0T (,UO’ ,Ul) xvo/v1 1
@:{1}; T e?voT Vo 2vo0x 1
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Now we shall apply the general estimation procedure (20) to the cases ©7F, ©3, O3
separately. Then we shall define, similar to the first example, the final sequential
estimation procedure, which works in ©*, using these estimators. In addition, we
shall construct the estimation plans for the one-parametric case ©}.

We shall give the proofs in more detail only in the cases ©3 and ©} because all
the necessary asymptotic properties of the observed process (X (t)) for other regions
are given in our previous papers [9]-[12].

4.1 Estimation procedure for the case O}

In the definition of the general sequential estimation plan (20) we put V(¢) = I
and v,(e) = 0, n > 1 and in the definition of stopping times 7(n,e) we take
Uy (a(n,e),etep) = e ey,

Denote SEP1(e) = (T1(e),91(g)) the sequential plan (20) with these parameters,
which in considered cases has the form:

o1(e)
Ti(e) = mi(o1(e),).  Di(e) = Sy (au(e),e) D B (n,e)di(n,e), (95)

=1

3

where

T q/2 T a/2
mi(n,e) = inf{T >0: (/X%)dt) + (/XQ(t— 1)dt> = (e en)??},
0 0

o1(e) = jnf{N >1: Si(N,e) > 5;191}a

01 € (0,1) is some arbitrary chosen constant and

2

0 =627 3 1% Si(Ne) = Y Blne), ilnge) = G (o)l

n>1 n=1

Gi(n,e) = (e ten) 1G(11(n,€)), ®i(n,e) = (e ten) L @(1i(m,€)),

T T
. / o(1) blt) = ( vuy ) L a(T) = / HH)AX (1

91(n,e) = Gy H(n,e) - @1(n,€).

It should be pointed out, that for ¢ = 2 the sequential plan SEP1(¢) coincides with
the sequential plan, presented in [9].
Now we introduce the following notation:

- 2 2 -~ —- _
Fi =[S Fy > + < By >8720 Ay= T - 1(FR) 7Y

- e 3
™1 —f11 T A oi—1vie T _fll RN IVAIERE

q/2

Tia = [sup(< Fiy(T) >4 4+ < Fiy(T) 7).
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Ty = [inf (< Fiy(T) >4 + < Fiy(T) >B2)P/,

— = " _ — —t % _
A12:f12'%2%||(F12(T)) 1||a Ajy = f1g-sup |[(F5(T)) 1||>
>0

inf
T>0

1 — 1 "
i -1 _, - -1 oy .
T2 = g (i)™ sy @ e Tz = g )T e @y

- 2 2 -~ —- _
Fis = [< Fiy >U2 4+ < Fiy SW19, Rig = Fi5e2 (wolUy Y| Fislls

— 1 —1 1 _
-1 q 4q —1 =/ I
ow3(e) = [07 o1 Az In™ e i 4+ 1, T3 = 200 o frg5-1 80, 11010 T1s = 200 In fy3.

The next corollary summarizes the basic properties of the constructed above es-
timators.

Corollary 4.1. Let the parameter 9 in (75) belongs to the set ©F. Then for any e > 0
the sequential plan SEP1(¢) defined in (95) is closed. It has the following properties:

1°. for any e >0
sup |[91(e) — 19||g < edy;
9€07

2°. the following relations hold with Py — probability one:
— for 9 € ©;

0 <7y <lim eT(e) < lim €Ty (e) <7/} < o0,
e—0 =0

— for 9 € ©7,

1 —_— 1
—! < . _ -1 < . _ —1 < I .
0<Ts < !13(1) [Ty (e) 00 Ine™'] < gir% [T (e) o0 Ine™'] <7y < o0;

— for 9 € ©73

1 1
lim [T1(¢) + —InTi(e) — — Ine™ '] > 73 > 0,
e—0 Vo 21)0

_ 1 1 1 1 I
. - - < .
&1111(1) [Ti(e) + o InTi(e) 500 Ine 500 Incy )] <73 < oo;

3°. the estimator ¥1(e) is strongly consistent:
;gr(l) Ji(e) =9 Py—as.
Proof. The proof of Corollary 4.1 is similar to the proof of Corollary 3.1.

Remark 4.1. Similar to Remark 3.2, the asymptotic constants 7 ; and 7{; in the
stationary case ©F; can be changed by 7, =7/, = ?1—11 (it coincides with the optimal
convergence rate of the MLE) by appropriate chosen sequences (c,) and (k5,) and in
the case O3, for ¢, = o(e(™)) as n — 00, a = 1/4q, Inc (e) =o(lne 1), as e = 0
and

g13

T 1
lim 1(e)

—- =— Py—a.s.
-0 Ine—! 2’00
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4.2 Estimation procedure for the case O}

We put in the definition of the general sequential estimation plan (20)

V(t>=<} (;At),

where )\ is defined in (81) and
T
va(n,e) =inf{T > 0: / Y2dt = (e ten)’},
0

0 € (0,1) is some arbitrary chosen number.
In the definition of stopping times 7(n, €) we take ¥y (a(n, ), ep) = (67 ey ) ®2(08),

va(n,e)

In [ X2%(t)dt
0

(96)

Ga(n;€) = dlnele

Denote SEP2(e) = (T»(e),92(¢)) sequential plan (20) with these parameters,
which in considered cases has the form:

TQ(e) = 7—2(02(5)7 5)7 792(5) = ‘92_1(02(5)7 5) Bg(nv 5)792(”’ 5)? (97)

where

[u—y

+ —
(e7tep)a2

o9(e) = inf{N >1: Sy(N,e) > 5" 01},
d2 € (0,1) is some arbitrary chosen constant;

N
SQ(Na 6) = Zﬂg(n,e), BQ(na 8) = ||G51(n75)||_17

n=1

N

Go(n,e) = (e Len) 2T 2(n, £)G(v2(n, ), 2(n, €)),

Do(n,e) = W’%(n,s)q)(VQ(n, ), m2(n,e))," G(T) = /qﬁ(t)gb'(t)dt,

T
Hlt) = ( X ) L B(T) = / P(1)AX (1)
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¥a(n,e) = Gy H(n,e) - Ba(n,e).

Now we introduce following notation:

_ (% In 62 — Vg In 621 _ 1 In ég — Vg In 622 (T)
Q21 = 2 ; Qigg 1= sup 2 )
- . U1 lIl 02 — Vg ln 522 (T) ~ - ~ . -
2 i= b 207 , Oy = ;ipo e (T), Cy = :}T;% é21(T)

and let 397 is the positive root of the equation

C’z-e%-sa—l—(ézl)qm-s—l:o,

S99 and S99 are the positive roots of the following equations

Cy-e 2 -5+ (Cy)% s—1=0

and <og
~ dao ~
Cy-e 2 -4+ (CY)?.5—1=0
respectively;
g o a
So1 = diag{s;)",e72 5,/ }, S =diag{3s5,",e7® 355" },
5 /g zam A ~x 5 . @
Sop = diag{8;", €72 555"}, Agy = |[|Ga1 - S,
Agy = inf [|Goo(T) - Soal|,  Ago = sup ||Gaa(T)]| - ||S22]
T>0 T>0
and define

_ /q . _ /4 _
T = g ISy et 8, vty T2 = 201 ISy - Cp515, 89,1, 410

— —2/q _ — /q . _
22 = 201 In 552 c[‘sz_lglAgz—l}l\/l’ 22 201 In3,; 0[5;191A32]1+1'

Corollary 4.2. Let the parameter 9 in (75) belongs to the set ©5. Then for any e > 0
the sequential plan SEP2(e) defined in (97) is closed. It has the following properties:
1°. for any e >0

sup ||92(e) — 19||2 < dg€;
90}

2°. the following relation holds with Py — probability one:

I 1 L
0 <7y < lim [To(e) — 5 - Ine] < Ty [To(e) — 5 - Ine] <75 < oo

for 9 € ©5;, i =1,2;
3°. the estimator ¥2(e) is strongly consistent:

;1_13[1) Yo(e) =09 Py —as.
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Proof. As we noted above, Assumptions (V), (G) (¢v) and (1) follow from equal-
ities (82)—(87) and (89). Then, according to Theorem 1, for the proof of Corollary

2 it is sufficient to establish Assumption («) and assertion 2°.
First, using the equalities (82), (84) and (86), by the definition (96) of the esti-
mator dz(n, ), we find its Py-a.s. convergence rate: as n — oo or € — 0,

va(n,e)
In [ XZ%(t)dt ;
~ . 0 Vo | _
va(n,e)(da(n,e) —a) = va(n,€) . =
In [ Y2dt
0
va(n,e) va(n,e)
vy Ine 2vor2(me) [ X2(4)dt — vy Ine 2012(nE) [ Y24t
= va(n,€) - s V2 () 0 — Q12
2039 (n, €) + vy Ine~2v1va(n.e) df Y2dt

0
in the case ©3, and, analogously, in the case ©3;, as n — oo or € — 0,

v11InCy — vy In éao(va(n,€))

va(n,e)(ae(n,e) — a) — 5 —0 Py—as.
2v1

Thus q
. _ — e g . ~
}%\I/I; ln(e lcn)(a G2(ne))d 5%1\1/161 I/z(n,é‘)(a — Oéz(n, 5))

vy t(n,e)(e)Ine Lo, = % Py — ass.

and, as follows, with Py—probability one
]7%\1/2 (6_1Cn)(a_d2(n’€))% = eigéq (98)

in the case ©3, and in the case ©3,

G224 . —lcn)(a—dg(n,s))% < lim (8—lcn)(a—d2(n,5))% < eaggq < . (99)
nVe — nVe -

Assumptions («) are proved. By the definition of stopping times 79(n,¢c) for

¥ € O3, we have

T2 (n,E) T2(n,E)

lim [(é_icn / Y;2dt)Q/2+(MW / X2(t)dt)q/2]:

n—oo
1/2(7175) V2("75)

72(m.e) e2v1 T2 (n,E)

. 1 / /
=l (o 0/ viar)" (Elcn)Q2+

(1) e2v172(n€)

+(% / X2(t)dt)q/2 (e ey @2 ((glcn)qa/g] _

621)07'2
0
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e?vm—z(n,a)

)Q/2+C~’§/Q-ea§§q . (g_lcn)qa/z] 1

201 72(n,¢)
= lim [ (———
- 21 —1

e~ le,

Then

lim em2nm(nE) 1y — 53{" Py — a.s. (100)

and, as follows, taking into account (88), (90) and (98), (99), Py — a.s.

lim G;l(n,e) = 621 -ggl,

nVe
: ~-1
}LI\Y/IEI Pa(n,e) = Dy (101)
in the case ©3; and

554! < lim e 2m)e e, < T e 2 )e e, < B0 (102)

nVe nVe
Azt <lim Ba(n,e) < Tim fa(n,e) < Ay (103)

nVe nVe

in the case ©3,. From the definition (97) and (100)—(103) follows the second assertion
of Corollary 4.2.
Hence Corollary 4.2 is proved.

4.3 Estimation procedure for the case O}

Chose the non-random functions v3(n,e), n > 1, ¢ > 0, satisfying the following
conditions as e -0 orn — o0 :
1 1/2
v3(n,e) = ol ep), we_lcn = o(1). (104)

evov3(n,e)

Example: v3(n,e) = log?e lcy,.

Note, that for the functions, satisfying (104) the conditions (14)-(16) hold true.
Put a(n,¢) := az(n,e) = In A, (), where \; is defined in (81). Now we verify,
in the Py — a.s. sense Assumptions («) using Proposition 3 from the Appendix:

. @22(’”76) T —1 I —1 —1 _
k\r/rgl In Tn(ame) }11\1/151 2(ag(n,e) — a)e cp= ’lnl\l;Igl 20 (Auy(ne) —Ne Ten =

o 200N ey Do) log i)y

nVe evova(n,e) nVe logl/2 vs(n,e) evov3(m,e)

then

\ijii )
iy Yii(n€)

=1,7:=1,2 Py—a.s.
nve \Ijii(aanag) ! ’ voas
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and all the conditions of Theorem 1 hold true.
Denote SEP3(e) = (T5(e),93(e)) the sequential plan (20) with these parameters,
which in considered case has the form:

o3(e)
T5(e) = Tmaz(03(€),€), I3(e) = Z (n,e)d3(n,e),  (105)

n=1

where
Tmaz(03(€), €) = max{731(03(€),€), T32(03(€),€) },

731(n,€) = inf{T > 0: / Yidt =7 ¢, )},

v3(n,e)

- (n’ 6): 1nf{T >0: / X2(t)dt — 62043(7176)6—107;}’
1/3(1178)
o3(e) = inf{N >1: S3(N,e) >20;" o1},

d3 € (0,1) is some arbitrary chosen constant;

Zﬂg (n,e), Ps(n,e) = IG5 (n, )|,

Tmin(n,€) = min{131(n,€), T32(n, €) },

GS (na 6) = (571071)71/2@71/2 (’I’L, 6)GV(V:S('r% 6)7 Tmin(na 6))a

T
Y:

I3(n,e) = G’_l(l/g(n,e) Tmin (1, €)@ (v3(n, €), Tinin (N, €)).

Now we introduce following notation:

931 = 013 (022 V1], g3z = o1afogy Alle™™, Az = \ 9% + 93,

and define

) " __ -1 R _
T3 = [022 Vi]-e Closy o1 AG—1]1 V1, T3 = [05y V1] €265 01 A% 141

Corollary 4.3. Let the parameter 9 in (75) belongs to the set ©%. Then for any
e > 0 the sequential plan SEP3(e) defined in (105) is closed. It has the following
properties:

1°. for any e > 0

sup |[93(e) — 9|7 < ed;
9co;

o1



2°. the following relations hold with Py — probability one:

0 <74 < lim eT3(e) < lim eT3(e) <75 < oo
=50 e—0

3°. the estimator ¥U3(e) is strongly consistent:
lim o =19 Py—as.
o 3(¢) 9 — a8

Proof. The proof of Corollary 4.3, except of second assertion, follows from Theorem
1 directly. Assertion 2° can be verified similarly to the second assertion of Corollary
3.3. Indeed, from the definition of stopping times 731(n, ), 732(n, €) and (14), (92),
(93) we can find the limits with Py-probability one:

lim e731(n,e) = o5.tc
lim e731(n, &) = 039 cn

and 1
. PCS B N —2
}11\1513 [T32(n,€) — e "¢y S0 In20yC5 %,
}grgl ETmin(1,€) = [095 A 1]c, (106)
lim ETmaz (1, €) = 099 V 1]cp (107)

and, according to (92)—(104), (106)

lim G;l(n, ) = ( g1 8 )

nVe —3g32

and, by the definition of B3(n,e) and As,

lim B3(n,e) = Zgl.

nVe

(108)

The second assertion of Corollary 5.3 follows from (107), (108) and definition
(105).
Hence Corollary 4.3 is proved.

4.4 General sequential estimation procedure for the set ©* of the
special time-delayed process

In this point we construct the sequential estimation procedure for the parameters
Y9 and 91 of the process (75) from the set ©* on the bases of estimators, presented
in points 4.1-4.3.

Denote j* = argjrgilrgil“j(e). We define the sequential plan (T*(e), 9*(¢)) of es-

timation ¥ € ©* on the bases of all constructed above estimators by the formulae
SEP*(e) = (T*(e), 9*(e)),



THEOREM 3. Assume that the underlying process (X (t)) satisfies the equation (75),

and for the numbers 01, 82,03 in the definitions (95), (97), (105) of sequential plans
3

the condition Z(Sj = 1 s fulfilled. Then for any € > 0 and every 9 € OF the
=1
sequential estifnation plans (T*(e), 9*(€)) of ¥ are closed (T*(¢) < oo Py — a.s.).
They possess the following properties:
1°. for any e >0
sup [9%(2) — 912 <
HeO*

2°. the following relations hold with Py — probability one:

i) for v € Oy :
— for ¥ € O,
g eT*(e) <7} < oo,
— for 9 € ©7,
;gr%) [T*(e) — 00 Ine~!] <7y < oo;
— for 9 € ©74

— 1 1 _ 1 _
gg% [T*(e) + - InT*(e) — 00 Ine ! — Z—UOIHCUB(E)] <73 < o0;

ii) for ¥ € ©%y; :

— 1
lim [T*(e) — — Ine™ Y] < 7, i =1,2;
Lim [77(e) T ] <7 <oo, i=1,2
iii) for ¥ € ©F : .

I ke < .
213% eT™(e) <73 < o0

3°. for ¥ € ©* the estimator 9*(g) is strongly consistent:
lim9*(e) =9 Py — a.s.

e—0

Proof. The closeness of sequential plans SEP*(¢) and assertions 2° and 3° of
Theorem 3 follow from Corollaries 4.1-4.3 directly. The proof of the first assertion
is similar to Theorem 2 if we taking into account that the integrals

0
/X%w:m Py — a.s.,
0

(109)
/[X(t) _X(t—1)’dt =0 Py—as.
0

in all the cases O7, ©3, ©F and, as follows, all the stopping times 71 (n, €), m2(n,€), m31(n,¢€)
and 732(n, €) are Py — a.s.-finite for every ¢ > 0 and all n > 1.

The properties (109) can be established by using the asymptotic properties of the
process (X(t)) (see proofs of Corollaries 4.1-4.3 and [4], [9]-[12]).

Hence Theorem 3 is proved.
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4.5 Estimation procedure for the case O}

The set O} is the bound of the following regions: ©7;, ©7,, ©3,,03. In this case
Y1 = — and (75) can be written as the differential equation of the first order:

dX (t) = Yoaydt + dW (L), t > 0,

where a; = X (t) — X(t —1).

We shall use sequential estimation plan SEP4(e) = (T4(e), 95 (g)) of the parameter
¥ = 9o(1,—1)" with the e-accuracy in the sense of the Lj,-norm, which has similar
structure to considered for Case II in [9] and has the form:

T
Ty(e) = inf{T > 0: /a?dt = 202771}, 9i(e) = () (1, 1), (110)
0
Tu(e)
Iia(e) = e(2B2/1) 7 / adX (t).
0

Denote ho(T) = §~(T)T?, where 0(T), T > 0 is any positive unboundedly increas-
ing function, hy(T) = T?1In? T, and

0 oo
— e~ Y0
A— l—em - (X0(0)) =g / e*Uo(s—&-l)Xo(S)dS + /e*voSdW(S))a
-1 0

— 1 1 — 1
A= FyA = —— In[202/94 ]
50g 4% Cis 200 n[2b; ]
Corollary 4.5. Let in (75) the parameter 9 € ©}. Then for any € > 0 the sequential
plan SEP4(¢) defined in (110) is closed. It has the following properties:
1°.
sup [[95(e) — 7 <&
9€0;

2°. the following relations hold with Py — probability one:

— for 9 € O, :
: . — op2/af-1
&111% e-Ty(e) —qu fo s

where f, is defined in (111) below;
— for 9 € O}, :

2702/ < lim -y (Ty(e), T e ho(Ty(e)) = 0;

e—0
— for 9 € O35 :

1
lim [Ty(e) — =— Ine™'] = Cys;
lim [Ti(e) = e ™) = O
3°. the estimator ¥} (e) is strongly consistent:

;1_13[1) Jy(e) =9 Py—as.
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Proof. The proof of the first assertion of Corollary 4.5 follows from [16]. For the
T
proof of assertion 2° we find the rates of increase for the integral [ aZdt as T — oo
0
in all the considered cases O}, O}y, O};. According to [4] the process a(t) satisfies
the equality

alt) = vo()Xo() + 1 [

volt — 5 — 1) Xo(s)ds + /t vo(t — $)dW (s), ¢ >0,
-1 0

Yo(t) = zo(t) — zo(t — 1)
and we have:

—for ¥ € ©}; :

yo(t) = o(e™), v < 0, as t — oo and, as follows, there exists the positive constant
limit

) T
Tlgrgo T/a%dt: fo Py —a.s; (111)
0

—for ¥ € ©}, :

yo(t) = 2 +o(e?), v < 0, as t — oo and, as follows, a; = 2W (¢)(1 + o(1)) as
t — oo and Py — a.s.

T T
1 — 1

li rdt = Ii / 2dt < 1; 112

i oy [ ot = e T g [ ebae< (12
—for 9 € ©)5:
yo(t) = U};%_Oqflevot + o(e), as t — o0, v < 0 and, as follows, e "lq; =

A(l+o0(1)) Py—a.s. and
L
. 9 7

0
The second assertion of Corollary 4.5 follows from the definition (110) of the
stopping time T4(e) and (111)—(113).
The third assertion of Corollary 4.5 follows from the definition of sequential esti-
mator 9} (¢) and strong consistency of the LSE

T
[ adX (£)
o

O ig

aZdt

in the case O} :

T
fatdW(t)
0

IT) -9 = 50 Py—as.

[aldt
0

Hence Corollary 4.5 is complete.
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5 Appendix

Proposition 1. Suppose, that Assumption (V) and (G) are fulfilled. Then the
inequality (10) holds true. The inequality (11) is fulfilled under the additional con-
dition (12).

Proof of Proposition 1. Define the matrix functions

m\»-a
Wl

A(T) = V'g=H(T)g3 (T), B(S,T) =5

Note, that G(S,T) = G(T) — B(S,T). Taking into account that according to
Assumption (V) the matrix G(T') is norm bounded from above Py — a.s. and due to
the condition |[A(T')|| < ||V]| for T large enough, we obtain under Assumption (G):

(T)G(S)e™>(T).

T g (6T S DIP = T g (DIATE ST <

——1
<IWVIETm_ g (DIE (ST < IVIETn g @) @)

NI =G {(T)B(S,T)"||> Py—as.

Now we estimate the Py — a.s.—upper limit

m g '(T)|G '(T)|*= Tim g~ '(T)tr [@ (T)(G(T))] =

= Tm g (D)t (@ (D)G(T)) "] <lp + 1) Jim g~ (T) A (G (T)G(T) 7] =

T—o00 T—o0

= (p+1)(lim_ g(T)Anin[G (T)G(T)]) 7t < 0.

From the definition of the class G; by Assumption (G) it follows, that as T — oo
and by S = o(T), the following asymptotic relations ¢;(S) = o(g~/2(T)ps(T)) for
i =0, p hold true.

Then

im 74T (T)-B(S) =0 (114)

and

Jim gAT)BS D)=l (g"A(T)pT)R() - GLS)

As follows, Py — a.s.,

T ([G(, 7)) = |G| < ox.

. ——1
Jim |G @)BS.T)| = 0
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and we obtain, finally, the inequality (10):

N ——1 ~—1 2
A g (DG (S, T < oo,

The lower limiting bound for the norm ||G~*(S,T)||? can be obtained under the
additional condition (12) and by making use of the following inequality from Lemma
2 of [14]:

Amax{ACA,} > )\mam{AAl} ' Amzn{c}a

which holds true for any symmetric non-negative definite matrix C' and quadratic
matrix A. Thus, for S < T we have

IG=H(S, T))IP= tr [(A~H(T)'T (S, T)G(S,T)AT) ] >
> Mnaed{ (A7H(T))'C (S, T)G(S, T)A™H(T)) ™'} =
G(

= Mnas{A(D)(@ (S, T)G(S,T)) " A'(T)} >
Maac{l AT)A'(T)} - Xuin{ (G (S, T)G(S,T)) " }= Anae V' (@ (T)p0(T))V'}-
HD)po(M)HV} - IIGES, D)7

AbadG (S, T)G(S, T)}> Amac{V' (@
) holds true

and, as follows, the inequality (11

lim ||G7Y(S,T))|>>0 Py—as.
T:Sto0

Hence Proposition 1 holds.
Denote for every positive magnitude h the difference Ay Z(t) = Z(t + h) — Z(t).

Proposition 2. Let (Z(t));>0 be stationary Gaussian process with zero mean and
such that for any 0 < h < 1 and every t € R!

E(ALZ(t)? < Ch.

Then, as t — o0,
1
Z(t) = O((logt)2) Py — a.s.

Proof of Proposition 2. According to Theorem 2 in [15], p. 142, we have for all
t > 0 the inequalities

P{ sup |Z(s)| > (C1logt)'/?} < exp{—C1Cologt} =t~ “1¢%,
[t,64+1]

Here ¢y and Cs are some positive constants.
Thus by the Borel-Cantelli lemma,

Z(t) = O0((logt)/?) as t » 0o Py — a.s.

Hence Proposition 2 holds.
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Proposition 3. Let the parameter ¥ of the process (75) belongs to the set ©3. Then
the processes (Z;(T)), i = 1,4, defined in (91) have the following properties

Zi(t) = O((logt)%), i=1,4ast— oo Py — a.s.

Proof of Proposition 3. First we show, that for any 0 < h < 1 and every ¢t € R' we
have the inequalities:
A(h) = E(ApZi(t))* < Ch.

Direct calculation gives the representation

A(h) = /yg(t—s)ds+ /(Ahyo(t—s))st.
t—h -0

The function yo(-) is continuous and continuously differentiable in [0, c0). Then

t
/ yo(t —s)ds < h sup y3(0) = Ch
“h

0<0<1
. <0<
and
sup |yo(t — s+ 0)], /
0<0<1 0i“22|y0(“)|’ t—1<s<t
t—1<s<t; Su<
A t—s)| < h -, =7 =h sup |ayo(t+ 60 — s)+
B IN sup e+ 0 - ), 2 0= )
<6< o <1,
s<t—1; byo(t+0—s—1)|, s<t—1
As follows
A(h) < C(h+ B*(( sup_|yp(u)])*+
0<u<2
t—1 t—1
+ sup [/y%(t+0—s)ds+/y%(t+9—s—1)ds]))§
0<f<1 .

< O+ 07 swp_ ()’ + [ v()ds)) < .
- = 0

Thus, according to Proposition 2, the assertion of Proposition 3 holds true for

the process (Z1(t)).
The other assertions of Proposition 3

Zi(t) = O((logt)%), i=2,4,a8t — o0 Py—a.s.

follow from the obtained relation and from the definition of the functions Z;(t), i =
2,4.
Hence Proposition 3 is proved.
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