
Iterative Operator-Splitting Methods and Continuous and

Discrete Case: Theory and Applications

Jürgen Geiser ∗and Gamze Tanoğlu †

Humboldt Univeristät zu Berlin, D- Berlin, Germany,

Izmir Institute of Technology, Gulbahce Campus, Urla, Izmir,35430, Turkey

June 27, 2009

Abstract

In this paper, we contribute waveform relaxation and iterative splitting methods for sys-
tems of parabolic differential equations. We could present an analysis comparing both meth-
ods and see advantages in the iterative splitting method.

Here the benefits are combination of large and small time-scales, which one the large time-
scale the computational effort is less and on the small time-scale the computational work is
tremendous.

We discuss the convergence analysis in the finite and infinite time-interval, see [22].
The applications can be done for parabolic equations with nonlinear parts.
Such problems can be decoupled in two problems, where on the one side the less investi-

gated operator is solved with cheap methods, e.g. implicit Euler methods and the other part
with high accurate methods, e.g. Runge-Kutta methods of higher order.

We present the method with comparison to standard Fractional-Stepping methods.
The benefit will be the individual handling of each operators with adapted standard higher

order time-integrators. The methods are applied to convection-diffusion-reaction equations
as used to model financial options. Finally we discuss the modified methods for multi-
dimensional and multi-physical problems.

Keywords. Operator splitting method, Iterative solver method, Stability analysis, Weight-
ing methods.

AMS subject classifications. 80A20, 80M25, 74S10, 76R50, 35J60, 35J65, 65M99, 65Z05,
65N12

1 Introduction

We motivate our studying on combining explicit and implicit time-discretization methods with
iterative Operator-Splitting methods as efficient discretization- and solver-methods.

The main advantage is using standard implicit and explicit Runge-Kutta or BDF-method
and embed this methods in an iterative solver. We discuss the efficiency to the more complicate
family of IMEX-methods, combining explicit and implicit method in one complicate method.

∗email: geiser@mathematik.hu-berlin.de
†email: gamzetanoglu@iyte.edu.tr

1

2 MATHEMATICAL MODEL 2

2 Mathematical Model

Our model equations are coming from a computational simulation of bio-remediation [2] or ra-
dioactive contaminants [9], [8].

The mathematical equations are given by

∂t R c + ∇ · (vc − D(c)∇c) = f(c) , (1)

f(c) = cp , chemical-reaction and p > 0 (2)

f(c) =
c

1 − c
, bio-remediation (3)

The unknown c = c(x, t) is considered in Ω × (0, T) ⊂ R
d × R, the space-dimension is given

by d . The Parameter R ∈ R
+ is constant and is named as retardation factor. The other

parameters f(c) are nonlinear functions, for example bio-remediation or chemical reaction. D(c)
is the nonlinear diffusion-dispersion tensor and v is the velocity.

The aim of this paper is to present a new iterative method based on operator-splitting methods
for partial differential equations. In a first paper, we focus on ordinary differential equations and
discuss the theory and application for a weighted method.

3 Iterative splitting method

In this work, we consider the following form of the Iterative splitting schemes:
1. Iterative splitting with respect to one operator

∂ci(t)

∂t
= A1ci(t) + A2ci−1(t), with ci(t

n) = cn, i = 1, 2, . . . ,m (4)

2. Iterative splitting with respect to alternating operators

∂ci(t)

∂t
= A1ci(t) + A2ci−1(t), with ci(t

n) = cn

i = 1, 2, . . . , j ,

∂ci(t)

∂t
= Aci−1(t) + Bci(t), with ci+1(t

n) = cn ,

i = j + 1, j + 2, . . . ,m , (5)

3. Unsymmetrical weighted iterative splitting

∂ci(t)

∂t
= A1ci(t) + wA2ci−1(t), with ci(t

n) = cn

i = 1, 2, . . . , j ,

∂ci(t)

∂t
= wA1ci−1(t) + A2ci(t), with ci+1(t

n) = wcn + (1 − w)ci+1(t
n+1) ,

i = j + 1, j + 2, . . . ,m , (6)

4 IMPROVED ITERATIVE SPLITTING METHOD 3

4. Symmetrical weighted iterative splitting

∂ci(t)

∂t
= 2wA1ci(t) + (1 − 2w)A2ci−1(t),

with ci(t
n) = cn, i = 1, 2, . . . , j ,

∂ci(t)

∂t
= (1 − 2w)A1ci−1(t) + wA2ci(t),

with ci+1(t
n) = 2wcn + (1 − 2w)ci+1(t

n+1), i = j + 1, j + 2, . . . ,m, (7)

where we assume the operator A1 has a large time scale and A2 has a small time scale. In
addition, c0(t

n) = cn , c−1 = 0 and cn is the known split approximation at the time level t = tn.
The split approximation at the time-level t = tn+1 is defined as cn+1 = c2m+1(t

n+1). (Clearly,
the function ci+1(t) depends on the interval [tn, tn+1], too, but, for the sake of simplicity, in our
notation we omit the dependence on n.)

4 Improved Iterative splitting method

Often standard iterative splitting methods have the problem to be less effective in the convergence
or the stability.

Here we propose the two benefits of improving the iterative schemes:

• Initialization (improve the starting conditions)

• Acceleration (Convolution ideas, weighting ideas or Krylov space ideas)

4.1 Improved initialization

The main problem is the initialization.
Often the c0(t) = c(tn) or c0(t) = 0 are to fare from the result, see

||c − c0|| ≤ err (8)

where err is a given starting error.
By the way the standard initialization errors are

||c(t) − cn|| ≤ ||(exp((A + B)t) − I)cn|| (9)

||c(t) − 0|| = || exp((A + B)t)cn|| (10)

and are of zero order and to large at all.
Here the ideas of prestepping methods,e.g. A-B splitting or Strang splitting as first or second

order exponential splitting schemes can reduce the initial error.
See for the A-B splitting we have global a first order scheme

c0(t) = exp(At) exp(Bt)cn, (11)

||c(t) − c0(t)|| ≤ O(t2) (12)

where for the Strang splitting we have global a second order scheme

c0(t) = exp(At/) exp(Bt) exp(A/2t)cn, (13)

||c(t) − c0(t)|| ≤ O(t3) (14)

Remark 4.1 Here obtain a starting condition of first or second order and can improve with
iterative steps to higher order schemes.

4 IMPROVED ITERATIVE SPLITTING METHOD 4

4.2 Improved convergence

Here the main problem is slow convergence, while not using acceleration techniques.
With relaxation schemes, we can obtain faster schemes.

4.2.1 Weighted iterative operator splitting methods

Here the idea are based on using the inverse function to accelerate the solver process:

∂ci(t)

∂t
= A1ci(t) + A2ci−1(t),

with ci(t
n) = ωcn + (1 − ω) exp(−(A1 + A2)τ)ci−1(t

n+1), i = 1, 2, . . . , j ,

∂ci(t)

∂t
= A1ci−1(t) + A2ci(t),

with ci+1(t
n) = ωcn + (1 − ω) exp(−(A1 + A2)τ)ci(t

n+1), i = j + 1, j + 2, . . . ,m, (15)

where we assume the operator A1 has a large time scale and A2 has a small time scale. In
addition, c0(t) is computed with an exponential splitting scheme.

Here the underlying idea is based on the assumption, that we can simple compute the inverse
of the solution, means:

cn = exp(−(A + B)τ)c(t), (16)

where τ = t − tn and c(t) is the exact solution.
Iteratively the residual is given as:

cn − exp(−(A + B)τ)ci(t) = ri(t), (17)

where ci is the i-th iterative solution. So we have to correct the initial values if the residual are
large.

So we have to balance with a weighting function ω.
In the following theorem we discuss the improved method for the initial value problem:

∂tc(t) = Ac(t) + Bc(t) t ∈ (0, T), c(0) = c0, (18)

where the initial function c0 is given, and A and B are assumed to be bounded linear operators.
(In many application the operator A, B came from finite difference or finite volume discretization,
e.g. they correspond to the discretised in space convection and diffusion operators.)

Classical A-B splitting method

Theorem 4.2 We have to solve the initial value problem with a classical A−B splitting method.
Th splitting error of the A − B method is given as (see [16]):

ρn =
1

τn
(exp(τn(A + B)) − exp(τnB) exp(τnA)) c(tn)

=
1

2
τn[A,B] c(tn) + O(τ2

n), (19)

where [A,B] := AB − BA is the commutator of A and B. Consequently, the splitting error is
O(τn) when the operators A and B do not commute.

4 IMPROVED ITERATIVE SPLITTING METHOD 5

We improve the method by assuming:
exp(−(A + B)t) can be computed simple.

We apply additional the step:

c̃n+1 = cn+1,AB − (1 − exp(−(A + B)t)cn+1,AB)cn (20)

(21)

and we obtain a higher order result:

ρ̃n = O(τ2
n), (22)

In the next we discuss the proof.

Proof 4.1 We have the following contribution:

cn+1,AB = exp(Bt) exp(At)cn, (23)

The inverse step is given as:

c̃n = exp(−(A + B)t) exp(Bt) exp(At)cn. (24)

We obtain the corrected solution:

c̃n+1 = cn+1,AB − (1 − exp(−(A + B)t) exp(Bt) exp(At))cn (25)

and

||c(tn+1) − c̃n+1|| (26)

= || exp((A + B)t)cn − (cn+1,AB − (1 − exp(−(A + B)t) exp(Bt) exp(At)))cn|| (27)

||[A,B]t2/2 + O(t3) − [A,B]t2/2 − O(t3)||||cn|| (28)

O(t3)||cn||, (29)

and globally we obtain O(t2).

The same idea can be obtained with the iterative splitting method.
Iterative splitting methods

We have to solve the initial value problem with an iterative splitting method.

Theorem 4.3 The splitting error of the iterative method is given as (see [7]):

ρn,iter,i =
1

i!
(τ i

n)(A + B)i c(tn) + O(τ i+1
n) = O(τ i

n), (30)

where we have operators A and B do not commute.
We improve the method by assuming:

exp(−(A + B)t) can be computed simple.
We apply additional the step:

c̃n+1,iter,i = cn+1,iter,i − (1 − exp(−(A + B)t)cn+1,iter,i)cn (31)

(32)

and we obtain a higher order result:

˜ρ, iter, in = O(τ i+1
n), (33)

4 IMPROVED ITERATIVE SPLITTING METHOD 6

Proof 4.2 The same proof idea as in the A − B splitting.

Remark 4.4 Numerically we can apply the method by weighting factors, while we often only
obtain the minimal and maximal eigenvalues of the operators. Here we apply the weighted methods
as acceleration methods, based on the inverse idea to skip the error term and obtain one order
more.

4.2.2 Accelerated iterative operator splitting methods

The convergence rate of iterative operator splitting methods are often very slow for many prob-
lems of interest.

CSOR Method

As with relaxation-based approaches for linear algebra (e.g. Gauss-Jacobi), application of
appropriate acceleration is necessary to make the iterative approach practical, see [?].

The ideas are the following here we combine Gauss Seidel WR with CSOR acceleration:
We have the following problem:

du

dt
= Au, t ∈ [tn, tn+1], (34)

where A = D + L + U ,
The iterative scheme is given as:

dui

dt
= Dui + Lûi + Uui−1, (35)

where ûi(t) = ui−1(t) +
∫ t
0 ω(t)(ûi(t − τ) − ui(t − τ))dτ .

We iterate i = 1, 2, . . . , and initialization u0 = u(tn).
Krylov subspaces combined with iterative operator splitting scheme

Here we assume the following problem of our splitting scheme: The inverse solution exp(At)−1

is simple to compute.
We can rewrite the equation:

dui

dt
= A/nui + . . . + A/nui−1, (36)

where i = 1, 2, . . . and obtain the solution ui

exp(−At)uidt − u(tn) = ri, (37)

this is the residual, where the exact solution is exp(−At)u(t) = cn.
We apply the CCG algorithm, e.g. 2 times with

Algorithm 4.5 1.) Pick the smooth ui = ui,0 and compute rj = cn − exp(−At)ui,0

2.) For j = 0, 1, 2, 3, ldots, J do

αj = (rj · rj)/(exp(−At)pj · pj) (38)

ui,j+1 = ui,j + αj · pj (39)

rj+1 = rj − αj · exp(−At)pj (40)

βj = (rj+1 · rj+1)/(rj · rj) (41)

pj+1 = rj+1 + β · pj (42)

(43)

3.) Do ũi = ui,J . and start the iterative scheme (36) to solve ui+1.

5 STABILITY ANALYSIS 7

5 Stability Analysis

In this section, we derive the stability function after applying the BDFk and SBDFk, where k
denotes the order of the method, to each sub-equations of the iterative operator splitting given
in Equations (5), (6) and (15).

5.1 Construction of the BDFk methods:

In literature, BDF is given by the equation,

k+1
∑

r=1

αru
n−i+2 = τβf(un+1). (44)

where the coefficients αr and β are obtained based on the Taylor expansion and difference oper-
ator. We construct the BDFk method as follows,

k+1
∑

r=1

αru
n+1 = τβA2u

n+1 + τβA2u
n+1, (45)

and the following conditions must be satisfy:

1. k < 7, otherwise the method is not zero stable,

2.
∑k+1

r=1 αr = 0, otherwise the method is not consistent,

5.2 Construction of the SBDFk methods:

We would like to design k-th order SBDF method as follows:

k+1
∑

r=1

αru
n−i+2 = τβ1A2u

n+1 + τ

k+1
∑

r=2

βrA1u
n−i+2, (46)

the following conditions must be satisfy:

1. k < 7, otherwise the method is not zero stable,

2.
∑k+1

r=1 αr = 0, otherwise the method is not consistent,

3. β1 =
∑k+1

r=2 βr, otherwise the method is not consistent.

In the Equation (46), the parameters αi, i = 1...., k + 1 are the same as BDFk method. One
can rescale the the Equation (46) by dividing β1 both sides of the equation , thus the unknown
parameters βi, i = 2...., k + 1 can be found by solving linear system of equation obtained by
Taylor expansions of dependent variables around un as follows:

For k is even:

k+1
∑

r=1

αru
n−i+2 = τA2u

n+1 + τ

k
∑

r=1

(−1)k+r−1βr

(

k
r

)

A1 (47)

5 STABILITY ANALYSIS 8

For k is odd:

k+1
∑

r=1

αru
n−i+2 = τA2u

n+1 + τ

k
∑

r=1

(−1)k+r−2βr

(

k
r

)

A1 (48)

These linear system can be written in the closed form by choosing the parameter β1 = 1, as
follows:

k
∑

s=1

(

k
s

)

ts = 1 for i = 1 (49)

k
∑

s=2

(

k
s

)

(−1)i+1ts(s − 1)i−1 = 1 for i = 2, . . . , k (50)

where βr = tr−1

(

k
r − 1

)

.

For example, by using the formulas given in (49) and (50), the system of equations need to
solved are

For k=2,









k

(

k
k − 2

)

0 −

(

k
k − 2

)









(

β1

β2

)

=

(

1
1

)

(51)

For k=3,

















k

(

k
k − 2

)

1

0 −

(

k
k − 2

)

−(k − 1)

0

(

k
k − 2

)

(k − 1)2





















β1

β2

β3



 =





1
1
1



 (52)

For k = 4

























k

(

k
k − 2

)

1 k

0 −

(

k
k − 2

)

−(k − 1) −k(k − 2)

0

(

k
k − 2

)

(k − 1)2 k(k − 2)2

0 −

(

k
k − 2

)

−(k − 1)3 −k(k − 2)3

































β1

β2

β3

β4









=









1
1
1
1









(53)

For k = 5

5 STABILITY ANALYSIS 9

































k

(

k
k − 2

)

1 k k(k − 3)

0 −

(

k
k − 2

)

−(k − 1) −k(k − 2) −k(k − 3)2

0

(

k
k − 2

)

(k − 1)2 k(k − 2)2 k(k − 3)3

0 −

(

k
k − 2

)

−(k − 1)3 −k(k − 2)3 −k(k − 3)4

0

(

k
k − 2

)

(k − 1)4 k(k − 2)4 k(k − 3)5













































β1

β2

β3

β4

β5













=













1
1
1
1
1













(54)

5.3 Stability Function I

In this section, we derive the stability of iterative operator splitting method on the time interval
[tn, tn+1], we solve the each sub-problems given in Equations (5), (6), and (15) consecutively
by applying BDFk and SBDFk methods. We can generalize the stability with respect to the
following Theorem:

Theorem 5.1 We apply BDF- and SBDF- methods to the iterative operator splitting method
given in Equation (5), then for the linear system with Z1 = τA1 and Z2 = τA2 we obtain stabile
functions Ri(Z1, Z2) with:

||Ri(Z1, Z2)|| ≤ 1, (55)

for all Z1, Z2 ∈ X× X, (56)

where X is a Banach-space and || · || a matrix norm.

Proof 5.1 The proof the techniques are done based on the BDF and the new design SBDFk, stiff
backward differential formulas,

1a) Finite time-intervals with Standard BDFk method:

Discretization of the Equations (5) by BDFk methods are given by

(α1I − βτA1)c
n+1
i = −

k+1
∑

i=2

αkc
n−i+2
i + βτA2c

n+1
i−1 , i = 1, 2, ..j (57)

(α1I − βτA2)c
n+1
i+1 = −

k+1
∑

i=2

αkc
n−i+2
i + βτA1c

n+1
i , i = 1, 2, ..j, i = j + 1, ...m (58)

For the linear system we denote Z1 = τA1 and Z2 = τA2 and we set cn
i = cn

i+1 = cn−1
i =

cn−1
i+1 = = cn−k+1

i = cn−k+1
i+1 = cn and initialize with cn+1

0 = cn and use the conditions 2,
we have We get the following stability equation, cf. [Hundsdorfer 2005]: We compute the first
iteration with i = 1 and get the equation

5 STABILITY ANALYSIS 10

(α1I − βZ1)c
n+1
1 = −

k+1
∑

i=2

αic
n + βZ2c

n, i = 1, 2, ..j

= α1c
n + βZ2c

n, i = 1, 2, ..j

= (α1I + βZ2)c
n, i = 1, 2, ..j

cn+1
1 = (I −

β

α1
Z1)

−1(I +
β

α1
Z2))c

n (59)

cn+1
1 = R1(Z1, Z2)c

n (60)

where we define

R1(Z1, Z2) = R−1
(−Z1)R(+Z2) (61)

Rθ = (I + akθ) (62)

a1 =
β

α1
(63)

For next iteration i=2, we get the stability function same as before as before

(α1I − βZ2)c
n+1
2 = −

k+1
∑

i=2

αic
n + βZ1c1

n+1, i = 1, 2, ..j

= α1c
n + βZ1R1(Z1, Z2)c

n, i = 1, 2, ..j

= (α1I + βZ1R1(Z1, Z2))c
n, i = 1, 2, ..j

cn+1
2 = (I − akZ2)

−1(I + akR1(Z1, Z2)Z1)c
n, i = 1, 2, ..j (64)

cn+1
2 = R2(Z1, Z2)c

n (65)

where we define,

R2(Z1, Z2) = R−1
(−Z2)R(+R1Z1) (66)

We may generalize the result recursively as follows:

For p is odd:

R0(Z1, Z2) = I (67)

Rp(Z1, Z2) = R−1
(−Z1)(I + akRp−1Z2), p = 1, 3.. (68)

For p is even:

R2p+2(Z1, Z2) = R−1
(−Z2)(I + akR2p+1Z1), p = 0, 2.. (69)

Thus, the solutions of the sub equations can be written in terms of the stability function as
follows:

ci = Ri(Z1, Z2)c
n, i = 1, 2, 3...m (70)

These results can also written in terms of the initial conditions:

cn = Ri(Z1, Z2)
nc0, i = 1, 2, 3...m (71)

5 STABILITY ANALYSIS 11

1b.)Finite time-intervals with SBDFk method :

Discretization of the Equations (5) by SBDFk methods are given by

α1c
n+1
i =

k+1
∑

i=2

(βiτA1 − αiI)cn−i+2
i + β1τA2c

n+1
i−1 , i = 1, 2, ..j (72)

(α1I − β1τA2)c
n+1
i+1 =

k+1
∑

i=2

(βiτA1 − αiI)ci
n−i+2, i = j + 1, ...m (73)

For the linear system we denote Z1 = τA1 and Z2 = τA2 and we set cn
i = cn

i+1 = cn−1
i =

cn−1
i+1 = = cn−k+1

i = cn−k+1
i+1 = cn and initialize with cn+1

0 = cn.
We get the following stability equation, cf. [Hundsdorfer 2005]: We compute the first iteration

with i = 1 and get the equation

α1c
n+1
1 =

k+1
∑

i=2

(βiZ1 − αiI)cn + β1Z2c
n, i = 1, 2, ..j

= [(

k+1
∑

i=2

βi)Z1 −

k+1
∑

i=2

αi)]c
n + β1Z2c

n, i = 1, 2, ..j

= (β1Z1 + α1)c
n + β1Z2c

n, i = 1, 2, ..j

cn+1
1 = (I +

β1

α1
(Z1 + Z2)c

n, i = 1, 2, ..j (74)

by using the conditions 2 and 3.
For next iteration i=2, we get

(α1I − β1Z2)c
n+1
2 =

k+1
∑

i=2

(βiZ1 − αiI)cn, i = j + 1, ...m

= (β1Z1 + α1I)cn, i = j + 1, ...m

cn+1
2 = (I −

β1

α1
Z2)(I +

β1

α1
Z1)c

n, i = j + 1, ...m (75)

(76)

Hence, we will get the following stability function for iterative splitting after applying the k-th
SBDF method,

cn+1
1 = R1(Z1, Z2)c

n (77)

where we define,
R1(Z1, Z2) = I + ak(Z1 + Z2)c

n

and ak = β1

α1
is fixed and satisfied 0 < ak < 1.

For the second iteration we have

cn+1
2 = (I − akZ2)

−1(I + akZ1)c
n (78)

5 STABILITY ANALYSIS 12

We have stability equation

cn+1
2 = R−1

−Z2
R+Z1c

n (79)

cn+1
2 = R2(Z1, Z2)c

n (80)

with the prestep we obtain the stable function: ||R̃2(Z1, Z2)|| = ||R2(Z1, Z2)(I−(1−ak)Z1)
−1|| ≤

1 where k is the k-th SBDF method, ak = β1

α1
is fixed and 0 < ak ≤ 1,.

We may generalize the result recursively as follows:

For p is odd:

R0(Z1, Z2) = I (81)

R2p+1(Z1, Z2) = R(Z1+R2pZ2) p = 0, 1, 2.. (82)

For p is even:

R2p+2(Z1, Z2) = R−1
(−Z2)

R(Z1), p = 0, 1, 2.. (83)

Thus, the solutions of the sub equations can be written in terms of the stability function as
follows:

ci = Ri(Z1, Z2)c
n, i = 1, 2, 3...m (84)

These results can also written in terms of the initial conditions:

cn = Ri(Z1, Z2)
nc0, i = 1, 2, 3...m (85)

Theorem 5.2 We apply BDFk- and SBDFk- methods to the iterative operator splitting method
given in Equation (6), then for the linear system with Z1 = τA1 and Z2 = τA2 we obtain stabile
functions Ri(Z1, Z2, w) with:

||Ri(Z1, Z2, w)|| ≤ 1, (86)

for all Z1, Z2 ∈ X× X, (87)

where X is a Banach-space and || · || a matrix norm.

Proof 5.2 The proof the techniques are the same as before for SBDFk method. After the small
modification of the Theorem 5.1, we obtain following stability function:

For odd iteration:

cn+1
2i−1 = R1(Z1, Z2, w)cn (88)

where we define,
R1(Z1, Z2, w) = I + ak(Z1 + wZ2)

and ak = β1

α1
is fixed and satisfied 0 < ak < 1.

For even iteration:

cn+1
2i = ((I − akZ2)

−1(I + akwZ1)(w + (1 − w)R1(Z1, Z2, w))cn (89)

5 STABILITY ANALYSIS 13

We have stability equation

cn+1
2i = R−(Z2)

−1R+(Z1, w)(w + (1 − w)R1(Z1, Z2, w))cn (90)

cn+1
2i = Rk(Z1, Z2, w)(w + (1 − w)R1(Z1, Z2, w))cn (91)

with the prestep we obtain the stable function:

||R̃k(Z1, Z2, w)|| = ||Rk(Z1, Z2, w)(I − (1 − wak)Z1)
−1(w + (1 − w)R1(Z1, Z2, w))|| ≤ 1

where k is the k-th SBDF method, ak = β1

α1
is fixed and 0 < ak ≤ 1,.

Theorem 5.3 We apply BDFk- and SBDFk- methods to the iterative operator splitting method
given in Equation (15), then for the linear system with Z1 = τA1 and Z2 = τA2 we obtain stabile
functions Ri(Z1, Z2, w) with:

||Ri(Z1, Z2, w)|| ≤ 1, (92)

for all Z1, Z2 ∈ X× X, (93)

where X is a Banach-space and || · || a matrix norm.

Proof 5.3 The proof the techniques are the same as before for SBDFk method. After the small
modification of the Thm5.1, we obtain following stability function:

For odd iteration:

cn+1
2i−1 = R1(Z1, Z2, w)cn (94)

where we define,
R1(Z1, Z2, w) = I + ak(2wZ1 + (1 − 2w)Z2)

and ak = β1

α1
is fixed and satisfied 0 < ak < 1.

For even iteration:

cn+1
2i = ((I − ak(1 − 2w)Z2)

−1(I + 2wakZ1)(2w + (1 − 2w)R1(Z1, Z2, w))cn (95)

We have stability equation

cn+1
2i = R−(Z2, w)−1R+(Z1, w)(2w + (1 − 2w)R1(Z1, Z2, w))cn (96)

cn+1
2i = Rk(Z1, Z2, w)(w + (1 − w)R1(Z1, Z2, w))cn (97)

with the prestep we obtain the stable function:

||R̃k(Z1, Z2, w)|| = ||Rk(Z1, Z2, w)(I − (1 − wak)Z1)
−1(2w + (1 − 2w)R1(Z1, Z2, w))|| ≤ 1

where k is the k-th SBDF method, ak = β1

α1
is fixed and 0 < ak ≤ 1,.

6 HIGHER ORDER ITERATIVE SPLITTING BASED ON THE EXTRAPOLATION FOR TWO DIMENSIONAL

6 Higher Order Iterative Splitting Based on the Extrapolation

for Two Dimensional Problem

In general formulation, we consider an ODEs system

dU

dt
= (A1 + A2)U , (98)

with U(0) = U0, (99)

where U(t) is an N -dimensional vector,

A1 =
∂2

∂x2
and A2 =

∂2

∂y2

Iterative Splitting method for two dimensional problem is given as follows:

dUi

dt
= A1Ui + A2Ui−1 , (100)

with Ui(0) = U0, (101)

dUi+1

dt
= A1Ui + A2Ui+1 , (102)

with Ui+1(0) = U0, (103)

where i = 1, 3, 5, . . . , and U0(t) = 0 (initialization of the scheme). The implicit trapezoidal
method applied to Equations (153) and (155) are written

[I −
△t

2
A1]U

n+1
k = [I +

△t

2
A1]U

n
k +

△t

2
A2(U

n
k−1 + Un+1

k−1), (104)

[I −
△t

2
A2]U

n+1
2k = [I +

△t

2
A2]U

n
2k +

△t

2
A1(U

n
2k−1 + Un+1

2k−1) (105)

where k = 1, 3, 5, Corresponding to space discretization of 2D heat equation using central
differences formula,

(A1Uk)i,j =
1

△x2 [Uk(i−1,j)
− 2Uk(i,j)

+ Uk(i+1,j)
], (106)

(A2Uk)i,j =
1

△y2 [Uk(i,j−1)
− 2Uk(i,j)

+ Uk(i,j+1)
], (107)

After inserting to the Equations (157) and (158) into the Equation (104), the following system
of equations can be obtained for fixed i,

(1 + 2s)Un+1
k (i,j) − sUn+1

k (i−1,j) − sUn+1
k (i+1,j) − c1(i, j) = b1(j), (108)

where s = △t
2△x2 j = 1, . . . , Ny, b1 is an Ny-dimensional vector with components

b1(j) = (1 − 2s)Un
k (i,j) + sUn

k (i−1,j) + sUn
k (i+1,j), (109)

6 HIGHER ORDER ITERATIVE SPLITTING BASED ON THE EXTRAPOLATION FOR TWO DIMENSIONAL

and c1(i, :) is an Ny dimensional vector with components

c1(i, j) = (−2e)(Un
k−1 + Un+1

k−1)(i,j) + e(Un
k−1 + Un+1

k−1)(i,j−1) + e(Un
k−1 + Un+1

k−1)(i,j+1)(110)

j = 1, . . . , Ny,
where e = △t

2△y2 .

Similarly the Equation (105) can be written as a system of equation as follows

(1 + 2e)Un+1
k (i,j) − eUn+1

k (i,j−1) − eUn+1
k (i,j+1) − c2(i, j) = b2(j), (111)

where j = 1, . . . , Ny, b2 is an Ny dimensional vector with components

b2(j) = (1 − 2e)Un
k (i,j) + eUn

k (i,j−1) + eUn
k (i,j+1), (112)

and c2(i, :) is an Ny dimensional vector with components

c2(i, j) = (−2s)(Un
k−1 + Un+1

k−1)(i,j) + s(Un
k−1 + Un+1

k−1)(i−1,j) + s(Un
k−1 + Un+1

k−1)(i+1,j)(113)

Proposition 1. Iterative splitting based on the extrapolation in [0,△t] for two dimensional
problem is given in the next steps.

• Step 1 (first △t
2 step) , α = 1/2 :

[I − α
△t

2
A1]U

n+1/2
k = [I + α

△t

2
A1]U

n
k + α

△t

2
A2(U

n
k−1 + U

n+1/2
k−1), (114)

[I − α
△t

2
A2]U

n+1/2
2k = [I + α

△t

2
A2]U

n
2k +

α△t

2
A1(U

n
2k−1 + U

n+1/2
2k−1) (115)

with U
n+1/2
k = U0

k and U0 = 0, for k = 1, 2, 3,

• Step 2 (△t step) , α = 1 :

[I − α
△t

2
A1]Ũ

n+1
k = [I + α

△t

2
A1]U

n+1/2
k + α

△t

2
A2(U

n+1/2
k−1 + Un+1

k−1), (116)

[I − α
△t

2
A2]Ũ

n+1
2k = [I + α

△t

2
A2]U

n+1/2
2k +

α△t

2
A1(U

n+1/2
2k−1 + Un+1

2k−1) (117)

• Step 3 (△t step) , α = 1 :

[I − α
△t

2
A1]

˜̃Un+1
k = [I + α

△t

2
A1]U

n
k + α

△t

2
A2(U

n
k−1 + Un+1

k−1), (118)

[I − α
△t

2
A2]

˜̃Un+1
2k = [I + α

△t

2
A2]U

n
2k + α

△t

2
A1(U

n
2k−1 + Un+1

2k−1) (119)

with Un+1
k = U0

k and U0 = 0, for k = 1, 2, 3,

Resulting steps:

Un+1
k = 4/3 ˜̃Un+1

k − 1/3Ũn+1
k (120)

6 HIGHER ORDER ITERATIVE SPLITTING BASED ON THE EXTRAPOLATION FOR TWO DIMENSIONAL

6.1 SBDF-Method as improved time-discretization methods

1.) We first apply the SBDF3 method:
Consider the SBDF3-method

(1/△t)(
11

6
un+1 − 3un +

3

2
un−1 −

1

3
un−2) (121)

= 3A1(u
n) − 3A1(u

n−1) + A1(u
n−2) + A2(u

n+1)

after applying this method to the Equations (153-155) instead of implicit trapezoidal rule, we
obtain following sub equations:

(
11

6
)(un+1

k) = (3I + 3△tA1)(u
n
k) − (3I/2 + 3△tA1)(u

n−1
k) + (I/3 + △tA1)(u

n−2
k) + △tA2(u

n+1
k−1)(122)

(
11

6
I −△tA2)(u

n+1
k+1) = (3I + 3△tA1)(u

n
k) − (3I/2 + 3△tA1)(u

n−1
k) + (I/3 + △tA1)(u

n−2
k)(123)

where k = 1, 3, 5, After inserting to the Equations (157) and (158) into the Equation (122),
the following system of equations can be obtained for fixed index i,

(
11

6
)un+1

k (i,j) = b1(j) − b2(j) + b3(j) + b4(j) (124)

where j = 1, . . . , Ny, b1, b2, b3, b4 are Ny-dimensional vectors with components

b1(j) = (3 − 6s)un
k (i,j) + 3s(un

k (i−1,j) + un
k (i+1,j)) (125)

b2(j) = (3/2 − 6s)un−1
k (i,j) + 3s(un−1

k (i−1,j) + un−1
k (i+1,j)) (126)

b3(j) = (1/3 − 2s)un−2
k (i,j) + s(un−2

k (i−1,j) + un−2
k (i+1,j)) (127)

b4(j) = −2s(un+1
(k−1)(i,j)

) + s(un+1
(k−1)(i,j−1) + un+1

(k−1)(i,j+1)) (128)

where s = △t
△x2 .

Similarly the Equation (123) can be written as a system of equation as follows

(
11

6
+ 2e)un+1

(k+1)(i, j) − e(un+1
(k+1)(i, j − 1) + un+1

(k+1)(i, j + 1)) = c1(i, j) (129)

where i = 1, . . . , Nx,j = 1, . . . , Ny and e = △t
△y2 .

For fixed i,the vector
un+1

(k+1)
(i, :)

may be found by solving the tridiagonal system

Aun+1
(k+1)(i, :) =

3
∑

m=1

(−1)m+1bm(j)

6 HIGHER ORDER ITERATIVE SPLITTING BASED ON THE EXTRAPOLATION FOR TWO DIMENSIONAL

where the matrix A is tridiagonal,



























11
6 + 2e −e 0 0 0 0 0
−e 11

6 + 2e −e 0 0 0 0
0 −e 11

6 + 2e −e 0 0 0
...

...
...

...
...

...
...

0 0 · · · · · · · · · 0 0
0 0 0 −e 11

6 + 2e −e 0
0 0 0 0 −e 11

6 + 2e −e
0 0 0 0 0 −e 11

6 + 2e



























and bm are Ny dimensional vectors ,m = 1, 2, 3 , j = 1, . . . ,Ny
and the algorithm is given below

for i = 1 : Nx

for j = 1 : Ny

b1(j) = (3 − 6s)un
k (i,j) + 3s(un

k (i−1,j) + un
k (i+1,j)),

b2(j) = (3/2 − 6s)un−1
k (i,j) + 3s(un−1

k (i−1,j) + un−1
k (i+1,j)),

b3(j) = (1/3 − 2s)un−2
k (i,j) + s(un−2

k (i−1,j) + un−2
k (i+1,j)),

end
solve Aun+1

(k+1)(i,:) =
∑3

m=1(−1)m+1bm(j)
end

2.) We apply the SBDF4 method:
Consider the SBDF4-method

(
1

△t
)(

25

12
un+1 − 4un + 3un−1 −

4

3
un−2 +

1

4
un−3) (130)

= 4A1(u
n) − 6A1(u

n−1) + 4A1(u
n−2) − A1(u

n−3) + A2(u
n+1)

after applying this method to the Equations (153-155) instead of implicit trapezoidal rule, we
obtain following sub equations: For i = k

(
25

12
)(un+1

k) = (4I + 4△tA1)(u
n
k) − (3I + 6△tA1)(u

n−1
k) + (131)

(
4

3
I + 4△tA1)(u

n−2
k) − (

1

4
I + △tA1)(u

n−3
k) + △tA2(u

n+1
k−1)

For i = k + 1

(
25

12
I −△tA2)(u

n+1
k+1) = (4I + 4△tA1)(u

n
k) − (3I + 6△tA1)(u

n−1
k) + (132)

(
4

3
I + 4△tA1)(u

n−2
k) − (

1

4
I + △tA1)(u

n−3
k)

where k = 1, 3, 5, After inserting to the Equations (157) and (158) into the Equation
(131), the following system of equations can be obtained

(25/12)un+1
k (i,j) = b1(j) − b2(j) + b3(j) − b4(j) + b5(j) (133)

6 HIGHER ORDER ITERATIVE SPLITTING BASED ON THE EXTRAPOLATION FOR TWO DIMENSIONAL

where j = 1, . . . , Ny, b1, b2, b3, b4 are Ny-dimensional vectors with components

b1(j) = (4 − 8s)un
k (i,j) + 4s(un

k (i−1,j) + un
k (i+1,j)) (134)

b2(j) = (3 − 12s)un−1
k (i,j) + 6s(un−1

k (i−1,j) + un−1
k (i+1,j)) (135)

b3(j) = (
4

3
− 8s)un−2

k (i,j) + 4s(un−2
k (i−1,j) + un−2

k (i+1,j)) (136)

b4(j) = (
1

4
− 2s)un−3

k (i,j) + s(un−3
k (i−1,j) + un−3

k (i+1,j)) (137)

b5(i) = −2s(un+1
(k−1)(i,j)) + s(un+1

(k−1)(i,j−1) + un+1
(k−1)(i,j+1)) (138)

where s = △t
△x2 .

Similarly the Equation (132) can be written as a system of equation as previous

(
25

12
+ 2e)un+1

(k+1)(i,j) − e(un+1
(k) (i,j−1) + un+1

(k) (i,j+1)) = c1(i, j) (139)

where i = 1, . . . , Nx, j = 1, . . . , Ny, e = △t
△y2 .

For fixed i,the vector
un+1

(k+1)(i, :)

may be found by solving the tridiagonal system

Aun+1
(k+1)(i, :) =

4
∑

m=1

(−1)m+1bm(j)

.
1.e)
Consider the SBDF5-method

1

△t
(
137

60
un+1 − 5un + 5un−1 −

10

3
un−2 +

5

4
un−3 −

1

5
un−4 = A1u

n−4 − 5A1u
n−3 (140)

+10A1u
n−2 − 10A1u

n−1 + 5A1u
n + A2u

n+1

After applying this method to the Equations (153-155) instead of implicit trapezoidal rule,
we obtain following sub equations for fixed i,

For i = k

137

60
Iun+1

k = (5I + 5△tA1)u
n
k − (5I + 10△tA1)u

n−1
k + (

10

3
I + 10△tA1)u

n−2
k (141)

−(
5

4
I + 5△tA1)u

n−3
k + (

1

5
I + △tA1)u

n−4
k + △tA2u

n+1
k−1

For i = k + 1

6 HIGHER ORDER ITERATIVE SPLITTING BASED ON THE EXTRAPOLATION FOR TWO DIMENSIONAL

(
137

60
I −△tA2)u

n+1
k+1 = (5I + 5△tA1)u

n
k − (5I + 10△tA1)u

n−1
k + (142)

(
10

3
I + 10△tA1)u

n−2
k − (

5

4
I + 5△tA1)u

n−3
k + (

1

5
I + △tA1)u

n−4
k

where k = 1, 3, 5,
After inserting to the Equations (157) and (158) into the Equation (141), the following system

of equations can be obtained for fixed i,

137

60
un+1

k (i, j) = b1(j) − b2(j) + b3(j) − b4(j) + b5(j) + b6(i) (143)

where j = 1, . . . , Ny, b1, b2, b3, b4 are Ny-dimensional vectors with components

b1(j) = (5I − 10s)un
k (i,j) + 5s(un

k (i−1,j) + un
k (i+1,j)) (144)

b2(j) = (5I − 20s)un−1
k (i,j) + 10s(un−1

k (i−1,j) + un−1
k (i+1,j)) (145)

b3(j) = (
10

3
I − 20s)un−2

k (i,j) + 10s(un−2
k (i−1,j) + un−2

k (i+1,j)) (146)

b4(j) = (
5

4
I − 10s)un−3

k (i,j) + 5s(un−3
k (i−1,j) + un−3

k (i+1,j)) (147)

b4(j) = (
1

5
I − 2s)un−4

k (i,j) + s(un−4
k (i−1,j) + un−4

k (i+1,j)) (148)

b6(i) = −2s(un+1
(k−1)(i,j)) + s(un+1

(k−1)(i,j−1) + un+1
(k−1)(i,j+1)) (149)

where s = △t
△x2 .

Similarly the Equation (142) can be written as a system of equation as previous

(
137

60
I + 2e)un+1

(k+1)(i,j) − e(un+1
(k) (i,j−1) + un+1

(k) (i,j+1)) = c1(i, j) (150)

where i = 1, . . . , Nx, j = 1, . . . , Ny e = △t
△y2 . The vector c1(i, :) is an Nx dimensional with

component
For fixed i,the vector

un+1
(k+1)(i, :)

maybe found by solving the tridiagonal system

Aun+1
(k+1)(i, :) =

5
∑

m=1

(−1)m+1bm(j)

.

7 CONSISTENCY AND ACCURACY OF THE DISCRETIZATION SCHEMES 20

6.2 Stability Function II

In this section, we derive the stability function for the operators A1 and A2 obtained from finite
difference approximation of the unbounded differential operators. In this section we will derive
the stability functions depend on both time and space discretization.

As an example, consider an ODEs system

dU

dt
= (A1 + A2)U , (151)

with U(0) = U0, (152)

where U(t) is an N -dimensional vector,

A1 =
∂2

∂x2
and A2 =

∂2

∂y2

Iterative Splitting method for two dimensional problem is given as follows:

dUi

dt
= A1Ui + A2Ui−1 , (153)

with Ui(0) = U0, (154)

dUi+1

dt
= A1Ui + A2Ui+1 , (155)

with Ui+1(0) = U0, (156)

where i = 1, 3, 5, . . . , and U0(t) = 0 (initialization of the scheme). Corresponding to space
discretization of 2D heat equation using central differences formula,

(A1Uk)i,j =
1

△x2 [Uk(i−1,j)
− 2Uk(i,j)

+ Uk(i+1,j)
], (157)

(A2Uk)i,j =
1

△y2 [Uk(i,j−1)
− 2Uk(i,j)

+ Uk(i,j+1)
], (158)

.
The formulas given in Equation (157) and (158) are not only discretization for second order

differential operator. In general, for the given operators A1 and A2, the Z1 and Z2 are rewritten
as

Z1 =
τ

△xk
Ã1 and, Z2 =

τ

△yk
Ã2, (159)

where Ã1 and Ã2 constant matrix and k is the order of the finite difference approximation of the
unbounded differential operators. Thus, if we substitute Equation (159) into previous stability
functions, we have both time and space discretization dependent stability functions.

7 Consistency and Accuracy of the Discretization Schemes

7.1 First order iterative splitting with respect to one operator

In this subsection, we consider the Equation (4),

∂ci(t)

∂t
= −λ1ci(t) + λ2ci−1(t), with ci(t

n) = cn, i = 1, 2, . . . ,m (160)

7 CONSISTENCY AND ACCURACY OF THE DISCRETIZATION SCHEMES 21

after discretization by SBDF1 (BDF1) method, we obtain following finite difference approxima-
tion for the Equation (4) on [0, τ],

ci(τ) = χc0 + χτλ2ci−1(τ) i = 1, 2, . . . ,m (161)

where

χ =
1

1 + λ1τ
= 1 − (λ1τ) + (λ1τ)2 − O(τ3), |λ1τ | < 1 (162)

It can be easily seen from the Equation (162) that χ is the Pade Approximation of the e−λ1τ ,
that is,

e−λ1τ = χ + O(τ2) (163)

7.1.1 First order accuracy via first order approximation

Case1 : Suppose ci−1 = 0, in this case iterations becomes,
for i=1,

c1(τ) = χc0 (164)

for i=2,

c2(τ) = χ (1 + χτλ2) c0 (165)

recursively, we have for i=m,

cm(τ) = χ(

m−1
∑

j=0

(−1)j(χτλ2)
j c0) (166)

= (
1

1 + λ1τ
)(

1

1 − χλ2τ
), as m → ∞ (167)

= (e−λ1τ + O(τ2))(eλ2τ + O(τ2)) (168)

= e(−λ1+λ2)τ + O(τ2) (169)

then the order of the method is

|cexact − capproximation| = |e(−λ1+λ2)τ − cm(τ)| ≤ CT O(τ2.

Thus we have following conclusion,

Result1 : if c−1 = 0 then the number of the iteration has to be chosen as i = k + 1.

Case2 : Improved initialization by choosing weight to decrease the iteration number

Suppose ci−1 = wc0, the iterations becomes,
for i=1,

c1(τ) = χ (1 + wτλ2) c0, (170)

= (e−λ1τ + O(τ2))(eλ2τ + O(τ2)), for w = 1, (171)

= e(−λ1+λ2)τ + O(τ2)) (172)

7 CONSISTENCY AND ACCURACY OF THE DISCRETIZATION SCHEMES 22

the order of the method is

|cexact − capproximation| = |e(−λ1+λ2)τ − cm(τ)| ≤ CT O(τ2).

Thus we have following conclusion,
Result2 : if c−1 6= 0 then the number of the iteration has to be chosen as i = k in order to have
a same accuracy for iterative splitting as the base method has.

7.1.2 Higher order accuracy via first order approximation

Proposition 7.1 There exist an optimal number w such that the order of the accuracy of the
iterative splitting (4) becomes k after applying the BDF1 to each subequations.

Proof 7.1 We will find such w by construction for k=2. We start with the following recursion
relation,

ci(τ) = χc0 + χτλ2ci−1(τ), i = 1, 2, . . . ,m (173)

assume that ci−1 = wc0, by inserting this into Equation (195), we have

ci(τ) = χ (1 + wτλ2) c0, (174)

= (e−λ1τ − r1 + O(τ3)) (1 + wτλ2) c0,where, r1 =
−λ1

2

2
τ2 (175)

= (e−λ1τ − r1 + O(τ3)) (1 + (w0 + τw1)τλ2) c0 (176)

= (e−λ1τ − r1 + O(τ3)) (1 + w0λ2τ + λ2w1τ
2) c0 (177)

= e−λ1τ (1 + w0λ2τ + λ2w1τ
2)c0 − r1c

0 + O(τ3) (178)

= e−λ1τ (1 + w0λ2τ + (λ2w1 − eλ1τr1)τ
2)c0 + O(τ3) (179)

= e−λ1τ (1 + w0λ2τ + (λ2w1 − r1)τ
2)c0 + O(τ3). (180)

Now, by comparing this with exact solution

cexact = e−λ1τ (1 + λ2τ +
λ2

2

2
τ2)c0 + O(τ3). (181)

we find

w0 = 1, w1 =
λ2

2 − λ1
2

2λ2
(182)

By introducing the weight, we recover the third term of the exact solution of the problem thus the
order of the method becomes 2, i.e,

|cexact − capproximation| = |e(−λ1+λ2)τ − cm(τ)| ≤ CT O(τ3).

Remark 7.1 We may continue the procedure to obtain k the order iterative splitting by defining
the weight as

w =
k

∑

i=0

wiτ
i,

thus
|cexact − capproximation| = |e(−λ1+λ2)τ − cm(τ)| ≤ CT O(τk+1).

7 CONSISTENCY AND ACCURACY OF THE DISCRETIZATION SCHEMES 23

7.2 Second order iterative splitting with respect to one operator

Proposition 7.2 The order of the accuracy of the iterative splitting (4) is two after applying
the midpoint to each subequations.

Proof 7.2 We obtain following finite difference approximation after discretization the Equation
(4) by midpoint method on [0, τ],

ci(τ) = χ1c
0 + χ2τλ2(ci−1(0) + ci−1(τ))(τ) i = 1, 2, . . . ,m (183)

where χ1 is defined as follows if |λ1
2 τ | < 1,

χ1 =
1 − λ1

2 τ

1 + λ1
2 τ

(184)

= 1 − (λ1τ) +
λ2

1τ
2

2
+ O(τ3), (185)

= e−λ1τ + O(τ3) (186)

and Pade Approximation of the e−λ1τ up to the order O(τ3) and χ2 is defined as follows if
|λ1

2 τ | < 1

χ2 =
λ2τ

1 + λ1τ
2

(187)

= λ2τ −
λ1λ2τ

2

2
+ O(τ3), (188)

assume that ci−1 = 0, by inserting this into Equation (195), we have for i= 1,

c1(τ) = χ1c
0 (189)

(190)

for i=2,

c2(τ) = (χ1 + χ2(1 + χ1))c
0 (191)

We can easily see that this approximation does not give the exact solution up to the second order,
then we need to compute next iteration as follows,

c3(τ) = (χ1 + χ2(1 + (χ1 + χ2(1 + χ1))))c
0 (192)

= χ1(1 + χ1
−1χ2(1 + (χ1 + χ2(1 + χ1))))c

0 (193)

after expanding the terms up to third order we may see that following result

c3(τ) = e(−λ1+λ2)τ + O(τ3). (194)

In the next theorem, we claim that the order of the iteration is the same as the order of
method that applied to each subequation by using the less iterations via introducing weight w.

Proposition 7.3 There exist an optimal weight w so that the number of the iterations can be
reducible by keeping the order of the accuracy of the iterative splitting, which is same as the
method applying to each subequations.

7 CONSISTENCY AND ACCURACY OF THE DISCRETIZATION SCHEMES 24

Proof 7.3 We obtain following finite difference approximation after discretization the Equation
(4) by midpoint method on [0, τ],

ci(τ) = χ1c
0 + χ2τλ2(c

0 + ci−1(τ))(τ),

i = 1, 2, . . . ,m

where χ1 is defined as follows if |λ1
2 τ | < 1,

χ1 =
1 − λ1

2 τ

1 + λ1
2 τ

(195)

= 1 − (λ1τ) +
λ2

1τ
2

2
+ O(τ3), (196)

= e−λ1τ + O(τ3) (197)

and Pade Approximation of the e−λ1τ up to the order O(τ3) and χ2 is defined as follows if
|λ1

2 τ | < 1

χ2 =
1

1 + λ1τ
2

(198)

= 1 −
λ1τ

2
+

λ2
1τ

2

4
+ O(τ3), (199)

assume that ci−1 = w̃c0, w = (1 + w̃), by inserting this into Equation (195), we have

ci(τ) = χ1c
0 + χ2wλ2τc0(τ) (200)

= (e−λ1τ) (1 + χ1
−1χ2wτλ2) c0 + O(τ3) (201)

(202)

now expand χ1
−1χ2 as

χ1
−1χ2 =

1

1 − λ1τ
2

(203)

= 1 +
λ1τ

2
+

λ2
1τ

2

8
+ O(τ3), (204)

By inserting this into previous expression and defining w = w0 + τw1, we have

ci(τ) = e−λ1τ (1 + w0λ2τ + (w1λ2 +
λ1

2
λ2w0)τ

2)c0 + O(τ3) (205)

Now, by comparing this with exact solution

cexact = e−λ1τ (1 + λ2τ +
λ2

2

2
τ2)c0 + O(τ3). (206)

we find

w0 = 1, w1 =
λ2 − λ1

2
(207)

By introducing the weight, we reduced the number of the iteration and we have as before

|cexact − capproximation| = |e(−λ1+λ2)τ − cm(τ)| ≤ CT O(τ3).

8 APPLICATION TO TWO DIMENSIONAL PROBLEMS 25

8 Application to two dimensional problems

In this section, we apply the proposed methods to following two dimensional problems.
We consider the following heat equation with the initial and boundary conditions:

∂u

dt
= Dx

∂2u

∂x2
+ Dy

∂2u

∂y2
, (208)

u(x, y, 0) = uanaly(x, y, 0), on Ω, (209)

∂u(x, y, t)

∂n
= 0, on Ω × (0, T), (210)

(211)

where u(x, y) is an scalar function, ω = [0, 1] × [0, 1]. The analytical solution of the problem is
given by

uanaly(x, y, t) = exp(−(Dx + Dy)π
2t) cos(πx) cos(πy). (212)

For approximation error, we choose L∞ and L1 which are given by

errL∞ := max(max(|u(xi, yj, t
n) − uanaly(xi, yj, t

n)|))

errL1 :=

m
∑

i,j=1

△x△y|u(xi, yj , t
n) − uanaly(xi, yj , t

n)|

errL1 := |u(tn) − uanaly(t
n)|

Our numerical results obtained by ADI ,SBDF2,SBDF3 and SBDF4 methods are presented
in Table 1 , Table 2 and Table 3.

First, we fixed diffusion coefficients as Dx = Dy = 1 with the time step dt=0.0005. Com-
parison of L∞, L1 at T=0.5 and CPU time are presented in Table 1 for various spatial step
sizes.

Table 1: Comparison of errors at T=0.5 with various ∆x and ∆y when Dx = Dy = 1 and
dt = 0.0005.

∆x=∆y errL∞ errL1 CPU times

ADI 1/2 2.8374e-004 2.8374e-004 0.787350
1/4 3.3299e-005 2.4260e-005 2.074755

1/16 1.6631e-006 8.0813e-007 22.227760

SBDF2 1/2 2.811e-004 2.811e-004 0.167132
1/4 3.2519e-005 2.3692e-005 0.339014

1/16 1.1500e-006 5.5882e-007 2.907924

SBDF3 1/2 2.7841e-004 2.7841e-004 0.312774
1/4 3.1721e-005 2.3111e-005 0.460088

1/16 6.2388e-007 3.0315e-007 4.217704

SBDF4 1/2 2.7578e-004 2.7578e-004 0.400968
1/4 3.0943e-005 2.2544e-005 0.718028

1/16 1.1155e-007 5.4203e-008 5.550207

8 APPLICATION TO TWO DIMENSIONAL PROBLEMS 26

In the second experiment, the diffusion coefficients are fixed as Dx = Dy = 0.001 for the same
time step. Comparison of errors L∞, L1 at T=0.5 and CPU time are presented in Table 2 for
various spatial steps, ∆x and ∆y.

Table 2: Comparison of errors at T=0.5 with various ∆x and ∆y when Dx = Dy = 0.001 and
dt = 0.0005.

∆x=∆y errL∞ errL1 CPU times

ADI 1/2 0.0019 0.0019 0.786549
1/4 4.9226e-004 3.5864e-004 2.090480

1/16 3.1357e-005 1.5237e-005 22.219374

SBDF2 1/2 0.0018 0.0018 0.167021
1/4 4.8298e-004 3.5187e-004 0.341781

1/16 2.1616e-005 1.0503e-005 2.868618

SBDF3 1/2 0.0018 0.0018 0.215563
1/4 4.7369e-004 3.4511e-004 0.461214

1/16 1.1874e-005 5.7699e-006 4.236695

SBDF4 1/2 0.0018 0.0018 0.274806
1/4 4.6441e-004 3.3835e-004 0.717014

1/16 2.1330e-006 1.0365e-006 5.517444

8 APPLICATION TO TWO DIMENSIONAL PROBLEMS 27

In the third experiment, the diffusion coefficients are fixed as Dx = Dy = 0.00001 for the
same time step. Comparison of errors L∞, L1 at T=0.5 and CPU time are presented in Table 3
for various spatial steps, ∆x and ∆y.

Table 3: Comparison of errors at T=0.5 with various ∆x and ∆y when Dx = Dy = 0.00001 and
dt = 0.0005.

∆x=∆y errL∞ errL1 CPU times

ADI 1/2 1.8694e-005 1.8694e-005 0.783630
1/4 4.9697e-006 3.6207e-006 2.096761

1/16 3.1665e-007 1.5386e-007 22.184733

SBDF2 1/2 1.8614e-005 1.8614e-005 0.167349
1/4 4.8760e-006 3.5524e-006 0.342751

1/16 2.1828e-007 1.0606e-007 2.864787

SBDF3 1/2 1.8534e-005 1.8534e-005 0.216137
1/4 4.7823e-006 3.4842e-006 0.465666

1/16 1.1991e-007 5.8265e-008 4.256818

SBDF4 1/2 1.8454e-005 1.8454e-005 0.399424
1/4 4.688e-006 3.4159e-006 0.714709

1/16 2.1539e-008 1.0466e-008 5.501323

Table 4: Comparison of errors at T=0.5 with various ∆x and ∆y when Dx = 1,Dy = 0.001 and
dt = 0.0005.

∆x=∆y errL∞ errL1 CPU times

ADI 1/2 0.0111 0.0111 0.787006
1/4 0.0020 0.0015 2.029179

1/16 1.1426e-004 5.5520e-005 21.959890

SBDF2 1/2 0.0109 0.0109 0.210848
1/4 0.0019 0.0014 0.385742

1/16 2.5995e-005 1.2631e-005 2.913781

SBDF3 1/2 0.0108 0.0108 0.316777
1/4 0.0018 0.0013 0.454392

1/16 4.4834e-005 2.1785e-005 4.227773

SBDF4 1/2 0.0106 0.0106 0.395751
1/4 0.0017 0.0013 0.709488

1/16 1.1445e-004 5.5613e-005 5.562917

9 CONCLUSION 28

0
0.5

1

0

0.5

1
−1

0

1

x

Numerical solt. of 2D−Heat Eqn. by SBDF at T=0.5

y

un
3

0
0.5

1

0

0.5

1
−1

0

1

x

Exact solt. of 2D−Heat Eqn. at T=0.5

y

ue

0
0.5

1

0

0.5

1
0

2

4

6

x 10
−7

x

Error at T=0.5

y

ue
rr

Remark 8.1 In the experiments we obtained improved results by combining the correct time-
discretization method with the iterative steps. By using higher order SBDF method we can obtain
larger time-steps with sufficient accurate results. Nevertheless higher splitting schemes are ex-
pensive and only with large time scales, the benefits are useful.

9 Conclusion

In the paper we presented the benefits of handling large and small time-scales with iterative
operator splitting schemes. So large time-scale can be taken into account with higher order
splitting schemes and the computational effort is less. In the stability and consistency analysis
we have proven the applicability of the iterative scheme with benefits of weighting.

The applications in parabolic equations shows the verification of the theoretical results. can
be done for parabolic equations with nonlinear In future we will discuss the application to time-
dependent equations and real-life applications.

References

[1] R.J. Braun B.T Murray J Soto Jr. Adaptive Finite-difference computations of dendritic
growth using a phase-field model. Modelling Simul. Mater. SC?. eNG. 5, 19957 365-380.

[2] R.E. Ewing. Up-scaling of biological processes and multiphase flow in porous media. IIMA
Volumes in Mathematics and its Applications, Springer-Verlag, 295 (2002), 195-215.

REFERENCES 29

0
0.5

1

0

0.5

1
−1

0

1

x

Numerical solt. of 2D−Heat Eqn. by ADI at T=0.5

y

u1

0
0.5

1

0

0.5

1
−1

0

1

x

Exact solt. of 2D−Heat Eqn. at T=0.5

y

ue

0
0.5

1

0

0.5

1
0

0.5

1

x 10
−6

x

Error at T=0.5

y

ue
rr

Figure 1: Comparison of errors at T=0.5 with various ∆x and ∆y for Dx = Dy = 0.01 and
dt = 0.0005.

[3] I. Farago, and Agnes Havasi. On the convergence and local splitting error of different splitting
schemes. Eötvös Lorand University, Budapest, 2004.

[4] P. Csomós, I. Faragó and A. Havasi. Weighted sequential splittings and their analysis.
Comput. Math. Appl., (to appear)

[5] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Springer,
New York, 2000.

[6] I. Farago. Splitting methods for abstract Cauchy problems. Lect. Notes Comp.Sci. 3401,
Springer Verlag, Berlin, 2005, pp. 35-45

[7] I. Farago, J. Geiser. Iterative Operator-Splitting methods for Linear Problems. Preprint No.
1043 of the Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany,
June 2005.

[8] P. Frolkovič and J. Geiser. Numerical Simulation of Radionuclides Transport in Double
Porosity Media with Sorption. Proceedings of Algorithmy 2000, Conference of Scientific
Computing, 28-36, 2000.

REFERENCES 30

[9] J. Geiser. Numerical Simulation of a Model for Transport and Reaction of Radionuclides.
Proceedings of the Large Scale Scientific Computations of Engineering and Environmental
Problems, Sozopol, Bulgaria, 2001.

[10] J. Geiser. Gekoppelte Diskretisierungsverfahren für Systeme von Konvektions-Dispersions-
Diffusions-Reaktionsgleichungen. Doktor-Arbeit, Universität Heidelberg, 2003.

[11] J. Geiser. R3T : Radioactive-Retardation-Reaction-Transport-Program for the Simulation of
radioactive waste disposals. Proceedings: Computing, Communications and Control Tech-
nologies: CCCT 2004, The University of Texas at Austin and The International Institute of
Informatics and Systemics (IIIS), to appear, 2004.

[12] J. Geiser. Iterative Operator-Splitting methods for Parabolic Differential Equations : Con-
vergence theory. Humboldt-Preprint, to be submitted, February 2006.

[13] W. Hackbusch. Multi-Gird Methods and Applications. Springer-Verlag, Berlin, Heidelberg,
1985.

[14] W. Hackbusch. Iterative L”osung gro”ser schwachbesetzter Gleichungssysteme. Teubner
Studienb”ucher: Mathematik, B.G. Teubner Stuttgart, 1993.

[15] W. Hundsdorfer, L. Portero. A Note on Iterated Splitting Schemes. CWI Report MAS-
E0404, Amsterdam, Netherlands, 2005.

[16] W.H. Hundsdorfer, J. Verwer W. Numerical solution of time-dependent advection-diffusion-
reaction equations, Springer, Berlin, (2003).

[17] J.Kanney, C.Miller and C. Kelley. Convergence of iterative split-operator approaches for
approximating nonlinear reactive transport problems. Advances in Water Resources, 26:247–
261, 2003.

[18] R.J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied
Mathematics ,

[19] G.I Marchuk. Some applicatons of splitting-up methods to the solution of problems in
mathematical physics. Aplikace Matematiky, 1 (1968) 103-132.

[20] G. Strang. On the construction and comparision of difference schemes. SIAM J. Numer.
Anal., 5:506–517, 1968.

[21] J.,G. Verwer and B. Sportisse. A note on operator splitting in a stiff linear case. MAS-R9830,
ISSN 1386-3703, 1998.

[22] S. Vandewalle. Parallel Multigrid Waveform Relaxation for Parabolic Problems. Teubner
Skripten zur Numerik, B.G. Teubner Stuttgart, 1993.

[23] H.Yserentant. Old and New Convergence Proofs for Multigrid Methods. Acta Numerica,
285–326, 1993.

[24] Z. Zlatev. Computer Treatment of Large Air Pollution Models. Kluwer Academic Publishers,
1995.

