
ESTIMATOR COMPETITION FOR POISSON PROBLEMS?

CARSTEN CARSTENSEN AND CHRISTIAN MERDON

Abstract. We compare 13 different a posteriori error estimators for the Poisson
problem with lowest-order finite element discretization. Residual-based error es-
timators compete with a wide range of averaging estimators and estimators based
on local problems. Among our five benchmark problems we also look on two ex-
amples with discontinuous isotropic diffusion and their impact on the performance
of the estimators.
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1. Introduction

A posteriori error control has become an important issue for reliable and efficient
computation of PDEs [AO00, BR96, BS01, EEHJ95, Ver96, Rep08]. This paper
updates the empirical study of [CBK01] to modern a posteriori error control via the
five classes of 13 estimators of Table 1.1 applied to the five benchmark examples of
Table 1.2 such as the Poisson model problem on the L-shaped domain illustrated in
Figure 1.1. Up to modified boundary conditions, marked by BC, all the benchmark
problems are of the following type with or without discontinuous coefficients κ for
some given right-hand side f ∈ L2(Ω) and finite element approximation uh to the
unknown exact solution u ∈ H1

0 (Ω) of

div(κ ∇u) + f = 0 in Ω.(1.1)

Table 1.1. Classes of a posteriori error estimators studied in this paper.

No Class error estimators Examples (Reference below)

1 explicit residual-based ηR (Section 2)
2 averaging ηA1, ηA2, ηMP1, ηRT, ηMRT (Section 3)
3 equilibration ηB, ηMFEM, ηLW, ηEQL, ηEQB (Section 4)
4 least-square ηLS (Section 4.2)
5 localisation ηCF (Section 5)
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Table 1.2. Benchmark examples studied in this paper.

No Short name Problem description in (1.1) Feature

1 L-shaped domain κ ≡ f ≡ 1 corner singularity
2 Square domain κ ≡ 1, f with oscillations oscillations
3 Slit domain κ ≡ f ≡ 1 & BC slit singularity
4 Interface problem jumping κ, f ≡ 0 & BC interface singularity
5 Octagon example jumping κ, f ≡ 0 & BC continuous fluxes
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Figure 1.1. Error and error estimators for uniform mesh refinement
of L-shaped domain with right-hand side 1 from Example 7.1 in Sec-
tion 7 to illustrate different accuracy of different error estimators.

Here and throughout the paper, Ω ⊂ R
n is a bounded Lipschitz domain with

Lebesgue and Sobolev spaces L2(Ω) and H1(Ω), and the piecewise constant dif-
fusion coefficient κ is bounded by

0 < κmin ≤ κ(x) ≤ κmax < ∞ for all x ∈ Ω.(1.2)

By definition, an error estimator η is a computable quantity that aims to estimate
the error e := u − uh, e.g., in its energy norm,

|||e||| := ‖κ
1/2 ∇(u − uh)‖L2(Ω).
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Desirable properties of η are its reliability in the sense of an upper bound

|||e||| ≤ Crel η + h.o.t.

and its efficiency in the sense of a lower bound

η ≤ Ceff |||e|||+ h.o.t.

Any complete error control requires estimates of the constants Crel and Ceff and the
higher-order terms h.o.t. which are oscillations of the right-hand side f that are of
magnitudes smaller than the energy error in all the examples of this paper. In many
cases only the constant Crel = 1 is known while Ceff depends on generic constants
[AO00, Ver96, BS01].
We assume that T is a regular triangulation of Ω in the sense of Ciarlet [BS94, Cia78]
with nodes N , free nodes K = N\∂Ω and edges E such that κ ∈ P0(T ). The discrete
space Pk(T ) denotes the T -piecewise polynomials of degree ≤ k. The nodal basis
function associated to z ∈ N is denoted by ϕz and its support by ωz. Given the
discrete solution uh ∈ S1(T ) := H1

0 (Ω)∩P1(T ), its flux σh = κ ∇uh ∈ P0(T ) and the
exact counterpart σ = κ ∇u, we define the residual functional Res : H1

0 (Ω) −→ R,
for v ∈ H1

0 (Ω), by

Res(v) :=

∫

Ω

(σ−σh) · ∇v dx =

∫

Ω

fv dx−

∫

Ω

σh ·∇v dx .(1.3)

The identity |||e||| = |||Res |||∗ leads to the estimation of the dual norm of Res. The
most popular way to do this is via the standard residual-based a posteriori error
estimator ηR [AO00, BM87, BS01, Bra07, Rod94, Rod, EEHJ95] which is relatively
cheap but usually overestimates the error about a factor of ten or larger [CBK01].
Therefore, more elaborate estimators are of interest, even if their calculation is more
expensive.
For an arbitrary function q ∈ H(div; Ω) an integration by parts shows

Res(v) =

∫

Ω

(f + div q)v dx−

∫

Ω

(σh −q) · ∇v dx,(1.4)

a representation also suggested in [Rep03]. The quantity q has the interpretation
as an averaging or post-processing of σh and enables various designs of an error
estimator, e.g., by piecewise affine H(div; Ω)-functions which form the discrete space
of first-order averagings

Q1(T ) := H(div; Ω) ∩ P1(T )n

which includes S1(T )n as well as the Raviart-Thomas finite element space

RT0 (T ) := {q ∈ L2(Ω; Rn) : ∃a ∈ P0(T )n, ∃b ∈ P0(T ) s.t.

q(x) = a + bx for a.e. x ∈ Ω and [q · νE ] = 0 on all inner edges E}.
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Given q ∈ Q1(T ) the quantity

η(q) := ‖κ
−1/2(σh −q)‖L2(Ω)

can be shown to be reliable and so, for any interpolation operator

A : H(div; Ω) −→ Q1(T ),

the value ηA = η (A(σ)) is a reliable estimator: All averaging is reliable [Car04].
Minimizing η(q) over q ∈ S1(T )n gives the estimator ηMP1 with

ηMP1 := min
q∈S1(T )n

‖κ
−1/2(σh −q)‖L2(Ω)

≤ |||e|||+ min
q∈S1(T )n

‖κ
−1/2(σ−q)‖L2(Ω).

In case κ ≡ 1 and smooth exact solution the latter term is of higher order. In
the numeric experiments, the estimator ηMP1 shows surprisingly accurate results.
However, when it comes to discontinuities in κ, an ansatz with globally continuous
functions appears less accurate. In that case, the exact flux σ could have tangential
jumps over interfaces of neighbouring domains with constant diffusion. A more
promising ansatz is the use of Raviart-Thomas elements q ∈ RT0 (T ) for which the
normal jumps [q · νE ] vanishes while the tangential jumps are a priori unrestricted.
A minimisation of η(q) for q ∈ RT0 (T ) yields the estimator

ηMRT := min
q∈RT0(T )

‖κ
−1/2(σh −q)‖L2(Ω).

Efficiency of ηMRT follows from that of the estimator ηRT := η(qRT) ≥ ηMRT where
the normal flux of qRT ∈ RT0 (T ) on an edge E ∈ E is chosen as the arithmetic
average < σh ·νE > of the normal fluxes of σh on both sides of the edge.
To obtain estimators with a secure reliable constant Crel = 1 we can design q such
that it fullfills an equilibration condition of the form

div q = −Pf(1.5)

where Pf is a suitable interpolation of f , such that the first term in (1.4) becomes
negligible or raises oscillations. This depends on the chosen approximation space
for q. In case of q ∈ RT0 (T ) the T -piecewise mean value fT ∈ P0(T ) of f defines
the oscillation term

osc(f, T ) = ‖hT (f − fT )‖L2(Ω),(1.6)

which is expected to be of higher order for f ∈ H1(Ω). In fact, all examples of this
paper are not dominated by the osciallations and undisplayed numerical experiments
show that they stay much smaller than the other estimator contributions.
We will mention five design ways for q, among them are a least-square approach
similar to [Rep08, RSS03], solving the dual mixed problem [RT77, CB05] and three
methods based on local problems on node patches for determination of equilibrated
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fluxes. The one suggested by Luce and Wohlmuth [LW04] utilizes the dual mesh,
while the algorithm by Braess [BS06, Bra07] computes a correction for σh composed
of overlapping broken Raviart-Thomas elements. The output of the last method by
Ladeveze and Leguillon matches the equilibration condition only in a weak sense
which is still enough to set up and solve local Neumann problems and obtain the
estimator ηEQ from [AO00].
The remaining part of the paper is organized as follows. Section 2 introduces the
explicit residual-based-estimator and its modification for the case of discontinuous
diffusion [BV00]. Section 3 discusses estimators using first-order averagings. Section
4 introduces the estimators based on the equilibration condition (1.5) to obtain
estimators with Crel = 1. For comparison, we added the local problem estimator ηCF

from [CF99] in Section 5. Section 6 introduces the adaptive mesh refinement strategy
used for the five examples in Section 7. Some observations from the experimental
results in Section 8 conclude this paper.

2. Residual-based a posteriori error estimates

This section is devoted to the definition of the explicit residual-based error estimator
on a regular triangulation T of the Lipschitz domain Ω ⊂ R

2 into triangles. Recall
that N and E denotes the nodes and edges of the triangulation. Furthermore, κT

denotes the value of κ on T ∈ T and κE := maxT∈T ,E⊂∂T κT for E ∈ E .

Definition 2.1. For T ∈ T define

η2
R,T :=

h2
T

κT

‖f‖2
L2(T ) +

∑

E⊂∂T

hE

κE

‖[σh ·νE]‖2
L2(E),

and globally

ηR :=

(

∑

T∈T

h2
T

κT
‖f‖2

L2(T )

)1/2

+

(

∑

E∈E

hE

κE
‖[σh ·νE ]‖2

L2(E)

)1/2

.

The estimator ηR is known to be reliable and efficient.

Theorem 2.1 ([CF99]). If n = 2, κ ≡ 1 and T consists of right isosceles triangles,
it holds

|||e||| ≤ ηR.

In case of κ 6≡ 1 the constant Crel depends on the global bound κmax / κmin. This
dependency is eliminated if κ is distributed quasimonotone, i.e., κ assumes at most
one local maximum around each node. At boundary nodes, every element with a
local maximum must touch the boundary, cf. [Pet01] for details. The point is that
this property allows to travel from one element of the node patch to (the) one with
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the largest number on a monotonous path. The reliability proof is based on an
interpolation operator I

κ
with the properties

‖v − I
κ
(v)‖L2(T ) ≤ c1hT κ

−1/2
T |||v|||(UT ) for all T ∈ T ,

‖v − I
κ
(v)‖L2(E) ≤ c2h

1/2
E κ

−1/2
E |||v|||(UE) for all E ∈ E\∂Ω.

Here, UT and UE denote sufficently large neighbourhoods of T and E respec-
tively. Then Crel of ηR depends on the constants c1 and c2 which (in case of quasi-
mononotony) do neighter depend on the local mesh-size nor on the global bounds
of κ. The efficiency constant Ceff of ηR does not depend on the global bounds of κ

also in the non-quasimonotone case [BV00].

3. Averaging Estimators

Recall that

Q1(T ) := H(div; Ω) ∩ P1(T )n

denotes the space of first-order averagings, i.e., piecewise affine H(div; Ω)-functions.
We prove that q ∈ Q1(T ) generates a reliable estimator. For this we need an
interpolation operator

I : H1
0 (Ω) −→ S1(T )

with stability, first-order approximation, and orthogonality properties

‖h−1
T κ

1/2(v − I(v))‖L2(Ω) ≤ c3|||v|||,(3.1)

|||v − I(v)||| ≤ c4|||v|||,(3.2)
∫

Ω

f(v − I(v)) dx ≤ c5osc(f, T )|||v|||.(3.3)

Such operators exist [Car99] with constants c3, c4, c5 which depend on the global
eigenvalue bounds κmin and κmax of κ. For the quasimonotone case it is possible
to design operators with constants c3, c4, c5 that are independent of κmin and κmax.
The aforementioned operator I

κ
of Bernardi and Verfuerth from [BV00] certainly

has the first property but possibly lacks the others. A suitable modification of the
operator from [Car99] is designed in [Fun02] where the third property is replaced by
another but similar one. The point is that the third property has to raise oscillations
or so.

Theorem 3.1. Let I be an interpolation operator with the properties (3.1), (3.2)
and (3.3). Then for q ∈ Q1(T ) it holds

|||Res |||∗ ≤ (c4 + c3c6)η(q) + c5osc(f, T ).
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Proof. Equation 1.4 and Galerkin orthogonality show

Res(v) =

∫

Ω

(f + div q)(v − I(v)) dx−

∫

Ω

(σh −q) · ∇(v − I(v)) dx .

A Cauchy inequality in the latter term is combined with property (3.2) to obtain
∫

Ω

(σh −q) · ∇(v − I(v)) dx ≤ c4η(q)|||v|||.

For the first term we use properties (3.1) and (3.3) which results in
∫

Ω

(f + div q)(v − I(v)) dx ≤ |||v|||
(

c5osc(f, T ) + c3‖hT κ
−1/2 div q‖L2(Ω)

)

.

An elementwise inverse estimate for polynomials (notice that divT σ = 0) of the
form

‖hT κ
−1/2 divT (q − σh)‖L2(T ) ≤ c6‖κ

−1/2(q − σh)‖L2(T )

yields

‖hT κ
−1/2 div q‖L2(Ω) ≤ c6η(q). �

The following five choices for q and their numerical performance is discussed in
chapter 7:

• ηA1 = η(q1) with q1 :=
∑

z∈N ϕz −
∫

ωz
σh dx,

• ηA2 = η(q2) with q2 :=
∑

z∈N ϕz limr→0+ −
∫

B(z,r)∩Ω
σh dx,

• ηRT = η(qRT) with qRT ∈ RT0 (T ) and qRT · νE =< σh ·νE >,

• ηMP1 = η(qMP1) = minq∈S1(T )n η(q),

• ηMRT = η(qMRT) = minq∈RT0(T ) η(q).

Remark 3.1.

(a) The local refinement indicators for T ∈ T for the adaptive mesh generation
are generated by restricting the norm in η(q) on T .

(b) A discrete norm equivalence for (broken) Raviart-Thomas function r ∈ RT−1(T )
yields

‖κ
−1/2 r‖L2(T ) ≈

∑

E⊂∂T

h
1/2
E / κ

1/2
T ‖r · νE‖L2(E).
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Replacing r by σh −q̂ this shows equivalence of ηRT and the edge contribution
of ηR2 and therefore efficiency for ηMRT and ηRT.

(c) Efficiency for ηMP1 is known for smooth exact solution and globally constant
κ [Car04], but cannot be guaranteed in the discontinous case as we will also
see in the numerical examples.

(d) Averaging techniques were proposed by engineers [ZZ87]; their general relia-
bility was first indicated by [Rod94, Rod] by dominating edge contributions
[Car99, CV99, Car02], cf. also [DN02, Noc93].

(e) The observation that all averaging estimators are reliable is due to [CB02a]
and studied in [CB02b] for higher order finite element schemes, in [CF01b,
CF01a] for elasticity and the Stokes equation, and eventually in [CA03,
CB04] for variational inequalities.

4. Equilibration estimators

To obtain a secure upper bound of the error we introduce several constructions that
fullfill an equilibration condition of the form

div q = −Pf.

4.1. Equilibration after Braess. The idea of Braess [BS06, Bra07] is to construct
a Raviart-Thomas element q ∈ RT0 (T ) with Pf = −fT , where fT is the T -piecewise
constant integral mean of f . Utilizing the P0(T )-orthogonality of f − fT and the
Poincaré inequality this yields for every v ∈ H1(Ω)

∫

Ω

(f + div q)v dx =

∫

Ω

(f − fT )v dx

=
∑

T∈T

∫

T

(f − fT )(v − vT ) dx

≤
∑

T∈T

hT /π‖f − fT ‖L2(T )‖∇v‖L2(T )

≤
∑

T∈T

hT /π‖κ
−1/2(f − fT )‖L2(T )‖κ

1/2 ∇v‖L2(T )

≤ 1/π osc(f/ κ
1/2, T )|||v|||(4.1)
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Finally the Cauchy inequality in the last term of (1.4) gives
∫

Ω

(σh −q) · ∇v dx =

∫

Ω

κ
−1/2(σh −q) · (κ1/2 ∇v) dx

≤ η(q)|||v|||(4.2)

and leads to

|||Res |||∗ ≤ η(q) + 1/π osc(f/ κ
1/2, T ).

The construction by Braess works by calculating a correction r ∈ RT−1(T ) that
eliminates the jumps of σ such that qB := σh +r has the desired properties. The
correction r is decomposed into the sum of broken Raviart-Thomas elements over
node patches rz ∈ RT−1(T|ωz

) with

div rz = (ϕzf)T , rz · νE = 0 on ∂ωz\∂Ω and [rz · νE ] = −1/n [σh ·νE]

for all edges E ∈ E\∂Ω with z ∈ E. Each rz can be calculated independently by
determination of the remaining nonzero normal fluxes of rz on the elements of the
patch. The associated estimator will be labeled with ηB := η(qB) = ‖κ

−1/2 r‖L2(Ω).
The minimum

ηMFEM = η(qMFEM) = inf
q∈RT0(T )

div q=−fT

η(q)

is known to be attained in the gradient part of the solution of the dual mixed
formulation of (1.1) with Raviart-Thomas elements of lowest order [RT77, CB05,
Bra07].

4.2. Least-Square-Estimator. Following ideas in [RSS03] we use the Friedrichs
inequality after separating the oscillations (4.1) to obtain
∫

Ω

(f + div q)v dx =

∫

Ω

(f − fT ) · v dx+

∫

Ω

(fT + div q)v dx

≤
(

osc(f/ κ
1/2, T )/π + CF/ κmin

1/2 ‖fT + div q‖L2(Ω)

)

|||v|||

and determine

η2
LS = η(qLS)

2 = inf
q∈RT0(T )

(

η(q)2 + 1/ κmin ‖fT + div q‖2
L2(Ω)

)

.

It certainly holds ηMRT ≤ ηLS ≤ ηMFEM ≤ ηB. The second term fT +div q doesn’t de-
pend on the mesh size, hence it must converge against zero since otherwise it cannot
be efficient. That’s why we expect ηLS to coincide with ηMFEM asymptotically. How-
ever, it may deliver better results in the pre-asymptotic range. Reliability depends
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on knowledge of the constant CF ≤ diam(Ω)/π. This led Repin to the guaranteed
upper bound (he called majorant)

|||e||| ≤ inf
q∈Qh

(

η(q) + CF‖f + div q‖L2(Ω)

)

which follows from the Friedrichs inequality in (1.4) and ignores the possible re-
finement by oscillations. The elementwise contributions of η(q) to the minimizer
q ∈ Qh serve as refinement indicators. Here, Qh is any finite-dimensional subspace
of H(div; Ω), e.g. RT0 (T ) as in the other estimators. The accuracy is increased by
means of using higher-order elements for q locally where f is oscillating or relatively
large. However, our suggestion is to separate oscillations (or any other other f −Pf
that raises oscillations and fullfills Pf ∈ div Qh) already in the variational state of
the derivation. This leads to the recommendation of other estimators in Subsection
8.8.

4.3. Equilibration after Luce and Wohlmuth. The technique by Luce and
Wohlmuth [LW04] generates a Raviart-Thomas element qLW on a refined triangu-
lation achieved by connecting the nodes and edge midpoints (and face midpoints)
of each element with its center. In that way every element is devided into (n + 1)!
elements with same area. All child-elements sharing the same node z form a poly-
gonial Kz which is a member of the dual mesh. By setting q · νe = σh ·νe for
inter-polygonial boundaries e (where the normal flux of σ is continuous) only the
fluxes inside the polygonials remain unknown and can be determined independently
on each polygonial Kz, z ∈ N such that the equilibration condition

div qLW = −1/|Kz|

∫

ωz

fϕz dx

holds. This choice of Pf also yields terms of higher order or oscillations for the first
term in (1.4). The associated estimator reads ηLW := η(qLW) = ‖κ

−1/2(σ−qLW)‖L2(Ω).

4.4. Equilibration after Ladeveze and Leguillon. This subsection is devoted
to the equilibration estimator due to Ladeveze and Leguillon [LL83, AO93b, AO93a,
AO00, AO93c] in the implementation of [AO00].
Decomposing (1.4) over a sum of triangles and elementwise integration by parts
yields (ν is the outer normal on ∂T )

Res(v) =
∑

T∈T

∫

T

(f + div q)v dx−

∫

T

(σh −q) · ∇v dx

=
∑

T∈T

∫

T

fv dx−

∫

T

σh ·∇v dx +

∫

∂T

q · νv ds

=
∑

T∈T

ResT (v, q)
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with

ResT (v, q) :=

∫

T

fv dx−

∫

T

σh ·∇v dx +

∫

∂T

q · νv ds .(4.3)

We define the local function spaces H1
D(T ) as H1(T )\R if |T ∩∂Ω| = 0 and otherwise

as {v ∈ H1(T ) : v = 0 on ∂T ∩ ∂Ω}.

Theorem 4.1. Suppose ResT (1, q) = 0 for any T ∈ T with |T ∩ ∂Ω| > 0. Then for
all T ∈ T , there exist a unique φT ∈ H1

D(T ) with
∫

T

κ ∇φT · ∇v dx = ResT (v, q) for all v ∈ H1
D(T ).(4.4)

Moreover (φT denotes the solution of (4.4)),

|||e||| ≤ ηEQ :=

(

∑

T∈T

‖κ
1/2 ∇φT‖

2
L2(T )

)1/2

.(4.5)

Proof. The solvability of the local problems 4.4 is well known. The calculation in
the beginning of this subsection shows

Res(v) =
∑

T∈T

ResT (v, q)

=
∑

T∈T

∫

T

κ ∇φT · ∇v dx

≤
∑

T∈T

‖κ
1/2 ∇φT‖L2(T )‖κ

1/2 ∇v‖L2(T )

≤ ηEQ|||v|||. �

Remark 4.1.

(a) For this ansatz it is actually enough to know the edge functionals µE := q ·νE .
An underlying q is not needed but helpful to draw similarities with the other
equilibration methods above.

(b) The equilibration estimator in [AO00] (which is labeled by ηEQL) uses lin-
ear edge functionals due to Ladeveze and Leguillon which consists of con-
tributions associated to the nodes spanning the edge. By demanding the
stronger condition ResT (ϕz, q) = 0 it is possible to solve local systems on
node patches to calculate the contributions of z to its adjacent edges. It is
possible to generate a global function qL from these linear edge functionals
(e.g. a Raviart-Thomas element of first order).
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(c) The condition ResT (1, q) = 0 can be understood as a global consequence of
the equilibration condition div q = −f . Gauss theorem shows

ResT (1, q) =

∫

T

f dx+

∫

∂T

q · ν ds =

∫

T

(f + div q) dx = 0.

(d) The condition ResT (1, q) = 0 is clearly fullfilled by q = qB constructed in
Subsection 4.1. Therefore the edge fluxes of qB can be used for the estimator
described above and we label this by ηEQB in the numerical experiments.
Since we have via (4.4) for v = φT and arguments from Subsection 4.1 that

‖κ
1/2 ∇φT‖L2(T ) =

ResT (φT , q)

‖κ1/2 ∇φT‖L2(T )

≤ ‖κ
−1/2(σh −qB)‖L2(T ) + 1/πosc(f/ κ

1/2, T )

the estimator ηEQB will be (locally) better than ηB.

(e) The problems in all mentioned methods to construct equilibrated fluxes lo-
cally look very similar and need the condition Res(ϕz) = 0 for all z ∈ K for
their solvability.

(f) Efficiency highly depends on the closeness of the equilibrated fluxes to the
fluxes of the exact solution. An optimal choice (e.g. µE = σ ·νE) could even
yield |||e||| = ηEQ. Similarly q = σ gives η(q) = |||e|||.

5. Error estimation by local transmission problems

This subsection is devoted to the description of ηCF which is called ηL in [CF99].
We use the partition of unity property of the nodal basis function to split up the
residual

Res(v) =
∑

z∈N

Res(ϕzv).

Since Res(ϕz) = 0 for z /∈ ∂Ω there exist a unique solution wz ∈ Wz for the problem
∫

ωz

κ ϕz∇wz · ∇v dx = Res(ϕzv) for all v ∈ Wz(5.1)

with

Wz :=

{

{

v ∈ H1
loc(ωz) : ‖(κ ϕz)

1/2∇v‖L2(ωz) < ∞, v = 0 on ∂Ω ∩ ∂ωz

}

if z ∈ ∂Ω,
{

v ∈ H1
loc(ωz) : ‖(κ ϕz)

1/2∇v‖L2(ωz) < ∞
}

\R otherwise.



ESTIMATOR COMPETITION FOR POISSON PROBLEMS
?

13

Theorem 5.1 ([CF99]). It holds

|||e||| ≤ ηCF :=

(

∑

z∈N

‖(κ ϕz)
1/2∇wz‖L2(ωz)

)1/2

.

Proof. Since
∑

z∈N ϕz ≡ 1 it follows

Res(v) =
∑

z∈N

Res(ϕzv)

=
∑

z∈N

∫

ωz

κ ϕz∇wz · ∇v dx

≤ ‖(κ ϕz)
1/2∇wz‖L2(ωz)‖(κ ϕz)

1/2∇v‖L2(ωz)

≤ ηCF

(

∑

z∈N

∫

ωz

ϕz|κ
1/2 ∇v|2

)1/2

= ηCF|||v|||. �

Remark 5.1.

(a) The local problems 5.1 are solved approximately with a p-version of the finite
element method on the node patch ωz = {T ∈ T : z ∈ ∂T}. The numbers
in our numerical experiments are obtained with fourth order polynomials.

(b) If n = 2 and κ = 1 and T consists of right isosceles triangles, we have
Ceff ≈ 2.36 [CF99].

(c) Our ηCF-steered adaptive algorithm is based on the refinement indicator
ηCF(T ),

ηCF(T ) :=
1

n + 1

∑

z∈N∩T

‖(κ ϕz)
1/2∇wz‖

2
L2(ωz) for each T ∈ T .

6. Adaptive mesh refinement

Automatic mesh refinement generates a sequence of meshes T0, T1, T2... by marking
and refining elements according to a bulk criterion with parameter 0 ≤ Θ ≤ 1.

Algorithm (AΘ).

(a) Start with a coarse mesh T0 and initialize ` = 0.
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(b) Compute the discrete solution uh on the actual mesh T` with N degrees of
freedom. In case of inhomogenous Dirichlet boundary conditions uD use its
nodal interpolation uD,h =

∑

z∈N\K uD(z)ϕz for the discretisation.

(c) For xyz ∈ {R, A1, A2, MP1, RT, MRT, B, MFEM, LS, LW, EQL, EQB,
CF} compute ηxyz and the local refinement indicators ηxyz(T ) for all T ∈ T`.
In case of inhomogenous Dirichlet boundary conditions compute

ηD(E) := κ
1/2
E h

3/2
E ‖∂2

EuD‖L2(E) for all E ∈ E , E ⊂ ∂Ω,

with the edgewise second derivative ∂2
EuD of uD along ∂Ω. Substitute each

ηxyz(T ) by ηxyz(T ) +
∑

E∈E, E⊂(∂T∩∂Ω) ηD(E). In case of nonzero oscillations

we further substitute ηxyz(T ) by ηxyz(T ) + osc(f, T ) to control this quantity,
too.

(d) The design of a minimal set M` of elements to refine employs a greedy algo-
rithm: Enumerate elements such that ηxyz(T1) ≥ ηxyz(T2) ≥ ... ≥ ηxyz(T|T |)
where |T | is the total number of triangles in T`. Find the smallest index
k ∈ N, s.t.

Θ

|T |
∑

j=1

ηxyz(Tj) ≤
k
∑

j=1

ηxyz(Tj).

Set M` := {Tj : j = 1, .., k}.

(e) Generate a new triangulation T`+1 by red -refinement of elements in M` and
red-green-blue-refinement of further elements to avoid hanging nodes: Given
T ∈ T and ∂T = E1∪E2∪E3 where E1 is the longest edge, a red -refinement
of T is performed by dividing T into four congruent sub-triangles obtained
by connecting the midpoints of the edges E1, E2 and E3. A blue-refinement
of T is performed by dividing T into three sub-triangles which are obtained
by connecting the midpoint of E1 with the opposite node and the midpoint of
E2 or E3. A green-refinement of T ∈ T is performed by dividing T into two
sub-triangles which are obtained by connecting the midpoint of the longest
edge E1 with the opposite node, cf. Figure 6.1. Update ` and go to (b).

Remark 6.1.

(a) The parameter Θ allows adaptive refinement for Θ = 1/2 and uniform mesh
refinement for Θ = 1.
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Figure 6.1. Red-, blue-, and green-refinement of a triangle.

(b) There is remarkably little literature on a priori properties of adaptive algo-
rithms [Doe96, DN02, Mor00, MNS03]; but their practical performance is
actually very good. The convergence rates are usually reasonably improved.

(c) The finite element scheme and the adaptive algorithms were implemented in
Matlab based on openffw [BGG+] with direct solution of all linear systems
of equations.

(d) In case of inhomogenous boundary conditions an estimator for the approxi-
mation error of the Dirichlet data uD on the boundary was incorporated to
control this quantity in the adaptive process, cf. [CDB04] for details.

7. Numerical examples

Example 7.1 ([CF99]). Let f ≡ 1 and κ ≡ 1 on the L-shaped domain

Ω := (−1, 1)2\[−1, 0]2,

u ≡ 0 on ∂Ω. The coarsest triangulation consists of 12 triangles obtained by dividing
each of the three quares into 4 congruent triangles. The exact solution is unknown,
it’s energy norm |||u|||2 ≈ 0.2140758036140825 was obtained by Aitken extrapolation
of solutions on uniform grids. The solution has a typical corner singularity at the
origin.

For a uniform sequence of meshes T0, T1, T2,... generated by Algorithm AΘ with
Θ = 0 we computed all error estimators and, using the approximated value for
|||u||| and Galerkin orthogonality, |||e||| = |||u||| − |||uh|||. Figure 1.1 displays these
quantities divided by |||u||| and plotted against the number of degrees of freedom N
corresponding to the particular triangulation. The logarithmic scaling of both axes
results in a nearly constant slope of −1/3 for all graphs, which, in two dimensions,
corresponds to an experimental convergence rate of α = 2/3 as hα ∝ N−α/2. This
matches theoretical predictions for a domain with a reentrant corner and an interior
angle of 3π/2. Suppose a goal is a termination of the calculation with relative energy
norm error ≤ 10%. Clearly, the error is below 10% for T4, but since, in general, |||e|||



16 C. CARSTENSEN AND C. MERDON

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

0.33

1

0.5

1

N

|||
e|

|| 
/ |

||u
|||

 

 
|||e||| (uniform)
|||e||| (η

R
)

|||e||| (η
MP1

)

|||e||| (η
A
)

|||e||| (η
A2

)

|||e||| (η
RT

)

|||e||| (η
MRT

)

|||e||| (η
MFEM

)

|||e||| (η
LS

)

|||e||| (η
B
)

|||e||| (η
LW

)

|||e||| (η
CF

)

|||e||| (η
EQL

)

|||e||| (η
EQB

)

Figure 7.1. Errors on adaptively generated meshes in Example 7.1.

is unknown, termination is to look on which level they cross the 10%-line. For
example, ηMP1 suggests stop at T4 with 1473, ηEQL at T5 with 6017, and ηR at T7

with 97793 degrees of freedom. The other estimators are somewhere between ηMP1

and ηEQL.
The experimental convergence rate of 2/3 can be improved by adaptive refinement.
This is shown in Figure 7.1. Via algorithm (A1/2) all estimators induce meshes
with the optimal experimental convergence rate 1. The goal of 10% for the relative
error is reached with 400 degrees of freedom instead of 800 for uniform refinement.
However, there are slight differences: the meshes generated by the estimators based
on Raviart-Thomas elements on the original triangulation and the standard-residual-
based estimator ηR are the best, while ηCF, ηEQL and ηLW produce the worst meshes.

Example 7.2 ([LW04]). We choose f according to the exact solution

u = x(x − 1)y(y − 1) exp(−100(x − 1/2)2 − (y − 117)2/10000)

of (1.1) on Ω = (0, 1)2. The oscillations are of higher order for small mesh-sizes.

Figure 7.2 shows the relative energy error and estimators on a sequence of uniformly
refined meshes generated with algorithm (A0) for Θ = 0. Since u ∈ H2(Ω), the op-
timal convergence rate is 1. Although this cannot be further improved by adaptive
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Figure 7.2. Error and error estimators for uniform mesh refinement
in Example 7.2.

refinement, Figure 7.3 shows that it leads nonetheless to a significant error reduc-
tion. The error goal of 10% is reached with around 500 degrees of freedom while the
uniform refinement needs about 4000 degrees of freedom. Again the meshes gener-
ated by RT0 (T )-based estimators generates the best meshes, while ηEQL produces
the worst. The loss of reliability of ηB, ηLW, ηMFEM and ηLS in Figure 7.2 is due to
the oscillations. The estimators ηEQB, ηEQL and ηCF are far less affected by this.

Example 7.3 ([MNS03]). The exact solution of (1.1) for f ≡ 1 and κ ≡ 1 on the
domain

Ω = {(x, y) ∈ R
2 : |x| + |y| < 1}\ ([0, 1] × {0})

is given (in polar coordinates) by u(r, φ) = r1/2 sin(φ/2) − 1/2r2 sin2 φ. The coars-
est triangulation consists of 16 triangles obtained by red-refining each of the four
triangles in Ω minus the x- and y-axis. The solution has a typical corner or crack
singularity [MNS03].

Figure 7.4 shows the relative energy error and estimators on a sequence of uniformly
refined meshes generated with an expected convergence rate of 1/2. This time the
performance of ηEQB and ηEQL is very similar, which coincides with the observation
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Figure 7.3. Errors on adaptively generated meshes in Example 7.2.

that ηB is not as efficient as in the examples before. It’s also remarkable that ηMRT is
very accurate this time while in the examples before there was a little overestimation.
The adaptively generated meshes improve the experimental convergence rate to the
optimal value 1 as can be seen in Figure 7.5. This time the error goal of 10% is
reached with around 100.000 degrees of freedom with uniform refinement and around
1000 degrees of freedom with adaptive refinement! The assessment of the meshes is
the same as in the examples before, the meshes generated by ηB or ηEQB win by a
narrow margin.

Example 7.4 ([LW04]). We look on Ω = (−1, 1)2 with f ≡ 0 and diffusion coeffi-
cients of 1 or 5 in each of the 4 sectors distributed as seen in Figure 7.6. The exact
solution has the form (in polar coordinates) u(r, φ) = rα (β sin(αθ) + γ cos(αθ)) with
α = 0.53544094560. The other coefficients β and γ are chosen (differently on each
sector of Ω) to solve (1.1) with the given data. The coarsest triangulation consists
of 16 triangles achieved by red -refining each of the 4 sectors of the square. The
solution has a singularity at the point (0, 0).

Figure 7.7 shows the results for uniform refinement with an experimental conver-
gence rate of 1/2. The node based averaging estimators ηA, ηA2 and also ηMP1 fail
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Figure 7.4. Error and error estimators for uniform mesh refinement
in Example 7.3.

in this example and doesn’t recover the correct convergence rate. Again, ηMRT and
ηRT give a good guess for the exact arror but are not a secured upper bound like the
more laborous estimators ηCF, ηLS, ηMFEM and ηLW. The results for the adaptive re-
finements in Figure 7.8 show that the convergence rate again can be improved to the
optimal value of 1 and underline the loss of efficiency for the node based averaging
estimators. The meshes induced by ηR or ηMRT doesn’t count to the best anymore
and are defeated by most of the other estimators, predominantly the ones by ηB

or ηEQB. For comparison we also included the estimator ηR′ which is the explicit
residual-based error estimator for κ ≡ 1 to show what happens if the local diffusion
coefficients are ignored. Since κ ≤ 1 in this example it holds ηR ≤ ηR′, but we also
see that the adaptive meshes induced by ηR′ are not as good as the ones induced by
ηR.

Example 7.5 ([HW96]). The diffusion coefficient κ assumes the values 1 and 1000
on the octagon

Ω = conv

{(

cos
(2j + 1)π

8
, sin

(2j + 1)π

8

)

, j = 0, 1, .., 7

}
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Figure 7.5. Errors on adaptively generated meshes in Example 7.3.
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Figure 7.6. Distribution of k on the initial triangulation in Example 7.4.

as depicted in Figure 7.9. The remaining data of problem (1.1) are chosen to match
the exact solution u(x, y) = (ax2 − y2)(ay2 − x2)/ κ with a = tan(3π/8)2. The
first derivatives of the solution are discontinuous at the interfaces while the flux
σ is continuous. The coarsest triangulation consists of 32 triangles achieved by
red -refining each of the 8 sectors of the octagon.
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Figure 7.7. Error and error estimators for uniform mesh refinement
in Example 7.4.

Since the solution is very smooth we have the optimal convergence rate of 1 already
for uniform refinement as seen in Figure 7.10. Surprisingly the estimator ηLW beats
most other estimators and the node-based averaging estimators work again because
the fluxes of the exact solution have no tangential jumps. Also remarkable is the
apparent convergence of ηMRT ≤ ηLS ≤ ηMFEM ≤ ηB against each other. In this
example ηEQL beats ηEQB for the first time, but still loses against ηCF as in all other
given examples. As before ηR′ denotes the explicit residual-based error estimator
for κ ≡ 1 and the results for the adaptive meshes in Figure 7.11 show that ηR′ is
not worth anything. All other estimators produce proper meshes.

8. Comparison and concluding remarks

The theoretical and practical results of this paper support the following observations.

8.1. Explicit error estimators appropriate for effective mesh design. Adap-
tive mesh refinement may be steered by simple ηR-based refinement rules, but the
best meshes were generated by ηB or its improvement ηEQB. However, it does not
appear to be favourable to spend more computational time for more laborious re-
finement rules if the data are (relatively) smooth.
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Figure 7.8. Errors on adaptively generated meshes in Example 7.4.
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Figure 7.9. Octagon and distribution of k on the initial triangula-
tion in Example 7.5.

8.2. Experimental observations ηLW ≤ ηB and ηEQB ≤ ηEQL. In most examples
ηEQB dominates ηEQL, but the last examples shows that this holds not in general.
In all our examples the equilibration estimator ηLW was at least as accurate as ηB.

8.3. Asymptotic equivalence of ηLS = ηMFEM. The least-square-estimator ηLS

coincides with ηMFEM asymptotically as expected in Section 4.2.
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Figure 7.10. Error and error estimators for uniform mesh refinement
in Example 7.5.

8.4. Approximation of local problems. We found that fourth-order polynomials
are sufficient enough to provide accurate approximations of the guaranteed upper
bounds. However, for full reliability, this approximation error has to be controlled
further. The numerical experiments in this paper leave this out and therefore are
not fully reliable.

8.5. Robust averaging estimators. Node-based averaging estimators like ηMP1

and ηA may fail in examples with discontinuous diffusion. Therefore they are not
recommended for guaranteed error control. The special choices ηA1 and ηA2 per-
formed similar. The estimators ηRT and ηMRT remain efficient also for discontinuous
diffusion.

8.6. Robust error control via ηCF, ηLS, ηMFEM or ηLW. The estimators ηCF,
ηLS or ηMFEM and ηLW seem to be the most robust estimators and are recommended
as a termination criterion for guaranteed error control. The residual-based estimator
ηR is too coarse and not appropriate as termination criterion for guaranteed error
control.

8.7. Accurate error control pays off. Averaging estimators might be a very
good exact error guess but they do not guarantee to be an upper bound for the
exact error to justify termination. On the other hand, relying only on cheap error
estimators like ηR causes overkill refinements and might be more expensive than
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Figure 7.11. Errors on adaptively generated meshes in Example 7.5.

the computation of more laborious but sharper error estimators like the ones from
Section 8.6. That’s why it is is favourable to have a variety of estimators [CBK01].

8.8. Recommendation in practise. If the reliability is highly important for ab-
solute control of the error in the energy norm, it is recommended to employ ηMFEM

or ηLW. The estimator ηLS, although asymptotically equivalent to ηMFEM, is not a
guaranteed upper bound without proper constants and minimisation as in Repins
majorant. However, the seperation of oscillations done for the derivation of ηLS,
ηMFEM, ηB and ηLW in Section 4 should be also applicable to his approach. The
implicit estimators ηCF, ηEQB and ηEQL require the exact solution of a local interface
problem with PDEs which involve some extra error control (see 8.4).

For adaptive algorithms, the residual-based error estimates are sufficient (see 8.1).

In case of smooth data the approximation estimators ηA1, ηA2 and ηMP1 show an
accurate energy error approximation. This is recommended to give an idea of the
error, however without explicit computation of the reliability constants, there is no
guaranteed error control. We do not recommend this for rigourous error estimation
but we do enjoy the high accurary in many nice examples.
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