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Abstract. In this paper we describe a technique for closed formulation
of an iterative operator-splitting method and embed the method in the
classical exponential splitting methods. Since iterative operator splitting
have been developed, an abstract framework to relate the method to
other classical splitting methods is needed. Here an abstract framework
considering the iterative splitting method as waveform-relaxation or ex-
ponential splitting method is devised.
This is achieved by basing the analysis on semi-groups and fixed-point
schemes.
Abstract results illustrate differential equations with constant and time-
dependent coefficients.
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1 Introduction

In this paper we concentrate on approximation to the solution of the linear
evolution equation

∂t u = Lu = (A + B)u, u(0) = u0, (1)

where L, A and B are unbounded operators.
As numerical method we will employ a one-stage iterative splitting scheme,

also known as the waveform-relaxation method:

ui(t) = exp(At)u0 +

∫ t

0

exp(As)Bui−1 ds, (2)

where i = 1, 2, 3, . . . and u0(t) = 0.
As a second numerical method we will employ a two-stage iterative splitting

scheme :

ui(t) = exp(At)u0 +

∫ t

0

exp(As)Bui−1 ds, (3)

ui+1(t) = exp(Bt)u0 +

∫ t

0

exp(Bs)Aui ds, (4)
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where i = 1, 3, 5, . . . and u0(t) = 0.
The combination of both is given as an inner and outer iterative scheme:

uik
(t) = exp(At)u0 +

∫ t

0

exp(As)Buik+Jk−1−1 ds, (5)

ujk+Ik
(t) = exp(Bt)u0 +

∫ t

0

exp(Bs)Aujk+Ik−1 ds, (6)

where ik = 1, 2, 3, . . . , Ik, jk = 1, 2, 3, . . . , Jk, k = 1, . . . , K, I1, . . . , IK are the
number of the iterations done with the A-operator, where J1, . . . , JK are are
the number of iterations done with the B-operator. The initialization is given as
u0(t) = 0 and J0 = 0.

Here we combine the iterative steps for each operator, A and B.
The outline of the paper is as follows. The operator-splitting methods are in-

troduced in Section 2. In Section 3, we discuss the error analysis of the different
iterative methods and their benefits. In Section 4, we discuss an efficient com-
putation of the iterative splitting method with a so-called closed formulation. In
Section 5 we introduce the application of our methods to existing software tools.
Finally, we discuss future works in the area of iterative methods.

2 Splitting method

Splitting methods are wel-known and often used to simplify and accelerate solver
processes of differential equations, see [7], [9], [8], and [10].

While waveform-relaxation methods are studied extensively, see [17], [2], re-
cently the iterative operator-splitting methods are studied as excellent decom-
position methods to obtain higher-order results. First results are given in see [1],
[3], [5], and [12].

Because of their structure a general splitting scheme can be derived, which
is discussed in the following subsection.

2.1 Waveform relaxation method

The following algorithm is based on the iteration with fixed-splitting discretiza-
tion step-size τ , namely, on the time-interval [tn, tn+1] we solve the following
sub-problems consecutively for i = 1, 2, 3, . . . , m. (cf. [17]):

∂ci(t)

∂t
= Aci(t) + Bci−1(t), with ci(t

n) = cn (7)

where cn is the known split approximation at the time-level t = tn, the initial-
ization is c0(t) = c(tn). The split approximation at the time-level t = tn+1 is
defined as cn+1 = cm+1(t

n+1).

In the following we will analyze the convergence and the rate of convergence
of the method (7) for m tends to infinity for the linear operators A, B :X → X,
where we assume that these operators and their sum are generators of the C0

semi-groups. We emphasize that these operators are not necessarily bounded, so
the convergence is examined in a general Banach space setting.
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2.2 Iterative splitting method

The following algorithm is based on the iteration with fixed-splitting discretiza-
tion step-size τ , namely, on the time-interval [tn, tn+1] we solve the following
sub-problems consecutively for i = 0, 2, . . . 2m. (cf. [7, 12].):

∂ci(t)

∂t
= Aci(t) + Bci−1(t), with ci(t

n) = cn (8)

and c0(t
n) = cn , c−1 = 0.0,

∂ci+1(t)

∂t
= Aci(t) + Bci+1(t), (9)

with ci+1(t
n) = cn ,

where cn is the known split approximation at the time-level t = tn. The split
approximation at the time-level t = tn+1 is defined as cn+1 = c2m+1(t

n+1).
(Clearly, the function ci+1(t) depends on the interval [tn, tn+1], too, but, for the
sake of simplicity, in our notation we omit the dependence on n.)

In the following we analyze the convergence and the rate of convergence of
the method (8)–(9) for m tends to infinity for the linear operators A, B :X → X,
where we assume that these operators and their sum are generators of the C0

semi-groups. We emphasize that these operators are not necessarily bounded, so
the convergence is examined in a general Banach space setting.

2.3 General iterative splitting method

The combination of both methods means we are free to choose the number of
iterative steps on each operator, and we obtain a scheme with inner and outer
iterative schemes:

∂cik+Jk−1
(t)

∂t
= Acik+Jk−1

(t) + Bcik+Jk−1−1(t), with cik+Jk−1
(tn) = cn(10)

∂cjk+Ik
(t)

∂t
= Acjk+Ik−1(t) + Bcjk+Ik

(t), with cjk+Ik
(tn) = cn, (11)

where ik = Jk−1 + 1, . . . , Ik, jk = Ik + 1, . . . , Jk, k = 1, . . . , K, Ik − Jk−1 are
the number of the iterations done with the A-operator, where Jk − Ik are are
the number of iterations done with the B-operator. The initialization is given as
u0(t) = 0 and I0 = J0 = 0.

Here we combine the iterative steps for each operator, A and B.

3 Error analysis for the general scheme

In this section we analyze the convergence of the general scheme in which the
waveform relaxation and iterative splitting method are embedded.
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Theorem 1. Let us consider the abstract Cauchy problem in a Hilbert space X

∂tc(x, t) = Ac(x, t) + Bc(x, t), 0 < t ≤ Tand x ∈ Ω

c(x, 0) = c0(x) x ∈ Ω

c(x, t) = c1(x, t) x ∈ ∂Ω × [0, T ],

(12)

where A, B : D(X) → X are given linear operators which are generators of the
C0-semigroup and c0 ∈ X is a given element. We assume A, B are unbounded.
Further, we assume the estimations of the unbounded operator B with sufficient
smooth initial conditions [9]:

||B exp((A + B)τ)u0|| ≤ κ1, (13)

||A exp((A + B)τ)u0|| ≤ κ2, (14)

Further, we assume the estimation with φ-functions:

||A

∫ τ

0

exp(As)u0ds|| ≤ τC1||u0||, (15)

||B

∫ τ

0

exp(Bs)u0ds|| ≤ τC2||u0||, (16)

The we can bound our iterative operator splitting method as :

||(Si − exp((A + B)τ)u0|| ≤ Cτ i||u0||, (17)

where Si is the approximated solution for the i-th iterative step and C is a con-
stant that can be chosen uniformly on bounded time intervals.

Proof. Let us consider the iteration (10)–(11) on the sub-interval [tn, tn+1].
For the first iterations of (10) we have:

∂tc1(t) = Ac1(t), t ∈ (tn, tn+1], (18)

and for the second iteration we have:

∂tc2(t) = Ac2(t) + Bc1(t), t ∈ (tn, tn+1], (19)

In general, we have:
for m = 1, 2, . . . ,

∂tci(t) = Aci(t) + Bci−1(t), t ∈ (tn, tn+1], (20)

where for c0(t) ≡ 0.
We have the following solutions for the iterative scheme:
the solutions for the first two equations are given by the variation of con-

stants:
c1(t) = exp(A(tn+1 − t))c(tn), t ∈ (tn, tn+1], (21)



5

c2(t) = exp(At)c(tn) +
∫ tn+1

tn exp(A(tn+1 − s))Bc1(s)ds, t ∈ (tn, tn+1], (22)

for m = 0, 1, 2, . . .

ci(t) = exp(A(t − tn))c(tn) +
∫ t

tn exp(sA)Bci−1(t
n+1 − s) ds, t ∈ (tn, tn+1],

(23)

The consistency is given as:

For e1 we have:

c1(τ) = exp(A)τ)c(tn), (24)

c(τ) = exp((A + B)τ)c(tn) = exp(Aτ)c(tn) (25)

+

∫ tn+1

tn

exp(As)B exp((tn+1 − s)(A + B))c(tn) ds.

We obtain:

||e1|| = ||c − c1|| ≤ || exp((A + B)τ)c(tn) − exp(Aτ)c(tn)|| (26)

≤ C1τ ||c(t
n)||.

For e2 we have:

c2(τ) = exp(Aτ)c(tn)

+

∫ tn+1

tn

exp(As)B exp((tn+1 − s)A)c(tn) ds, (27)

c(τ) = exp(Aτ)c(tn) +

∫ tn+1

tn

exp(As)B exp((tn+1 − s)A)c(tn) ds

+

∫ tn+1

tn

exp(As)B (28)

∫ tn+1
−s

tn

exp(Aρ)B exp((tn+1 − s − ρ)(A + B))c(tn) dρ ds.

We obtain:

||e2|| ≤ || exp((A + B)τ)c(tn) − c2|| (29)

≤ C2τ
2||c(tn)||.

For the iterations, the recursive proof is given in the following:



6

for m = 0, 1, 2, . . ., for ei we have :

ci(τ) = exp(A)τ)c(tn) (30)

+

∫ tn+1

tn

exp(As)B exp((tn+1 − s)A)c(tn) ds

+

∫ tn+1

tn

exp(As1)B

∫ tn+1
−s1

tn

exp(s2A)B exp((τ − s1 − s2)A)c(tn) ds2 ds1

+ . . . +

+

∫ tn+1

tn

exp(As1)B

∫ tn+1
−s1

tn

exp(s2A)B exp((τ − s1 − s2)A)uc(tn) ds2 ds1 + . . . +

+

∫ tn+1

tn

exp(As1)B

∫ tn+1
−

Pi−1

j=1
s1

tn

exp(s2A)A exp((τ − s1 − s2)A)c(tn) ds2 ds1 . . . dsi,

c(τ) = exp(Aτ) +

∫ tn+1

tn

exp(As)b exp((tn+1 − s)A)c(tn) ds (31)

+ . . . +

+

∫ tn+1

tn

exp(As1)B

∫ tn+1
−s1

tn

exp(s2A)B exp((τ − s1 − s2)A)c(tn) ds2 ds1 + . . . +

+

∫ tn+1

tn

exp(As1)B

∫ tn+1
−

Pi−1

j=1
s1

tn

exp(s2A)B exp((τ − s1 − s2)A)c(tn) ds2 ds1 . . .

∫ tn+1
−

P

i
j=1

s2

tn

exp(s2A)B exp((τ − s1 − s2)(A + B))c(tn)dsi,

We obtain:

||ei|| ≤ || exp((A + B)τ)c(tn) − ci|| (32)

≤ Cτ i||c(tn)||,

where α = mini
j=1{α1} and 0 ≤ αi < 1.

The same proof idea can be applied to the other operator and we obtain:

Remark 1. The same idea can be applied with A = ∇D∇ B = −v · ∇, so that
one operator is less unbounded
but we reduce the convergence order

||e1|| = K||B||τα1 ||e0|| + O(τ1+α1 ) (33)

and hence

||e2|| = K||B||||e0||τ
1+α1+α2 + O(τ1+α1+α), (34)

where 0 ≤ α1, α2 < 1.

Remark 2. If we assume the consistency of O(τm) for the initial value e1(t
n) and

e2(t
n), we can redo the proof and obtain at least a global error of the splitting

methods of O(τm−1).

In the next section we describe the computation of the integral formulation
with exp-functions.
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4 Computation of the iterative splitting method: Closed

formulation

In the last few years, computational attempts to compute integrals with exp-
function have increased, and we present a closed form, and resubstitute the
integral with closed functions. Such benefits accelerate the computation and
parallel the ideas.

Here we present a closed form for the iterative splitting method for the first
fourth splitting iterations:

For i = 1, we have

c1(τ) = exp(Aτ) exp(Bτ)c(tn). (35)

(36)

where we have a first-order method, also known as the AB splitting methods [1].
For i = 2, we have

c2(τ) =
1

2
(exp(At) exp(Bt) + exp(Bt) exp(At)) (37)

where we have a second order method, also known as the parallel AB splitting
method [1].

For i = 3, we have:

c3(τ) =
1

6
(exp(At) exp(Bt) exp(At) + exp(Bt) exp(At) exp(At) (38)

+ exp(Bt) exp(Bt) exp(At) + exp(At) exp(At) exp(Bt) (39)

+ exp(At) exp(Bt) exp(Bt) + exp(Bt) exp(At) exp(Bt)) (40)

where we can reduce the operators with assumptions to the commutators, e.g.
[A, [A, B]] = [B, [A, A]].

Higher orders are at least the derivation of the remaining form of all the
commutations.

4.1 Exp-Approximations with Pade approximations

In the applications, we have to extend differential equations to systems of differ-
ential equations. Therefore we have to apply matrix functions to our analytical
tools.

To approximate matrix functions in the following section, we apply Pade
approximations.

For the matrix exponential we apply:

I + 1

2
At

I − 1

2
At

= exp(At) + O((At)3) , (41)

I + 2

3
(At) + 1

6
(At)2

I − 1

3
At

= exp(At) + O((At)4) , (42)
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where A ∈ IRn×n is the matrix and I ∈ IRn×n is the identity matrix. We define
the following matrix operator: I

L
= L−1 is the inverse matrix of L ∈ IRn×n,

where L is non singular, see [15].

Remark 3. The general formulation for different Pade approximations to apply
to exponential functions exp(At) is given in Table 1.

m / n 0 1 2 3

0 I

I

I

I−A

I

I−A+ 1
2

A2

I

I−A+ 1
2

A2
−

1
6

A3

1 I+A

I

I+ 1
2

A

I−
1
2

A

I+ 1
3

A

I−
2
3

A+ 1
6

A2

I+ 1
4

A

I−
3
4

A+ 1
4

A2
−

1
24

A3

2
I+A+ 1

2
A

2

I

I+ 2
3

A+ 1
6

A
2

I−
1
3

A

I+ 1
2

A+ 1
12

A
2

I−
1
2

A+ 1
12

A2

I+ 2
5

A+ 1
20

A
2

I−
3
5

A+ 3
20

A2
−

1
60

A3

3
I+A+ 1

2
A

2
+ 1

6
A

3

I

I+ 3
4

A+ 1
4

A
2
+ 1

24
A

3

I−
1
4

A

I+ 3
5

A+ 3
20

A
2
+ 1

60
A

3

I−
2
5

A+ 1
20

A2

I+ 1
2

A+ 1
10

A
2
+ 1

120
A

3

I−
1
2

A+ 1
10

A2
−

1
120

A3

4
I+A+ 1

2
A

2
+ 1

6
A

3
+ 1

24
A

4

I

I+ 4
5

A+ 3
10

A
2
+ 1

15
A

3
+ 1

120
A

4

I−
1
5

A

I+ 2
3

A+ 1
5

A
2
+ 1

30
A

3
+ 1

360
A

4

I−
1
3

A+ 1
30

A2

I+ 4
7

A+ 1
7

A
2
+ 2

105
A

3
+ 1

840
A

4

I−
3
7

A+ 1
14

A2
−

1
210

A3

Table 1. Pade approximations of the exp-function.

In the next experiments, we apply the Pade approximations for m = n = 1,
m = n = 2 and m = n = 3.

5 Numerical experiments

5.1 First Experiment

We deal first with an ODE and separate the complex operator into two simpler
operators.

We deal with the following equation :

∂tu1 = −λ1u1 + λ2u2 , (43)

∂tu2 = λ1u1 − λ2u2 , (44)

u1(0) = u10 , u2(0) = u20 (initial conditions) , (45)

where λ1, λ2 ∈ IR+ are the decay factors and u10, u20 ∈ IR+. We have the time-
interval t ∈ [0, T ].

We rewrite the equation (43) in operator notation, and we concentrate on
the following equations :

∂tu = A(t)u + B(t)u , (46)

(47)

where u1(0) = u10 = 1.0 , u2(0) = u20 = 1.0 are the initial conditions, where we
have λ1(t) = t and λ2(t) = t2.
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Our splitted operators are

A =

(

−λ1 λ2

0 0

)

, B =

(

0 0
λ1 −λ2

)

. (48)

The concrete parameters for the experiments are given as:
λ1 = 0.05 λ2 = 0.01 T = 1.0 u0 = (1, 1)t

We apply the AB, Stang and third order splitting and compare them with
the unsplitted solutions:

(1.) Unsplitted :

cexact(τ) = exp((A + B)τ)c(tn). (49)

(2.) A-B splitting

c1(τ) = exp(Aτ) exp(Bτ)c(tn). (50)

where we have a first-order method, also known as the AB splitting methods [1].
(3.) Strang splitting

c2(τ) =
1

2
(exp(At) exp(Bt) + exp(Bt) exp(At)) (51)

where we have a second-order method, also known as parallel AB splitting
method [1].

(4.) Third-order splitting

c3(τ) =
1

6
(exp(At) exp(Bt) exp(At) + exp(Bt) exp(At) exp(At) (52)

+ exp(Bt) exp(Bt) exp(At) + exp(At) exp(At) exp(Bt)

+ exp(At) exp(Bt) exp(Bt) + exp(Bt) exp(At) exp(Bt))

where the solution is derived from the iterative splitting methods.
The L1-error is computed as:

errnum =

N
∑

k=1

|uexact(tk) − unum(tk)| (53)

where tk = k∆t, where t0, t1, . . . and ∆t = 0.1.

Remark 4. Our numerical results are based on higher order iterative schemes in
closed formulations. Table 2 presents the results which show that third order
methods can achieve more accurate results. The numerical results show that the
splitting error decreases as long as the Pade approximation used allows it. There-
fore we can say that more iterations are only sufficient when a method of higher
order is used. One can also see that the iterative operator-splitting method is of
order i as long as the Pade approximation is also of order i.
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number of err1 (2nd order) err2 (2nd order) err1 (3rd order) err2 (3rd order)
time partitions

2 4.5321e-002 3.6077e-003 4.5321e-002 3.6077e-003

3 4.6126e-004 3.6077e-003 4.6126e-004 3.6077e-003

4 4.6126e-004 2.2459e-005 4.6126e-004 2.2464e-005

5 1.9096e-006 2.2459e-005 1.9040e-006 2.2464e-005

6 1.9096e-006 6.1224e-008 1.9040e-006 6.6759e-008

Table 2. Numerical results for the first example with the iterative splitting method
and second- and third-order method.

5.2 Second Experiment

We deal second with an ODE and separate the complex operator into two simpler
operators.

We deal with the following equation :

∂tu1 = −λ1(t)u1 + λ2(t)u2 , (54)

∂tu2 = λ1(t)u1 − λ2(t)u2 , (55)

u1(0) = u10 , u2(0) = u20 (initial conditions) , (56)

where λ1(t) ∈ IR+ and λ2(t) ∈ IR+ are the decay factors and u10, u20 ∈ IR+. We
have the time-interval t ∈ [0, T ].

We rewrite the equation (54) in operator notation, and we concentrate on
the following equations:

∂tu = A(t)u + B(t)u , (57)

(58)

where u1(0) = u10 = 1.0 , u2(0) = u20 = 1.0 are the initial conditions, where we
have λ1(t) = t and λ2(t) = t2.

Our splitted operators are

At =

(

−λ1(t) λ2(t)
0 0

)

, Bt =

(

0 0
λ1(t) −λ2(t)

)

. (59)

For the equation (54), we could apply a higher-order Pade approximation,
e.g. third order.

We apply first the sequential splitting and the iterative operator-splitting,
and then we combine them by using the pre-step based methods to see the
improved results.

For the time-steps ∆t we have ∆t = 1 for 1 time-partition and ∆t = 0.1 for
10 time-partitions.

Remark 5. Our numerical results are based on higher order iterative schemes
in closed formulations. Table 3 presents the results which show that third order
methods can achieve more accurate results. By the way the more time-dependent
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number of err1 (2nd order) err2 (2nd order) err1 (3rd order) err2 (3rd order)
time partitions

1 4.5541e-001 3.6275e-002 4.6325e-001 3.8057e-002

10 4.5146e-004 3.7277e-003 4.4136e-004 3.8277e-003

Table 3. Numerical results for the second example with the iterative splitting method
and second- and third-order method.

operators need more time partitions to obtain the same accurate results as with
constant operators. Here numerical results show that the splitting error decreases
as long as the balance between number of time partitions and higher order ap-
proximations are used. The Pade approximation has to be of order i as long as
the iterative scheme has also the order i.

6 Conclusions and Discussions

We have presented an iterative operator-splitting method and analyze the er-
ror bound for unbounded operators. Under weak assumptions we could prove
the higher-order error bounds. Numerical examples confirm the applications to
differential equations. In the future we will focus on the development of im-
proved operator-splitting methods with respect to their application in nonlinear
differential equations.
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