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Abstract

Let X be a real-valued Lévy process under IP in its natural filtration. The minimal
entropy martingale measure is defined as an absolutely continuous martingale measure
that minimizes the relative entropy with respect to IP. We show in this paper that the
sufficient conditions for its existence, known in literature, are also necessary and give an
explicit formula for the infimum of the relative entropy.
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1 Introduction

In the last years, financial models based on Lévy processes have become very popular as
possible alternatives to the traditional Black-Scholes model. The exponential Lévy model,
i.e. a model in which the asset price process has the form St = S0e

Xt , t ∈ [0, T ], with a real
valued Lévy process X is very flexible and analytically tractable and is able to reproduce
many stylized facts of the financial time series such as volatility clustering, jumps, heavy tails
and skewness.
The main problem with the exponential Lévy models is that they in general generate an in-
complete market: there are infinitely many equivalent martingale (or risk neutral) measures
(EMMs) and hence the option prices are not unique. A popular approach is to fix a suitable
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equivalent martingale measure, which determines the option prices by an expectation of the
discounted payoff taken with respect to this measure. Probably the easiest approach is taking
the Esscher transform (EEMM) studied by Gerber and Shiu, [GS94], i.e. the unique (if it
exists) martingale measure from the exponential family of the process X. Another classical
method is minimization of a functional over equivalent martingale measures. Well studied
examples are the minimal martingale measure by Föllmer and Schweizer [FS91], the min-
imal entropy martingale measure (MEMM) studied by Chan, [Cha99], Miyahara, [Miy99],
Frittelli, [Fri00], Fujiwara and Miyahara, [FM03], Esche and Schweizer, [ES05] and the f q-
minimal martingale measure (qMMM) by Jeanblanc, Klöppel and Miyahara, [JKM07].

In this paper we choose the relative entropy as a functional to be minimized. This method
is mathematically elegant and has a financial interpretation within the context of a utility
maximization, [Fri00], [GR01]. The dual representation of the asset price process through a
stochastic exponential of other Lévy process provides a close link between MEMM and the
Escher martingale measure. We provide a complete characterization of the MEMM: we show
that the well-known sufficient conditions for the existence of MEMM (i.e., [FM03], Theorem
3.1 or [ES05], Theorem B) are also necessary. Finally, we present a representation of the
infimum of the entropy process through the cumulant-generating function of the Lévy process
no matter whether the MEMM exists or not. In the latter case we also construct a sequence
of absolutely continuous martingale measures (IP∗n)n∈IN whose entropy processes approach the
infimum. Our results are valid for arbitrary Lévy processes. Applying the duality represen-
tation these results can be translated easily for the exponential Lévy model.

This paper is structured as follows. In the second section we formulate the basic prob-
lem in more detail and state sufficient conditions for the existence of the MEMM, proved by
Esche and Schweizer, [ES05]. In the third section we present our main results, which allow a
complete characterisation of the MEMM for both Lévy and exponential Lévy processes. The
translation of our results for the exponential Lévy models is presented in Section 4. The last
section contains a discussion of the results of Hubalek and Sgarra and the comparison to our
results as well as some steps in their proofs that are unclear to us. Appendix A summarizes
required results on exponential transforms and measure changes for Lévy processes. For a
better readability, some omitted proofs are presented in Appendix B.

2 Setup and results of Esche and Schweizer

Let (Ω,F , IF IP) be a filtered probability space, where IF = IFX = (FX
t )t∈[0,T ] is the IP-

augmentation of the natural filtration of a real-valued Lévy process X. Let (σ2, ν, γ) denote
the characteristic triplet of X with respect to the truncation function x1{|x|≤1}. The entropy
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process for a probability measure Q on (Ω,F ) with Q� IP is defined by

It(Q | IP) := IEQ
(

log
(
dQ |Ft

d IP |Ft

))
∈ [0,∞], t ∈ [0, T ].

Furthermore, we introduce the following sets of probability measures on (Ω,F ):

Qa(X) := {Q� IP | X is a local Q-martingale},

Qe(X) := {Q ∼ IP | X is a local Q-martingale} ⊆ Qa(X),

Qf (X) := {Q ∈ Qa(X) | It(Q | IP) <∞ ∀ t ∈ [0, T ]},

Ql(X) := {Q ∈ Qa(X) | X is a Lévy process under Q}.

The minimal entropy equivalent martingale measure (MEMM or IPMEMM) is defined by the
property that it minimizes the relative entropy among all measures Q ∈ Qa(X). The Esscher
martingale measure (ESMM) for a process X, if it exists, is a martingale measure with density
given by d IP∗

d IP = const eϑ
∗XT .

We assume that the paths of the process X are neither increasing nor decreasing.

Assumption A: X 6≡ 0, the paths of X are IP-a.s. not monotone.

Remark 2.1. The first fundamental theorem of asset pricing ([CS], Theorem 4.6) yields that
the exponential Lévy model S = eX satisfies the no-arbitrage condition (NFLVR), if and only
if the paths of S are not monotone (and hence, the paths of the exponential transform of X).
Therefore, this assumption is not restrictive.

Remark 2.2. We shall see later that the Assumption A implies the existence of a probability
measure Q ∈ Qe(R) ∩Qf (R) ∩Ql(R). Frittelli shows in [Fri00], Theorem 2.2, that in this
case the MEMM is equivalent to IP if it exists. Moreover, it follows from [ES05], Theorem
A, that X is a Lévy process under IPMEMM, hence X is a proper IPMEMM-martingale. So, the
notion ”minimal entropy equivalent martingale measure” is justified.

A Lévy process X is in general a semimartingale under Q � P . However, as Esche and
Schweizer show in [ES05], X is again a Lévy process under the MEMM, if it exists. Further-
more, they state sufficient conditions for the existence of the MEMM. Moreover, they show
that in this case the MEMM is equal to the Esscher martingale measure (ESMM or IPESMM)
for the exponential transform R. More precisely, we have

Theorem 2.1 ([ES05], Theorem A). Let R be a real-valued Lévy process on a filtered proba-
bility space (Ω,F , IF, IP) with characteristic triplet (σ2, ν, γ). Suppose that Qe(R)∩Qf (R)∩
Ql(R) 6= ∅. If there exists a probability measure IP∗ ∈ Qa(R) with

It(IP∗ | IP) ≤ It(Q| IP), ∀Q ∈ Qa(R), ∀ t ∈ [0, T ], (2.1)

then R is a Lévy process under IP∗.
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Theorem 2.2 ([ES05], Theorem B). Let R be a real-valued Lévy process on a filtered prob-
ability space (Ω,F , IF, IP) with characteristic triplet (σ2, ν, γ). Suppose that there exists a
ϑ∗ ∈ IR satisfying∫

IR \{0}
|xeϑ∗x − h(x)|ν( dx) <∞, (ES1)

γ + σ2ϑ∗ +
∫

IR \{0}

(
xeϑ

∗x − h(x)
)
ν( dx) = 0. (ES2)

Then, the MEMM exists and coincides with the ESMM.

3 Main Results

In this section we present the reverse results to [ES05] and obtain the complete characteri-
sation of the MEMM for a Lévy process R that satisfies the Assumption A. We show that
the assumptions (ES1) and (ES2) are not only sufficient but also necessary for the existence
of the MEMM. We also give a representation of the infimum of the relative entropy process,
regardless of whether or not the MEMM exists, by means of the cumulant generating function
and find a sequence of absolutely continuous martingale measures (IPn)n∈IN that converges to
the infimum of the entropy process if the MEMM does not exist.
In [HS06] Hubalek and Sgarra investigate the existence question of the MEMM for the ex-
ponential Lévy model. The authors use arguments that base on particular properties of an
exponential Lévy process. Also, some of the steps of their main results are not clear to us.
In section 5 we discuss these results and present a comparison of both approaches.

Our first result states, that the infimum of the relative entropy over Qe(R) equals the negative
value of the cumulant generating function of the process R, given by

ϕ(ϑ) = ln IE(eϑR1) = γϑ+
1
2
σ2ϑ2 +

∫
IR \{0}

(eϑx − 1− ϑh(x))ν( dx) <∞,

for ϑ ∈ ΘEXP(R, IP), where ΘEXP(R, IP) := {ϑ ∈ IR :
∫
{|x|>1} e

ϑxν( dx) <∞}.

Theorem 3.1. It holds that

inf{It(Q| IP) : Q ∈ Qa(R)} = −t inf{ϕ(ϑ) : ϑ ∈ IR}, ∀ t ∈ [0, T ].

Proof. The proof is given in Appendix B. �

The second main result provides the complete characterization of the MEMM. For a Lévy
process R with characteristic triplet (σ2, ν, γ) we define the function κ by

κ(ϑ) :=
IE(R1e

ϑR1)
IE(eϑR1)

,
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for a ϕ ∈ Θ1
EXP(R, IP), where Θ1

EXP(R, IP) := {ϑ ∈ ΘEXP(R, IP) :
∫
{|x|>1} |x|e

ϑxν( dx) <∞}.
If the minimal point ϑ∗ satisfies κ(ϑ∗) = 0, then the MEMM exists and coincides with the
ESMM. Otherwise, the infimum of the entropy is not achieved over Qa(R). Finally, we will
show that the condition κ(ϑ∗) = 0 is equivalent to the conditions (ES1) and (ES2). Esche
and Schweizer show in [ES05], that (ES1) and (ES2) are sufficient for the existence of the
MEMM. Similar results for an exponential Lévy process can be found in [Miy99], [FM03]. We
complete these results by showing that for a Lévy process R that satisfies the Assumption A,
the conditions (ES1) and (ES2) are also necessary for the existence of the MEMM.

Theorem 3.2. Suppose ϑ∗ ∈ IR satisfies ϕ(ϑ∗) = inf{ϕ(ϑ) : ϑ ∈ IR}. If κ(ϑ∗) = 0, then
there exists a unique probability measure IP∗ ∈ Qe(R) ∩Qf (R) ∩Ql(R) satisfying

It(IP∗ | IP) ≤ It(Q| IP), ∀ t ∈ [0, T ], ∀Q ∈ Qa(R).

IP∗ is the ESMM and its Radon-Nikodým density with respect to IP is given by

d IP∗

d IP
= eϑ

∗RT−Tϕ(ϑ∗).

If κ is not defined in ϑ∗ or if it holds that κ(ϑ∗) 6= 0, then the infimum of the relative entropy
is not attained over Qa(R).

Proof. The proof is given in Appendix B. �

Remark 3.1. If we consider a Lévy process on the infinite time horizon, the statements of
Theorem 3.1 and 3.2 can be adopted for this case if we replace the properties ”equivalent” and
”absolutely continuous” by ”locally equivalent” and ”locally absolutely continuous”.

If ϑ∗ is an inner point of ΘEXP(R, IP), then ϕ′(ϑ∗) = κ(ϑ∗) = 0 and the MEMM exists. If
ϑ∗ is a boundary point of ΘEXP(R, IP), then the one-sided derivative limϑ→ϑ∗ ϕ

′(ϑ) = κ(ϑ∗),
ϑ ∈ ΘEXP(R, IP) is not necessary equal to zero. We give an example of a Lévy process
R with a triplet (σ2, ν, γ), for which both cases κ(ϑ∗) = limϑ→ϑ∗ ϕ

′(ϑ) < 0 and κ(ϑ∗) =
limϑ→ϑ∗ ϕ

′(ϑ) = 0 occur depending on the value of the parameter γ.

Example 3.1. Let a > 0 and R be a Lévy process with a characteristic triplet (σ2, ν, γ) given
by

σ2 > 0 arbitrary,

γ = −2
(∫ 1

0

eax − 1
x

dx+
∫ ∞

1

1
x2
dx

)
− 2σ2a < 0,

ν( dx) =


x−2, 0 < x ≤ 1,
e−axx−3, x > 1,
0, otherwise,
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with respect to the truncation function h(x) = x1{|x|≤1}. Since σ2 > 0, the process R satisfies
the Assumption A. It holds for an arbitrary ϑ ∈ IR that

ϕ(ϑ) <∞⇐⇒
∫ ∞

1

e(ϑ−a)x

x3
dx <∞⇐⇒ ϑ ≤ a.

Hence, ΘEXP(R, IP) = (−∞, a]. For an arbitrary ϑ ∈ (0, a) we have

ϕ′(ϑ) ≤ γ + σ2a+
∫ 1

0

eax − 1
x

dx+
∫ ∞

1

1
x2
dx =

γ

2
< 0.

The function ϕ is strictly convex and hence, decreasing on (−∞, a]. Monotone convergence
theorem yields limϑ↑a ϕ

′(ϑ) = γ
2 < 0. Applying the dominated convergence theorem we obtain

IE(R1e
aR1)

IE(eaR1)
=
γ

2
< 0.

Hence, according to Theorem 3.2, the MEMM does not exist. Theorem 3.1 provides a repre-
sentation of the infimum of the relative entropy:

inf
Q∈Qa(R)

It(Q| IP) = −tϕ(a) = −t
(
γa+

1
2
σ2a2 +

∫ 1

0

eax − 1− ax
x2

dx+
∫ ∞

1

1− e−ax

x3
dx

)
.

Now let Y be a Lévy process with the characteristic triplet (σ2, ν, γ/2). a is again the infimum
point of the cumulant generating function of Y1 and it holds that κ(a) = 0. The MEMM does
exist.

The proof of Theorem 3.1 offers an approximating sequence of probability measures (IPn)n∈IN ⊆
Qa(R)∩Ql(R) if the infimum of the relative entropy is not attained. We formulate this result
in a lemma.

Lemma 3.1. There exists a sequence of probability measures (IP∗n)n∈IN ⊆ Qa(R) ∩Qf (R) ∩
Ql(R), such that

lim
n→∞

It(IP∗n | IP) = inf
Q∈Qa(R)

It(Q| IP), ∀t ∈ [0, T ].

Example 3.2 (α-stable Lévy processes). Let us consider an arbitrary α-stable symmetric
Lévy process. Its characteristic triplet is given by (0, ν, 0), where ν( dx) = 1

|x|α+1 dx, with
α ∈ (0, 2) and truncation function h(x) = x1{|x|≤1}. It holds that ΘEXP(R, IP) = {0}, hence,

inf{It(Q| IP) : Q ∈ Qa(R)} = −tϕ(0) = 0, ∀ t ∈ [0, T ].

We consider the following sequence of measure changes, given by Girsanov parameters
(0,1{|x|≤n})R. The corresponding probability measures IP∗n lie in Qa(R)∩Ql(R). The relative
entropy process is given by

It(IPn | IP) = t
2α
nα
−→ 0 for n→∞.
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According to Theorem 3.2, the MEMM does not exist, since the expectation of R1 under IP
does not exist. Yet, the sequence (IPn)n∈IN ⊆ Qa(R) ∩ Qf (R) ∩ Ql(R) approximates the
infimum.

It is not hard to show that the sufficient conditions for the existence of MEMM from Theorem
3.2 are equivalent to (ES1) and (ES2).

Lemma 3.2. For an arbitrary ϑ∗ ∈ ΘEXP(R, IP) the following conditions are equivalent.

1. κ(ϑ∗) = 0.

2. It holds that ϕ(ϑ∗) = inf{ϕ(ϑ) : ϑ ∈ IR} and κ(ϑ∗) = 0.

3. ϑ∗ satisfies (ES1) and (ES2) from [ES05], Theorem B.

Proof. 2.→ 3. Let ϑ0 ∈ ΘEXP(R, IP) with ϕ(ϑ0) = inf{ϕ(ϑ) : ϑ ∈ IR}. Suppose that ϑ0 6= ϑ∗.
Without loss of generality, assume ϑ0 < ϑ∗. The function ϕ is differentiable on I = (ϑ0, ϑ

∗)
and ϕ′(ϑ) = κ(ϑ), ϑ ∈ I. Due to minimality of ϕ in ϑ0 it holds that κ(ϑ) > 0 on I. Then
again κ is an increasing function and κ(ϑ∗) = 0, hence, κ(ϑ) < 0 for ϑ ∈ I. We obtain a
contradiction.
2.→ 3. It holds that ϑ∗ ∈ Θ1

EXP(R, IP) ⊆ ΘEXP(R, IP). Let us consider a measure change with
Girsanov parameters (ϑ∗, eϑ

∗x)R. We have

0 = κ(ϑ∗) =
IE(R1e

ϑ∗R1)
IE(eϑ∗R1)

= IE∗(R1),

where IE∗ denotes the expectation under IPϑ
∗ ∈ Ql(R). On the other hand,

IE∗(R1) = γ∗ +
∫

IR \{0}
(x− h(x))ν∗( dx)

= γ + σ2ϑ∗ +
∫

IR \{0}
(eϑ
∗x − 1)h(x)ν( dx) +

∫
IR \{0}

(x− h(x))eϑ
∗xν( dx)

= γ + σ2ϑ∗ +
∫

IR \{0}
(xeϑ

∗x − h(x))ν( dx).

We obtain (ES2). Furthermore,∫
IR \{0}

|xeϑ∗x − h(x)|ν( dx) ≤
∫
{|x|≥1}

|x|eϑ∗xν( dx) +
∫
{|x|≥1}

|h(x)|ν( dx)

+
∫
{|x|<1}

|xeϑ∗x − h(x)|ν( dx).

The first term is by assumption finite, also the second, since h is a bounded function. xeϑ
∗x−

h(x) behaves like x2 for x→ 0 and is therefore integrable. We obtain (ES1).
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3.→ 1. We have ϑ∗ ∈ Θ1
EXP(R, IP), the expectation under IPϑ

∗
exists and it is

κ(ϑ∗) = IE∗(R1) = γ + σ2ϑ∗ +
∫

IR \{0}
(xeϑ

∗x − h(x))ν( dx) = 0.

�

4 MEMM for exponential Lévy processes

Suppose that the asset price (St)t∈[0,T ] follows an exponential Lévy model St = eXt , t ∈
[0, T ], for a real-valued Lévy process X. The next result gives justification for dealing with an
arbitrary Lévy process, even if we would like to characterize the MEMM for the exponential
Lévy process:
S can be represented as a stochastic exponential of another Lévy process R, S = E (R).
Appendix A presents the notion of stochastic exponential and the required results. Theorem
4.1 yields that S is a martingale if and only if R is a martingale. Since the entropy process
depends on the measure and not the process we consider, the MEMM is the same for both
processes S and R.

Theorem 4.1. Suppose S follows an exponential Lévy process S = eX for a Lévy process X
on a filtered probability space (Ω,F , IFX , IP). It holds that

1. S has a representation as a stochastic exponential of a Lévy process R with ∆Rt > −1
for all t ∈ [0, T ].

2. S is a (local) martingale if and only if R is a local martingale.

3. If S (resp. R) is a local martingale, then it is a martingale.

Proof. 1. is discussed in Section A.1.
2. Suppose S is a local martingale. S is also a càd process, and it follows from Proposition
1.28, [JS87] that τn := inf{t ∈ [0, T ] : St < 1

n}, n ∈ IN, is a stopping time. We have τn ↑ T ,
n → ∞, and 1

St∧τn
is bounded for all n ∈ IN. Hence, 1

S−
is a locally bounded , predictable

process and due to 4.34 (b), [JS87], the stochastic integral is also a local martingale. The
claim follows from the representation (A.3) of R. Suppose now that R is a local martingale.
We apply the same arguments to the representation (A.1) of S.
3. It follows from [Sid79] that if the Lévy process R or the exponential Lévy process S = eX

are local martingales then they are proper martingales. �

Using the dual representation S = eX = E (R) and the correspondence between the char-
acteristic triplets of X and R, which can be found in Lemma A.2, we translate our main
results for the special case of exponential Lévy model. From Theorem 3.2 we know, that, if
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MEMM exists, then it is the Esscher transform for the process R. We express the necessary
and sufficient conditions for the existence of MEMM in terms of the characteristics of X.

Lemma 4.1. Let X be a Lévy process, (Ω,F , IF, IP) a filtered probability space and S = eX .
Suppose that the trajectories of S satisfy the Assumption A. There exist the MEMM for S if
and only if there exists a ϑ∗ ∈ IR satisfying∫

{x>1}
exeϑ

∗(ex−1)ν( dx) <∞ and (MEMM1)

0 = γ + σ2

(
1
2

+ ϑ∗
)

+
∫

IR \{0}
((ex − 1)eϑ

∗(ex−1) − h(x))ν( dx). (MEMM2)

In this case, X is a Lévy process under IPMEMM with characteristic triplet (σ2, ν∗, γ∗), given
by

ν∗( dx) = eϑ
∗(ex−1)ν( dx),

γ∗ = γ + σ2ϑ∗ +
∫

IR \{0}
h(x)(eϑ

∗(ex−1) − 1)ν( dx).

The infimum of the relative entropy is given by

It(IPMEMM | IP) = −t

(
γϑ∗ +

1
2
σ2ϑ∗(ϑ∗ + 1) +

∫
IR \{0}

(
eϑ
∗(ex−1) − 1− ϑ∗h(x)

)
ν( dx)

)
.

Proof. We write S as a stochastic exponential of a Lévy process R. From the characteristic
triplet of R it is easy to see, that R also satisfies the Assumption A (i.e., neither R nor −R
are subordinators). Theorem 3.2 and Lemma 3.2 provide necessary and sufficient conditions
for the existence of the MEMM:

κR(ϑ∗) = 0 for ϑ∗ ∈ IR with ϕR(ϑ∗) = inf{ϕR(ϑ) : ϑ ∈ IR}

or, equivalently, the existence of a ϑ∗ ∈ ΘEXP(R, IP) satisfying

γR + σ2
Rϑ
∗ +

∫
IR \{0}

(xeϑx − h(x))νR( dx) = 0,

where ϕR denotes the cumulant generating function of the Lévy process R under IP. If the
MEMM for S exists, then it is the ESMM for the process R and its density is given by

d IP∗

d IP
= eϑ

∗RT−TϕR(ϑ∗).

Using the relation between the characteristic triplets of X and R, stated in Lemma A.2, we
obtain (MEMM1) and (MEMM2). �
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5 Discussion

In conclusion we would like to compare our results with the results of Hubalek and Sgarra,
[HS06] and discuss unclear steps in the proof of Theorem 8, [HS06]. For a better readability
we summarize the notational difference in a table.

The statements of Theorems 8 and 9, [HS06], are comparable to our results in the special case
of an exponential Lévy process. Proposition 4 in [HS06], used to prove Theorem 8, provides
from our point of view an incomplete proof for the existence of the ESMM for the process
R. Hubalek and Sgarra use the result from Theorem A, [ES05]: X is a Lévy process under
IPMEMM and the Girsanov parameters are given by (η0, y0(x))X . They obtain y0(x) = eϑ

∗(ex−1)

and

ϑ∗ :=
1
β

∫
B
y0(x) ln y0(x)ν( dx), (5.1)

The density of IPMEMM with respect to IP is given by

d IPMEMM

d IP
=exp

{
η0WT−

η2
0σ

2T

2
+lim
ε↓0

(∑
0<s≤T

ϑ∗
(
e∆Xs − 1

)
−T

∫
{|x|>ε}

(
eϑ
∗(ex−1) − 1

)
ν( dx)

)}
= exp

{
ϑ∗RT − ϕR(ϑ∗)T + (η0 − ϑ∗)WT −

1
2
σ2T (η2

0 − (ϑ∗)2)
}

and (η0, y0(x))X would correspond to the ESMM for R , if one can show that ϑ∗ = η0. This
is however not obvious. The assignment (5.1) does not provide a concrete value for ϑ∗:

ϑ∗ =

∫
B ϑ
∗eϑ

∗(ex−1)(ex − 1)ν( dx)∫
B e

ϑ∗(ex−1)(ex − 1)ν( dx)
≡ ϑ∗.

In [HS06] only exponential Lévy processes, S = eX , are treated. In this case the exponential
transform R of X has certain properties (e.g., the jumps are bounded from below, the cumu-
lant generating function exists for ϑ < 0) that simplify some of the steps of their proofs. It
is also not obvious how these methods can be generalised for an arbitrary Lévy process X,
therefore, our proofs do not base on the statements and steps from [HS06].
Notational differences:

Hubalek
and Sgarra

Krol and
Küchler

meaning

X̃ R exponential transform of X
(c, U, b) (σ2, ν, γ) the characteristic triplet of X
(ψ0, y(x)) (η0, y(x)) Girsanov parameters
κ̃ ϕR cumulant generating function of X̃ and R respectively



A EXPONENTIAL TRANSFORMS AND MEASURE CHANGES FOR LÉVY PROCESSES11

A Exponential transforms and measure changes for Lévy pro-

cesses

In this section we gather the required results on exponential transforms and measure changes
for Lévy processes. For more details the interested reader is referred to the books by Jacod
and Shiryaev, [JS87] and Cont and Tankov, [CT03]. Thoughout this section we consider
a real-valued Lévy process X on a filtered probability space (Ω,F , IF, IP), where IF is the
augmented natural filtration of X. (σ2, ν, γ) denotes the characteristic triplet of X with
respect to the truncation function h(x) = x1{|x|≤1}.

A.1 Stochastic exponentials

Definition A.1 ([CT03], Definition 2.1). Let X be a real-valued semimartingale. The stochas-
tic exponential E (X) is defined as the unique solution Z to the stochastic differential equation

Zt = 1 +
∫ t

0
Zu− dXu. (A.1)

Z is given by

Zt = exp
{
Xt −

σ2

2
t

} ∏
0<u≤t

(1 + ∆Xu)e−∆Xu , t ∈ [0, T ]. (A.2)

The function X 7→ E (X) can be inverted:

Lemma A.1 ([KS02], Lemma 2.2). Let Z be a semimartingale such that Z,Z− are IR \{0}-
valued. Then there exists a unique semimartingale X such that X0 = 0 and Z = Z0E (X). It
is given by

Xt =
∫ t

0

1
Zs−

dZs, t ∈ [0, T ]. (A.3)

X is called the stochastic logarithm of Z and is denoted by L (Z) := X.

Definition A.2 ([KS02], Definition 2.5). For any real-valued semimartingale X with X0 = 0,
we call R := L (eX) the exponential transform of X. Conversely, we call X := log(E (R) the
logarithmic transform of any real-valued semimartingale R with R0 = 0 and ∆Rt > −1.

A very useful property is that X is a Lévy process if and only if R is a Lévy process (with
∆Rt > −1). The next result gives the correspondence of the respective characteristic triplets.
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Lemma A.2 ([KS02], Lemma 2.7). The exponential transform R of a Lévy process X is
again a Lévy process. Its characteristic triplet (σ2

R, νR, γR) is given by

γR = γX +
σ2
X

2
+
∫

IR \{0}
(h (ex − 1)− h(x))νX( dx), (A.4)

σR = σX , (A.5)

νR( dx) = (νX ◦ g−1)( dx). (A.6)

Conversely, the logarithmic transform X of a Lévy process R with ∆R > 1 and (σ2
R, νR, γR)

is again a Lévy process, with triplet (σ2, ν, γ) as follows:

γ = γR −
σ2
R

2
+
∫

IR \{0}
(h (log(1 + x))− h(x))νR( dx), (A.7)

σ = σR, (A.8)

ν( dx) = (νR ◦ g)( dx), with g(x) = ex − 1. (A.9)

A.2 Measure changes for Lévy processes

We now turn to the description of equivalent probability measures, such that X remains a
Lévy process under the new measure.

Theorem A.1 ([CT03], Proposition 9.8). Suppose IP and IP∗ are two probability measures
on (Ω,F ) and X is a Lévy process under IP and IP∗ with characteristic triplets (σ2, ν, γ) and
((σ∗)2, ν∗, γ∗) respectively. The following statements are equivalent.

1. IP∗ |Ft and IP |Ft are equivalent for at least one t ∈ (0, T ] (and hence for all t ∈ [0, T ]).

2. The characteristics satisfy σ = σ∗, ν ∼ ν∗, where y(x), given by dν∗

dν = y(x), satisfies∫
IR \{0}

(
√
y(x)− 1)2ν( dx) <∞. (A.10)

If σ = 0 it must additionally hold that γ∗ − γ =
∫

IR \{0} h(x)(ν∗ − ν)( dx).

Suppose (1) and (2) are satisfied. It holds that d IP∗

d IP = eUT IP -a.s. for a Lévy process
U = (Ut)t∈[0,T ] with

Ut = ηWt −
1
2
η2σ2t+

∫
(0,t]

∫
IR \{0}

(log y(x)− y(x) + 1)JX( du, dx)

+
∫

(0,t]

∫
IR \{0}

(y(x)− 1)J̃X( du, dx),

where η satisfies

γ∗ − γ −
∫

IR \{0}
h(x)(ν∗ − ν)( dx) = σ2η
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and is equal to zero if σ2 = 0. JX and J̃X denote the jump and compensated jump measures
of X respectively.

We also formulate a modification of the Girsanov theorem.

Theorem A.2. Suppose T > 0, η ∈ IR and y a function y : IR → [0,∞) satisfying A.10
Then the process N = (Nt)t∈[0,T ], given by

Nt = ησWt +
∫ t

0

∫
IR \{0}

(y(x)− 1)J̃X( du, dx), t ∈ [0, T ],

is well-defined and d IP∗

dP = E (N)T defines a probability measure P ∗ on (Ω,F ) with IP∗ � IP.
X is again a Lévy process under IP∗, its characteristic triplet ((σ∗)2, ν∗, γ∗) is given by

σ∗ = σ,

ν∗( dx) = y(x)ν( dx),

γ∗ = γ +
∫

IR \{0}
h(x)(ν∗ − ν)( dx) + σ2η.

B Omitted proofs

The following lemma summarizes some of the properties of the cumulant generating function
ϕ and presents a link between ϕ and κ.

Lemma B.1. Let R be a Lévy process on a filtered probability space (Ω,F , IF, IP).

1. ΘEXP(R, IP) is a non-empty interval.

2. For an arbitrary ϑ0 ∈ Θ̊EXP(R, IP) it holds that ϑ0 ∈ Θ1
EXP(R, IP) and ϕ′(ϑ0) = κ(ϑ0).

Suppose that the Lévy process R satisfies additionally the Assumption A. Then it holds that

3. ϕ is a strictly convex function on ΘEXP(R, IP) and ϕ(ϑ)→∞ for |ϑ| → ∞.

4. There exists a unique ϑ∗ ∈ IR satisfying ϕ(ϑ∗) = inf{ϕ(ϑ) : ϑ ∈ IR}.

Proof.
1. The claim follows from ϕ(0) = 0 and the fact that ΘEXP(R, IP) is a convex set (see e.g.
[DCD86], pages 126-128).
2. For an arbitrary ϑ0 ∈ Θ̊EXP(R, IP) there exists an ε > 0 satisfying (ϑ0 − 2ε, ϑ0 + 2ε) ⊆
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Θ̊EXP(R, IP). We can choose n1, n2 ∈ IN sufficiently large so that x < eεx for all x > n1 and
|x| < e−εx for all x < −n2. We obtain∫
{|x|>1}

|x|eϑ0xν( dx) ≤
∫

[−n2,n1]
|x|eϑ0xν( dx)+

∫
{x>n1}

e(ε+ϑ0)xν( dx)+
∫
{x<−n2}

e(−ε+ϑ0)xν( dx).

The first integral is bounded from above by (n1 ∨ n2)
∫

IR \{0} e
ϑ0xν( dx) and is finite. The

latter integrals are also finite, since both ϑ0 − ε and ϑ0 + ε lie in the interval ΘEXP(R, IP).
Hence, ϑ0 ∈ Θ1

EXP(R, IP). Moreover, ϕ is infinitely differentiable on Θ̊EXP(R, IP) and from
IE(R1e

ϑR1) =
(
eϕ(ϑ)

)′
= eϕ(ϑ)ϕ′(ϑ), ϑ ∈ Θ̊EXP(R, IP), we obtain

ϕ′(ϑ) =
IE(R1e

ϑR1)
IE(eϑR1)

= κ(ϑ) on Θ̊EXP(R, IP).

3. The process R satisfies the Assumption A, if and only if neither R nor −R are subordinators
([CT03], Proposition 3.10). It holds that

ϕ′′(ϑ) = σ2 +
∫

IR \{0}
x2eϑxν( dx) > 0, ϑ ∈ Θ̊EXP(R, IP).

Hence, ϕ is a strictly convex function on the interior of ΘEXP(R, IP). If the boundary point
of Θ̊EXP(R, IP) belongs to ΘEXP(R, IP) and ϕ is one-sided continuous in this point then ϕ is
strictly convex also on ΘEXP(R, IP). Let ϑ0 be without loss of generality the right boundary
point of ΘEXP(R, IP). We consider the case ϑ0 ≥ 0. The case ϑ0 < 0 is treated analogously.
Define the function v : ΘEXP(R, IP)→ IR, by

v(ϑ) = eϑx − 1− ϑx1{|x|≤1}, x ∈ IR \{0}.

and let (ϑn)n∈IN ⊆ ΘEXP(R, IP) be an arbitrary sequence that converges to ϑ0. The sequence
(v(ϑn))n∈IN is monotone increasing for x > 0 and monotone decreasing for x < 0. It holds
that

v(ϑ0) ≤
(
eϑ0x − 1− ϑ0x1{0<x≤1}

)
1{x>0} +

(
eϑ1x − 1− ϑ1x1{−1<x≤0}

)
1{x<0} ∈ L1(ν).

The dominated convergence theorem yields that ϕ(ϑn) → ϕ(ϑ), hence the function ϕ is
continuous in ϑ0.
Let I = supp(IP ◦R−1

1 ). Due to Assumption A, It holds that 0 ∈ I̊. Therefore, ϕ(ϑ)→∞ for
|ϑ| → ∞.
4. The statement is obvious for ΘEXP(R, IP) = {0}. Let ΘEXP(R, IP) be an interval. The
uniqueness of the minimum point ϑ∗ follows directly from the strict convexity of ϕ. The
set I = {ϑ ∈ IR : ϕ(ϑ) ≤ 1} ⊇ {0} is bounded, due to ϕ(ϑ) → ∞ for |ϑ| → ∞. Let
a := inf{ϕ(ϑ) : ϑ ∈ IR}. Since ϕ is strictly convex, it holds that a > −∞. We consider a
sequence (ϑn)n∈IN ⊆ I with ϕ(ϑn) → a. This sequence is bounded, so it has a subsequence
(ϑnj ), that converges to a ϑ∗ ∈ IR. Fatou lemma yields

IE(eϑ
∗R1) = IE( lim

n→∞
eϑnjR1) ≤ lim inf

n→∞
IE(eϑnjR1) = ea <∞.

Hence, ϑ∗ ∈ ΘEXP(R, IP). The function ϕ is continuous on ΘEXP(R, IP), so ϕ(ϑnj ) → ϕ(ϑ∗).
The claim follows from the strict convexity of the cumulant generating function. �
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B.1 Proof of Theorem 3.1

The lemma B.1 yields a unique ϑ∗ ∈ IR with ϕ(ϑ∗) = inf{ϕ(ϑ) : ϑ ∈ IR}. First we investigate
the case when ϑ∗ lies in the interior of ΘEXP(R, IP) and hence, in Θ1

EXP(R, IP) It holds that
ϕ′(ϑ∗) = κ(ϑ∗) = 0. The process Z = (Zt)t∈[0,T ], given by Zt = eϑ

∗Rt−tϕ(ϑ∗), t ∈ [0, T ], is a
IP-martingale with IE(Zt) = 1, hence, Z defines a density process of an equivalent measure
IP∗. The Girsanov parameters are given by (ϑ∗, eϑ

∗x), hence IP∗ ∈ Qe(R) ∩Ql(R).
The process of relative entropy of IP∗ with respect to IP is given by

It(IP∗ | IP) = IE∗(ϑ∗Rt − tϕ(ϑ∗)) = ϑ∗ IE∗(Rt)− tϕ(ϑ∗) = −tϕ(ϑ∗), t ∈ [0, T ],

Hence,

inf{It(Q| IP) : Q ∈ Qa(R)} ≤ −t inf{ϕ(ϑ) : ϑ ∈ IR}, ∀t ∈ [0, T ].

We show that also the reverse inequality holds. Let Q be an arbitrary measure in Qa(R).
R is a local Q-martingale, hence, there exists a sequence of stopping times (τn)n∈IN with
τn ↑ T, n → ∞, such that (Rt∧τn)t∈[0,T ] is a Q-martingale for all n ∈ IN. From [JS87],
Theorem III.3.4(2) we obtain IP∗Ft∧τn

� IPFt∧τn and it holds that

d IP∗ |Ft∧τn

d IP |Ft∧τn

= eϑ
∗Rt∧τn−(t∧τn)ϕ(ϑ∗), t ∈ [0, T ].

log
(
d IP∗ |Ft∧τn
d IP |Ft∧τn

)
is Q integrable and from Lemma 2.1. in [FM03] we obtain:

It(Q| IP) ≥ It∧τn(Q| IP) ≥
∫

log
(
d IP∗

d IP

∣∣∣
Ft∧τn

)
dQ

= ϑ∗ IEQ(Rt∧τn)− IEQ(t ∧ τn)ϕ(ϑ∗) = − IEQ(t ∧ τn)ϕ(ϑ∗)

→ −t inf{ϕ(ϑ) : ϑ ∈ IR} as n→∞,

and the claim is proved.
Let us consider the more interesting case when ϑ∗ is the boundary point of ΘEXP(R, IP). We
shall construct a sequence of probability measures (IPn)n∈IN ⊆ Qa(R) those entropy processes
approximate the infimum of relative entropy over Qa(R). The jump measure ν of the Lévy
process R has an unbounded support. Otherwise it would mean that ΘEXP(R, IP) = IR and
the infimum point ϑ∗ would be an interior point of ΘEXP(R, IP). We assume without loss of
generality that for all n ∈ IN, supp(ν)∩[−n − 1, n) 6= ∅, as well as supp(ν)∩(n, n + 1] 6= ∅
holds.
For all n ∈ IN let us consider the following absolutely continuous measure changes given by
the Girsanov parameters (ηn, yn(x))R = (0,1[−n,n]). It holds that

d IPn
d IP

= E (N)T with

Nt =
∫

(0,t]

∫
IR \{0}

(y(x)− 1)J̃R( du, dx) = −
∫

(0,t]

∫
IR \{0}

1[−n,n]cJR( du, dx) + tν([−n, n]c)
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Under the new measureR is again a Lévy process with the characteristic triplet (σ2, ν|[−n,n], γ).
We have

E (N)t = exp{Nt −
1
2
〈N c, N c〉t}

∏
0≤s≤t

(1 + ∆Ns)e−∆Ns

= etν([−n,n]c)
∏

0≤s≤t
(1 + ∆Ns), t ∈ [0, T ]

=

{
0 if ∆Rs(ω) > n for at least one 0 < s ≤ t,
etν([−n,n]c) if ∆Rs(ω) ≤ n for all 0 < s ≤ t

=
d IPn |Ft

d IP |Ft

= 1Bnt e
tν([−n,n]c), Bn

t := {ω ∈ Ω : |∆Rs(ω)| ≤ n, ∀ 0 < s ≤ t}.

It holds that ΘEXP(R, IPn) = IR, and

ϕn(ϑ) = log IEn(eϑR1) = log
∫
Bn1

eϑR1 d IP−ν([−n, n]c).

The function ϕ is a strictly convex finite function, satisfying ϕn(ϑ)→∞ for |ϑ| → ∞.
Let us show the existence of a subsequence (ϕnk) with infϑ∈IR ϕn(ϑ) → infϑ∈IR ϕ(ϑ) for
n→∞. The measure ν([−n, n]c) is independent of ϑ and converges to zero as n→∞, hence,
we can consider without loss of generality the following sequence

ξn(ϑ) = log
∫
Bn1

eϑR1 d IP

and assume, that ϕn is strictly convex for all n ∈ IN and ϕn(ϑ) → ∞ for |ϑ| → ∞. Then,
ξn, n ∈ IN, is again a strictly convex, IR-valued function with ξn(ϑ) → ∞ for |ϑ| → ∞. The
sequence (ξn(ϑ))n∈IN is increasing for all ϑ ∈ IR and converges to ϕ(ϑ), in the following sense

ξn(ϑ)→∞ for n→∞, if ϕ(ϑ) =∞, ξn(ϑ)→ ϕ(ϑ) for n→∞, if ϕ(ϑ) <∞.

Let ϑn ∈ IR be such that ξn(ϑn) = inf{ξn(ϑ) : ϑ ∈ IR}. We show that there exists a
subsequence ξnk(ϑnk) with ξnk(ϑnk) → ϕ(ϑ∗) = inf{ϕ(ϑ) : ϑ ∈ IR}. We distinguish three
cases: ϑn = ϑ∗ for infinitely many n ∈ IN (in this case we are done), ϑn > ϑ∗ for infinitely
many n ∈ IN and ϑn < ϑ∗ for infinitely many n ∈ IN.
We consider the second case. Let (ϑn)n∈IN be this subsequence. We first show that (ϑn)n∈IN

is bounded from above.
It holds that ξ1(ϑ)→∞ for ϑ→∞, so there exists a ϑ̄ > ϑ1 such that ξ1(ϑ̄) > ϕ(ϑ∗). Hence,
ξ1 is monotone increasing for all ϑ > ϑ1. It holds that ϑn ≤ ϑ̄ for all n ∈ IN. Otherwise, there
would exist an n0 ∈ IN with ϑn0 > ϑ̄ and

ξn0(ϑ∗) ≥ ξn0(ϑn0) ≥ ξ1(ϑn0)
ϑn0>ϑ̄>ϑ1

> ξ1(ϑ̄) > ϕ(ϑ∗).

On the other hand, ξn0(ϑ∗) ≤ ϕ(ϑ∗), since (ξn(ϑ))n∈IN is increasing and converges to ϕ(ϑ).
Therefore, (ϑn)n∈IN ⊆ [ϑ∗, ϑ̄]. Thus, the sequence (ϑn)n∈IN has a convergent subsequence with
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a limit ϑ′ ≥ ϑ∗. For better notation we again denote this subsequence by (ϑn)n∈IN. Assume,
it holds that ϑ′ > ϑ∗. Then there exists a ϑ0 with ϑ∗ < ϑ0 < ϑn < ϑ′ for all n ∈ IN sufficiently
large. Hence, ξn is strictly decreasing on [ϑ∗, ϑ′] and

ξn(ϑ0) < ξn(ϑ∗), ∀n ≥ n0.

Passing to the limit we obtain a contradiction to the minimality of ϕ in ϑ∗. Hence, ϑ′ coincides
with ϑ∗.
We now show that (ξn(ϑn))n∈IN converges to ϕ(ϑ∗). For an arbitrary ε > 0 there exists an
n0 ∈ IN, such that for all n ≥ n0 it holds that ϕ(ϑ∗) − ξn(ϑ∗) < ε and specially ξn0(ϑ∗) >
ϕ(ϑ∗) − ε. Moreover, we have for all n ≥ n0: ξn0(ϑn) ≤ ξn(ϑn). There exists an m0 ∈ IN
(w.l.o.g. m0 ≥ n0), so that for all m ≥ m0 it holds that ξn0(ϑ∗)− ε < ξn0(ϑm) < ξn0(ϑ∗) + ε

Hence, for all m ≥ m0

ϕ(ϑ∗)− 2ε < ξn0(ϑ∗)− ε < ξn0(ϑn) < ξn(ϑn) < ξn(ϑ∗) ≤ ϕ(ϑ∗).

Letting ε to zero proves the claim.
The density

d IP∗n
d IPn

= eϑnRT−Tϕn(ϑ), IP∗n ∼ IPn � IP,

defines a probability measure IP∗n ∈ Qa(R)∩Ql(R). The relative entropy process is given by

It(IP∗n | IP) =
∫

log
(
d IP∗n |Ft

d IP |Ft

)
d IP∗n =

∫
log
(
d IP∗n |Ft

d IPn |Ft

)
d IP∗n︸ ︷︷ ︸

−ϕn(ϑn)t

+
∫

log
(
d IPn |Ft

d IP |Ft

)
d IP∗n .

We show that the latter integral converges to zero as n→∞. It holds that∫
Ω

log
(
d IPn |Ft

d IP |Ft

)
d IP∗n =

∫
Ω

log
(
d IPn |Ft

d IP |Ft

)
d IPn |Ft

d IP |Ft

d IP∗n |Ft

d IPn |Ft

d IP

=
∫

Ω
log
(
1Bnt e

tν([−n,n]c)
)

1Bnt e
tν([−n,n]c) d IP∗n |Ft

d IPn |Ft

d IP

=
∫

Ω
tν([−n, n]c)1Bnt e

tν([−n,n]c) d IP∗n |Ft

d IPn |Ft

d IP (log 0 · 0 := 0)

= tν([−n, n]c) IP∗n(Bn
t )→ 0 for n→∞.

We obtain limn→∞ It(IP∗n | IP) = −t inf{ϕ(ϑ) : ϑ ∈ IR}, t ∈ [0, T ], and hence,

inf{It(Q| IP) : Q ∈ Qa} ≤ −t inf{ϕ(ϑ) : ϑ ∈ IR}, ∀t ∈ [0, T ].

Now we show the inverse inequality. The steps of this proof are similar to those in Theorem
3.1, [FM03]. Let us fix a t ∈ [0, T ], and Q0 ∈ Qa(R) with It(Q0| IP) <∞. For every n ∈ IN we
define again IPn, IP∗n, ϑn, ϑ∗ as before, and denote for the simplicity of notation as IP, IPn,Q0
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the restrictions of these measures on Ft. There exits an n0 ∈ IN such that Q0(Bn
t ) > 0 for

all n ≥ n0. Let us define another sequence of measures (Qn)n∈IN on (Ω,Ft) by

Qn(A) := Q0(A | Bn
t ), A ∈ Ft.

Let A ∈ Ft be an arbitrary set with IPn(A) = 0 and hence, IPn(Bn
t ∩A) = 0. Since Q0 � IP,

it also holds that Q0(Bn
t ∩ A) = 0, i.e., Qn(A) = 0. We have Qn � IPn. The dominated

convergence theorem yields

dQn

d IPn
=
e−tν([−n,n]c)

Q0(Bn
t )

dQ0

d IP
.

It(Qn| IPn) =
1

Q0(Bn
t )

∫
Bnt

log
(
dQn

d IPn

)
dQ0

=
1

Q0(Bn
t )

∫
Bnt

log

(
e−tν([−n,n]c)

Q0(Bn
t )

dQ0

d IP

)
dQ0

=
1

Q0(Bn
t )

∫
Bnt

log
(
dQ0

d IP

)
dQ0 − [log(Q0(Bn

t ))︸ ︷︷ ︸
→0

+ tν([−n, n]c)︸ ︷︷ ︸
→0

]→ It(Q0| IP).

With the same arguments we have for all m ∈ IN, t ∈ [0, T ]∫
Ω
Rt∧τm dQn =

1
Q0(Bn

t )

∫
Bnt

Rt∧τm dQ0
n→∞−→

∫
Ω
Rt∧τm dQ0 = 0.

The random variable

log
(
d IP∗n
d IPn

∣∣∣
Ft∧τm

)
= ϑnRt∧τm − (t ∧ τm)ϕn(ϑn)

is Qn-integrable for an arbitrary but fixed m ∈ IN and n ∈ IN since it holds that

IEQn(|ϑnRt∧τm − (t ∧ τm)ϕn(ϑn)|) ≤ |ϑn| IEQn(|Rt∧τm |) + |ϕn(ϑn)| IEQn(|t ∧ τm|)

≤ |ϑn|
1

Q0(Bn
t )

IEQ0(|Rt∧τm |) + t|ϕn(ϑn)| <∞.

Moreover,

It(Qn| IPn)︸ ︷︷ ︸
→It(Q0| IP)

≥ It∧τm(Qn| IPn)

≥
∫

log
(
d IP∗n
d IPn

∣∣∣
Ft∧τm

)
dQn

= ϑn︸︷︷︸
→ϑ∗

IEQn(Rt∧τm)︸ ︷︷ ︸
→0

− IEQn(t ∧ τm)︸ ︷︷ ︸
→IEQ0 (t∧τm)

ϕn(ϑn)︸ ︷︷ ︸
→ϕ(ϑ∗)

.

We obtain

It(Q0| IP) ≥ −ϕ(ϑ∗) IEQ0(t ∧ τm)→ −ϕ(ϑ∗)t = −t inf{ϕ(ϑ) : ϑ ∈ IR} for m→∞.

The reverse inequality follows and the theorem is proved. �



C PROOF OF THEOREM 3.2 19

C Proof of Theorem 3.2

Before proving this result we need to show that a Lévy process satisfying Assumption A, also
satisfies the assumptions of Theorem A, [ES05].

Theorem C.1. Let R be a real-valued Lévy process on a filtered probability space (Ω,F , IF, IP)
with a characteristic triplet (σ2, ν, γ) satisfying Assumption A. Then there exists a probability
measure Q with Q ∈ Qe(R) ∩Qf (R) ∩Ql(R).

Proof. The proof can be carried out similarly to the proof of Theorem 7 in [HS06]. Hubalek
and Sgarra show the corresponding result for the exponential Lévy process. �

We will also make use of the following result.

Theorem C.2 ([CM03], Theorem 2.2.). Let Y be a random variable on a probability space
(Ω,F , IP) satisfying 0 ∈ supp (IP ◦Y −1) and

E = {Q ∈M1(Ω,F ) : Q� IP, IEQ(|Y |) <∞, IEQ(Y ) = 0}.

1. It holds that inf{I(Q| IP) : Q ∈ E } = − inf{ϕ(ϑ) : ϑ ∈ IR}.

2. If there exists a ϑ∗ ∈ IR with ϕ(ϑ∗) = inf{ϕ(ϑ) : ϑ ∈ IR} and κ(ϑ∗) = 0, then the
infimum of I(Q| IP) over E is attained at the unique probability measure IP∗ ∈ E and
its density is given by

d IP∗

d IP
= const eϑ

∗Y .

Otherwise, the infimum of I(Q| IP) over E is not attained.

C.1 Proof of Theorem 3.2

Existence: Suppose ϑ∗ ∈ IR satisfies ϕ(ϑ∗) = inf{ϕ(ϑ) : ϑ ∈ IR} and κ(ϑ∗) = 0.

d IP∗

d IP
= eϑ

∗RT−Tϕ(ϑ∗)

defines an equivalent martingale measure IP∗. R is a Lévy process under this measure
and it holds that

It(IP∗ | IP) = IE∗
(

log
(
d IP∗ |Ft

d IP |Ft

))
= IE∗(ϑ∗Rt − tϕ(ϑ∗)) = −tϕ(ϑ∗).

Theorem 3.1 yields that IP∗ is the MEMM.
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Non-existence: Suppose κ(ϑ∗) 6= 0 or κ(ϑ∗) does not exist. Assume, that the MEMM
IPMEMM exists. Theorem C.1 yields that Qe(R) ∩ Qf (R) ∩ Ql(R) 6= ∅, hence, R is a
Lévy process under IPMEMM ( Theorem A, [ES05]) and a proper martingale. For an
arbitrary t ∈ (0, T ] define the following set

Et = {Q ∈M1(Ω,Ft) : Q� IP |Ft , Rt ∈ L1(Q), IEQ(Rt) = 0}.

It holds that IPMEMM |Ft ∈ Et and it follows from Theorem C.2

inf{It(Q| IP) : Q ∈ Et} = −t inf{ϕ(ϑ) : ϑ ∈ IR}. (C.1)

Theorem 3.1 provides the following representation of the relative entropy:

It(IPMEMM | IP) = −t inf{ϕ(ϑ) : ϑ ∈ IR}
(C.1)

= inf{It(Q| IP) : Q ∈ Et}.

Hence, IPMEMM |Ft minimizes the relative entropy over Et. Theorem C.2 yields

IE(Rteϑ
∗Rt)

IE(eϑ∗Rt)
= 0 for ϑ∗ ∈ IR with ϕ(ϑ∗) = inf{ϕ(ϑ) : ϑ ∈ IR}.

Hence, κ(ϑ∗) = 0, we obtain a contradiction. �
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