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Abstract

In this paper, we contribute higher order operator-splitting method improved by Zassen-
haus product. We apply the contribution to classical and iterative splitting methods. The
underlying analysis to obtain higher order operator-splitting methods is presented. While
applying the methods to partial differential equations, the benefits of balancing time and
spatial scales are discussed to accelerated the methods.

The verification of the improved splitting methods are done with numerical examples. An
individual handling of each operators with adapted standard higher order time-integrators is
discussed. Finally we conclude the higher order operator-splitting methods.
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1 Introduction

The motivation to study the splitting methods are coming from model equations which simulate
bio-remediation [2] or radioactive contaminants [9], [8].

The mathematical equations are given by

∂t R c + ∇ · (vc − D(c)∇c) = f(c) , (1)

f(c) = cp , chemical-reaction and p > 0 (2)

f(c) =
c

1 − c
, bio-remediation (3)

The unknown c = c(x, t) is considered in Ω × (0, T ) ⊂ IRd × IR, the space-dimension is given
by d . The Parameter R ∈ IR+ is constant and is named as retardation factor. The other
parameters f(c) are nonlinear functions, for example bio-remediation or chemical reaction. D(c)
is the nonlinear diffusion-dispersion tensor and v is the velocity.

The aim of this paper is to study a novel splitting method which improve operator splitting
methods. By weighting methods which embed the so called is Zassenhaus product, see [23], we
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improve the initial and starting conditions of the splitting process. To apply the methods, the
discretization for the time-scales is done by combining explicit and implicit methods. The main
advantage is using standard implicit and explicit Runge-Kutta or BDF-method and embed this
methods in an iterative solver.

For the iterative operator-splitting methods, the delicate problem of low convergence (see
[26]) can be improved by starting with sufficient accurate initial conditions. This is satisfied by
weighting the method with the help of the Zassenhaus products.

2 Operator splitting methods

We focus our attention on the case of two linear operators (i.e we consider the Cauchy problem):

∂c(t)

∂t
= Ac(t) + Bc(t), with t ∈ [0, T ], c(0) = c0, (4)

whereby the initial function c0 is given and A and B are assumed to be bounded linear operators
in the Banach-space X with A,B : X → X. In realistic applications the operators corresponds
to physical operators such as convection and diffusion operators. We consider the following op-
erators splitting schemes:

1. Sequential operator-splitting: A-B splitting

∂c∗(t)

∂t
= Ac∗(t) with t ∈ [tn, tn+1] and c∗(tn) = cn

sp (5)

∂c∗∗(t)

∂t
= Bc∗∗(t) with t ∈ [tn, tn+1] and c∗∗(tn) = c∗(tn+1), (6)

for n = 0, 1, ..., N − 1 whereby cn
sp = c0 is given from (4). The approximated split solution at the

point t = tn+1 is defined as cn+1
sp = c∗∗(tn+1).

2. Strang-Marchuk operator-splitting : A-B-A splitting

∂c∗(t)

∂t
= Ac∗(t) with t ∈ [tn, tn+1/2] and c∗(tn) = cn

sp (7)

∂c∗∗(t)

∂t
= Bc∗∗(t) with t ∈ [tn, tn+1/2] and c∗∗(tn) = c∗(tn+1/2) , (8)

∂c∗∗∗(t)

∂t
= Ac∗(t) with t ∈ [tn+1/2, tn+1] and c∗∗∗(tn + 1/2) = c∗∗tn+1, (9)

where tn+1/2 = tn + 0.5τn, and the approximated split solution at the point t = tn+1 is defined
as cn+1

sp = c∗∗∗(tn+1).

3. Iterative splitting with respect to one operator

∂ci(t)

∂t
= Aci(t) + Bci−1(t), with ci(t

n) = cn, i = 1, 2, . . . ,m (10)

4. Iterative splitting with respect to alternating operators
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∂ci(t)

∂t
= Aci(t) + Bci−1(t), with ci(t

n) = cn (11)

i = 1, 2, . . . , j ,

∂ci(t)

∂t
= Aci−1(t) + Bci(t), with ci+1(t

n) = cn , (12)

i = j + 1, j + 2, . . . ,m ,

In addition, c0(t
n) = cn , c−1 = 0 and cn is the known split approximation at the time level

t = tn. The split approximation at the time-level t = tn+1 is defined as cn+1 = c2m+1(t
n+1).

(Clearly, the function ci+1(t) depends on the interval [tn, tn+1], too, but, for the sake of simplicity,
in our notation we omit the dependence on n.)

3 Higher Order Operator Splitting Methods

Often standard splitting methods have the problem to be less effective in the rate of the conver-
gence and CPU times.

Here we propose the followings to overcome these difficulties:

• Initialization: Improve the starting conditions via Zassenhaus product formula,

• Accelerated the subproblems via Weighted Polynomials,

• Extended operator Splitting methods via Zassenhaus product formula

3.1 Classical Operator Splitting Errors

The main problem is the initialization.
Often the c0(t) = c(tn) or c0(t) = 0 are to fare from the result, see

||c − c0|| ≤ err (13)

where err is a given starting error.
By the way the standard initialization errors are

||c(t) − cn|| ≤ ||(exp((A + B)t) − I)cn|| (14)

||c(t) − 0|| = || exp((A + B)t)cn|| (15)

and are of zero order and to large at all.
Here the ideas of prestepping methods,e.g. A-B splitting or Strang splitting as first or second

order exponential splitting schemes can reduce the initial error.
See for the A-B splitting we have global a first order scheme

c0(t) = exp(At) exp(Bt)cn, (16)

||c(t) − c0(t)|| ≤ O(t2) (17)

where for the Strang or A-B-A splitting we have global a second order scheme

c0(t) = exp(At/) exp(Bt) exp(A/2t)cn, (18)

||c(t) − c0(t)|| ≤ O(t3) (19)
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3.2 Higher order A-B splitting by Initialization

In this subsection, we improve the order of the A-B splitting via Zassenhaus product formula as
follows:

Theorem 3.2.1 We solve the initial value problem (5) and (6). We assume bounded and con-
stant operators A and B.

The consistency error of the A-B splitting is O(t), then we can improve the error of the A-B
splitting scheme to O(tp), p > 1 by improving the starting conditions c0 as

c0 = (πp
j=2 exp(Cjt

j))c0

where Cj is called as Zassenhaus exponents given in [24], thus local splitting error of A-B splitting
method can be read as follows

ρn = (exp(τn(A + B)) − exp(τnB) exp(τnA))cn
sp (20)

= CT τp+1
n + O(τp+2

n )

where CT is a function of Lie brackets of A and B.

Proof 3.2.1 Let us consider the subinterval [0, t], where τ = t, the solution of the subproblem
(5) is:

c∗(t) = exp(At)c0 (21)

after improving the initialization we have

c∗(t) = exp(At)(πp
j=2 exp(Cjt

j))c0 (22)

the solution of the subproblem (6) becomes

c∗∗(t) = exp(Bt) exp(At)(πp
j=2 exp(Cjt

j))c0 (23)

= exp((B + A)t)c0 + O(tp+1)

with the help of the Zassenhaus product formula.

Remark 3.2.2 For example, the second order A-B splitting after improving the initialization is

c∗∗(t) = exp(Bt) exp(At) exp(−
1

2
[B,A]t2)c0 (24)

= exp((B + A)t)c0 + O(t3)

and the third order A-B splitting after improving the initialization is

c∗∗(t) = exp(Bt) exp(At) exp(−
1

2
[B,A]t2) exp((

1

6
[B, [B,A]] −

1

3
[A, [A,B]])t3)c0 (25)

= exp((B + A)t)c0 + O(t4)
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3.3 Higher order A-B-A splitting by accelerating the subproblems via Weighted

Polynomials

In literature, Strang-Marchuk or A-B-A splitting is given as

exp(At/2) exp(Bt) exp(At/2) = exp((A + B)t) + O(t3)

since we would like to use the Zassenhaus product formula given as

exp((A + B)t) = exp(At) exp(Bt)(πp
j=2 exp(Cjt

j)) + O(tp+1) (26)

in order to obtain higher order A-B-A splitting, we present the idea of the Weighted Polynomials
in the following theorem:

Theorem 3.3.1 We solve the initial value problem (7), (8) and (9) on the subinterval [0,t]. We
assume bounded and constant operators A and B.

The consistency error of the A-B-A splitting is O(t2), then we can improve the error of the
A-B-A splitting scheme to O(tp), p > 2 by applying the following steps:

• Step 1: Improve the starting conditions c∗(0) = c0 as

c∗(0) = (πp
j=2 exp(Cjt

j))c0

where Cj is called as Zassenhaus exponents given in [24],

• Step 2 : Accelerate c∗∗(0) as

c∗∗(0) = (exp(−At))c∗(t/2),

• Step 3: Accelerate c∗∗∗(t/2) as

c∗∗∗(t/2) = (exp(At/2))c∗∗(t),

thus the order of the A-B-A splitting method can be read as follows

exp(At/2) exp(Bt) exp(At/2) = exp((A + B)t) + O(tp+1).

Proof 3.3.1 Let us consider the subinterval [0, t], the solution of the subproblem (7) is:

c∗(t) = exp(At)c0 (27)

after improving the initialization we have

c∗(t) = exp(At)(πp
j=2 exp(Cjt

j))c0. (28)

Next accelerate c∗(t) as

c∗(t) = exp(−At)c∗(t) (29)

the solution of the subproblem (8) becomes

c∗∗(t) = exp(Bt)c∗(t/2) (30)

= exp(Bt) exp(−At/2) exp(At/2)(πp
j=2 exp(Cj(t/2)

j))c0 (31)
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or

c∗∗(t) = exp(Bt) (πp
j=2 exp(Cj(t/2)

j))c0 (32)

since [-A/2, A/2]=0. Finally, the acceleration of c∗∗(t) is given by the equation

c∗∗(t) = exp(At/2) exp(Bt) (πp
j=2 exp(Cj(t/2)

j))c0, (33)

then the solution of the subproblem (8) becomes

c∗∗∗(t) = exp(At/2) exp(At/2) exp(Bt) (πp
j=2 exp(Cj(t/2)

j))c0 (34)

or

c∗∗∗(t) = exp(At) exp(Bt) (πp
j=2 exp(Cj(t/2)

j))c0 (35)

since [A/2, A/2]=0. This can be rewritten as

c∗∗∗(t) = exp(At) exp(Bt) (πp
j=2 exp(C̃j(t)

j))c0 (36)

= exp((A + B)t) + O(tp+1). (37)

where C̃p = 1
2p Cj with the help of the Zassenhaus product formula.

3.4 Higher order A-B-A splitting based on Zassenhaus product formula

In this subsection, we first derive the Zassenhaus exponents by using the same approach given [24]
for the A-B-A splitting. Again, using the formal power series expansion of exponential function,
the Zassenhaus product for two non-commutative variables A t and B t for A-B-A splitting may
be written as

e(A+B)t =
∞

∑

k=0

1

k!
(A + B)ktk = I + (A + B)t + (

1

2
A2 +

1

2
AB +

1

2
BA +

1

2
B2)t2 + .... (38)

= (I +
At

2
+

A2t2

8
+ ...)(I + Bt +

B2t2

2
+ ...)(I +

At

2
+

A2t2

8
+ ...)

∞
∏

n=3

(eDntn)(39)

= e
At
2 eBe

At
2 eD3t3eD4t4 .... (40)

Our aim is to compute the polynomials Dn which are function of commutators [., [[., ]]]. One
can find these polynomials by comparison method or Witschel’s method. But, we use the ideas
and notations which were first presented in Ref. [24] as follows:

Let τ1, ...τn be arbitary commutative variables and let J = (Jij), K = (Kij), and L = (Lij)
be three (n + 1) × (n + 1) matrices defined by Jij = 0, Kij = 0 and Lij = 0 for i > j and

Jij =
1

(j − i)!
.

j−1
∏

k=i

(1 + τk), Kij =
(−1)(i+j)

(j − i)!
and Lij =

(−1)(i+j)

(j − i)!

j−1
∏

k=i

τk for i ≤ j

Furthermore, they define the (n + 1) × (n + 1) matrices P and Q by

Pij = δi+1,j and Qij = δi+1,jτi

where δi,j is Kroneckerdelta. The operator U is defined in Ref. [24] but a = At, b = Bt, cn = Dntn

We state the following corollary:
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Corollary 3.4.1 The Zassenhaus exponent c3 defined in Eq. (40) is obtained in terms of the
4 × 4 matrices L,K,H where H = exp(1/2P + Q + 1/2P ), K = exp(−1/2P ) and L = exp(−Q)
as c3 = U(K.L.K.H)1,4. For n > 2, the Zassenhaus exponents ck is given in terms of the
corresponding (n + 1) × (n + 1) matrices as

ck = U((e−Ck−1 ........e−C3 .K.L.K.H)1,n+1). (41)

Here, Cm(1 < m < n) are the the Zassenhaus exponents written in terms of the (n + 1)× (n + 1)
matrices P and Q, and the index (1,n+1) indicates the upper right element of a matrix.

Proof 3.4.1 Each element n ∈ N can ce written as

eP+Q = eP/2.eQ.eP/2
n

∏

i=3

(eCi), (42)

Therefore one obtains

eCn = e−Cn−1 ....e−C3 .eP/2.eQ.eP/2.eP+Q. (43)

The rest of the proof is the same as in Ref. [24].

Corollary 3.4.2 The Zassenhaus exponent D3 given in Eq. (39) can be found as

D3 =
1

24
[B, [B,A]] −

1

12
[A, [A,B]] (44)

by comparing the exact solution given in (38) with the expansion up to the order O(t4) given Eq.
(40). Thus if the weight w3 = I + D3t

3 is chosen and multiplied by the initial condition, the
order of the A-B-A splitting becomes O(t3).

Proof 3.4.2 The splitting error of Strang splitting or A-B-A splitting is

ρ = exp((A + B)t) − exp(At/2) exp(Bt) exp(At/2) (45)

= (
1

24
[B, [B,A]] −

1

12
[A, [A,B]])t3 (46)

The coefficient of t3 given in the expansion

e(A+B)t = e
At
2 eBe

At
2 eD3t3 + O(t4) (47)

is

D3 +
(A + B)3

3!
− ρ,

thus if we choose D3 = ρ, the splitting error becomes O(t3).

3.5 Higher order iterative splitting based on Zassenhaus product formula

Waveform relaxation (one operator):

Theorem 3.5.1 We solve the initial value problem (10). We assume bounded and constant
operators A1, A2. The initial step is given as c1(t) = exp(At)c0.

Then we can improve the error of the iterative scheme to O(ti+j) by multiplying a weighted
function with the kernel ωj(t) = exp(Bt)Πi

k=2 exp(ĉkt
k) + O(tj) to ci−1(t), where ĉk are the so

called Zassenhaus exponents, see [24].
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Proof 3.5.1 The iterative scheme is for the step c2 as:

ci = exp(At)c0 +

∫ t

0
exp(A(t − s))B exp(As)c0ds (48)

where c1(t) = exp(As)c0.
We improve the method as:

c̃1(t) = exp(At) exp(Bt)Πi
k=2 exp(ĉkt

k)c0 (49)

where we obtain the exact solution:

ci = exp(At)c0 +

∫ t

0
exp(A(t − s))B exp((A + B)s)c0ds, (50)

based on the formulation of the Zassenhaus product formula (see [23])

exp((A + B)t) = exp(At) exp(Bt)Π∞
k=2 exp(ĉktk), (51)

we can derive the weights are given as:

wi(t) = exp(Bt) exp(ĉ2) exp(ĉ3)..... exp(ĉi) + O(ti+1) (52)

where ĉi, i = 2, ....∞ are Zassenhaus exponents as follows:

ĉ2 = −1/2[A,B] (53)

ĉ3 = (−1/3[B, [B,A]] + 1/6[A, [A,B]])

ĉ4 = (−1/24[[[A,B], A], A] − 1/8[[[A,B], A], B] − 1/8[[[A,B], B], B])

Thus some examples for weights are given as:

w1(t) = I + Bt (54)

w2(t) = I + Bt + B2t2/2 − 1/2[A,B]t2 (55)

w3(t) = I + Bt + B2t2/2 − 1/2[A,B]t2 (56)

+B3/3t3 + (−1/3[B, [B,A]] + 1/6[A, [A,B]])t3 − 1/2B[A,B]t3

w4(t) = I + Bt + B2t2/2 − 1/2[A,B]t2 (57)

+B3/3!t3 + (−1/3[B, [B,A]] + 1/6[A, [A,B]])t3 − 1/2B[A,B]t4

+B4/4!t4 + (−1/24[[[A,B], A], A]

−1/8[[[A,B], A], B] − 1/8[[[A,B], B], B])t4

(−1/3B[B, [B,A]] + 1/6B[A, [A,B]])t4 − (
B2

4
[A,B])t4 + 1/4[A,B]2t4 (58)

Same can be done for the iterative splitting method.

3.5.1 Higher order Iterative Splitting with respect alternating operators based
Comparison or Witschel’s Method

Consider the Equation (11) and (12), the exact solution of the iteration can be found by using
variation of constant formula as follows:

ci(t) = exp(At)c0 + exp(At)

∫ t

0
exp(−As)Bci−1 ds (59)
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ci+1(t) = exp(Bt)c0 + exp(Bt)

∫ t

0
exp(−Bs)Aci ds (60)

Assume that ci−1 = 0 then
for i=1,

c1(t) = exp(At)c0 (61)

for i=2,

c2(t) = exp(Bt)(I +

∫ t

0
exp(−Bs)A exp(As) ds)c0 (62)

= exp(Bt)(I +

∫ t

0
(I − Bs)A(I + As) ds)c0

= exp(Bt)(I +

∫ t

0
(A + A2s − ABs + O(s2) ds)c0

= exp(Bt)(I + At +
A2t2

2
−

ABt2

2
)c0 + O(t3)

= (I + Bt +
B2t2

2
)(I + At +

A2t2

2
−

ABt2

2
)c0 + O(t3)

= (I + (A + B)t +
B2t2

2
+ BAt2 +

A2t2

2
−

ABt2

2
)c0 + O(t3)

= exp(At + Bt) + O(t2).

In next theorem, we show how to increase the order of the accuracy with respect to the Weighted
Polynomials.

Theorem 3.5.2 There exists a Weighted Polynomial so that the order of the accuracy of iterative
splitting with alternating operators can be increased up to O(t3).

Proof 3.5.2 We give the proof by construction in the following steps:

• Step 1 : Start the initiation as ci−1 = 0

• Step 2 : Accelerate the c1 as c1 = (I + Wt)c1

• Step 3 : Compute c2 by using the Equation (60) as

c2(t) = exp(Bt)(I +

∫ t

0
exp(−Bs) exp(As)(I + Ws) ds)c0 (63)

= exp(Bt)(I +

∫ t

0
(I − Bs)A(I + As)(I + Ws) + O(s2) ds)c0

= exp(Bt)(I +

∫ t

0
(A + AWs − BAs + A2s + O(s2) ds)c0

= exp(Bt)(I + At +
AWt2

2
−

BAt2

2
+

A2t2

2
)c0 + O(t3)
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• Step 4 : Next expand exp(Bt) up to O(t3) ,

c2(t) = (I + Bt +
B2t2

2
)(I + At +

AWt2

2
−

BAt2

2
+

A2t2

2
)c0 + O(t3) (64)

= (I + (A + B)t +
B2t2

2
+ BAt2 +

AWt2

2
+

A2t2

2
)c0 + O(t3)

• Step 5 : Finally compare this with exact solution up to O(t3) to find the commutator and
w as follows. The exact solution of the problem is given by,

cexact = e(A+B)t (65)

= (I + (A + B)t + (
A2

2
+

AB

2
+

BA

2
+

B2

2
)t2)c0 + O(t3)

and the error can be found by subtracting the Equation (65) from (64) as follows

|cexact − c2| ≤ (
AB

2
−

AW

2
)O(t2) + O(t3), (66)

From this expression if W = B, the order of the accuracy of iterative splitting with respect to
alternating operators can be increased up to O(t3), thus we can find the Weighted Polynomial as
follows:

w1 = I + Bt. (67)

Note that this is the same as the weight found in the Equation (54). We proved that the order
of the accuracy of iterative splitting with respect to alternating operators can be increased up to
O(t3) via Weighted Polynomial defined in Equation (67), Therefore,

|cexact − c(i=2)| ≤ C.O(t3). (68)

where C is the function of Commutators.

Theorem 3.5.3 There exists a Weighted Polynomial so that the order of the accuracy of iterative
splitting with alternating operators can be increased up to O(t4) after the second iteration.

Proof 3.5.3 We give the proof by construction in the following steps:
Step 1 : Start the initiation as ci−1 = 0
Step 2 : Accelerate the c1 as c1 = (I + W1t + W2t

2)c1

Step 3 : Compute c2 by using the Equation (62) as

c2(t) = exp(Bt)(I +

∫ t

0
exp(−Bs)A exp(As)(I + W1s + W2s

2) ds)c0 (69)

= exp(Bt)(I +

∫ t

0
(I − Bs +

B2s2

2
)A(I + As +

A2s2

2
)(I + W1s + W2s

2) + O(s2) ds)c0

= exp(Bt)(I + (

∫ t

0
(A + (A2 + AW1 − BA)s) ds

+

∫ t

0
(
A3

2
+ AW1A − BA2 + AW2 − BAW1 +

B2A

2
)s2) ds)c0 + O(s4)
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After integrating the the expression in Equation (69) on the right, c2(t) becomes

c2(t) = exp(Bt)(I + At + (A2 + AW1 − BA)
t2

2
(70)

+(
A3

2
+ (A2W1 − BA2 + AW2 − BAW1 +

B2A

2
)
t3

3
)c0 + O(t4)

Step 4 : Next expand exp(Bt) up to O(t3) and insert this into equation (69)

c2(t) = (I + Bt +
B2t2

2
+

B3t3

3
)(I + At + (A2 + AW1 − BA)

t2

2
+ (71)

(
A3

2
+ A2W1 − BA2 + AW2 − BAW1 +

B2A

2
)
t3

3
)c0 + O(t4)

Step 5 : Finally by comparing this with exact solution up to O(t3), which is given by

cexact = e(A+B)t (72)

= (I + (A + B)t + (
A2

2
+

AB

2
+

BA

2
+

B2

2
)t2

+(
A3

6
+

A2B

6
+

ABA

6
+

AB2

6
+

BA2

6
+

BAB

6
+

B2A

6
+

B3

6
))c0 + O(t4),

then we find a weight function w2 = I + W1t + W2t
2 where

W1 = B, W2 =
B2 − [A,B]

2
.

Note that this is the same as the weight found in the Equation (55). Finally, by putting these
values into the error which can be found by subtracting the Equation (72) from (71), we have

|cexact − c2| ≤ D.O(t4), (73)

where D is the function of Commutators.

4 Extended splitting method based on Zassenhaus-formula

The standard exponential splitting methods are based on the following decomposition idea:

exp((A + B)t) = πj
i=1 exp(aiAt) exp(biBt) + O(tj+1). (74)

The extension to the exponential splitting schemes are given as:

exp((A + B)t) = πj
i=1 exp(aiAt) exp(biBt)πm

k=j exp(Cjt
j) + O(tm+1). (75)

where Cj is a function of Lie brackets of A and B.

Theorem 4.0.4 The initial value problem (10) is solved by classical exponential splitting schemes.
We assume bounded and constant operators A1, A2.

Then we can find extensions based on the Zassenhaus formula given as

exp((A + B)t) = πj
i=1 exp(aiAt) exp(biBt)πm

k=j exp(Cjt
j) + O(tm+1). (76)

where Cj is a function of Lie brackets of A and B.



5 BALANCING OF TIME- AND SPATIAL DISCRETIZATION 12

Proof 4.0.4 1.) Lie-Trotter splitting:
For the Lie-Trotter splitting there exists coefficients with respect to the extension:

exp((A + B)t) = exp(At) exp(Bt)Π∞
k=2 exp(Ckt

k), (77)

where the coefficients Ck are given in [24].
Based on an existing BCH formula of the Lie-Trotter splitting one can apply the Zassenhaus

formula.
2.) Strang Splitting:
A existing BCH formula is given as:

exp(At/2) exp(Bt) exp(At/2) = exp(tS1 + t3S3 + t5S5 + . . .)), (78)

where the coefficients Si are given as in [17].
There exists an Zassenhaus formula based on the BCH formula.
See:

exp((A/2 + B/2)t) = Π∞
k=2 exp(C̃kt

k) exp(A/2t) exp(B/2t), (79)

and

exp((B/2 + A/2)t) = exp(B/2t) exp(A/2t)Π∞
k=2 exp(Ckt

k), (80)

then there exists a new product:

Π∞
k=3 exp(Dktk) = Π∞

k=2 exp(C̃kt
k)Π∞

k=2 exp(Ckt
k), (81)

with one order higher, see also [28].
3.) General exponential splitting:
Same can be done with the general exponential splitting schemes.

5 Balancing of Time- and spatial discretization

Splitting methods are important for partial differential equations, because of reducing computa-
tional time to solve the equations and accelerating the solver process, see [13].

Here additional balancing is taken into account, because of the spatial step.
The following theorem, addresses the delicate situation of time- and spatial steps and the fact

of reducing the theoretical promised order of the scheme:

Theorem 5.0.5 We solve the initial value problem by applying iterative operator splitting schemes
(11) and (12). We assume bounded and constant operators A, B. While iterating i-time with
A and j-time with A2 the theoretical order is given as O(ti+j) The initial step is given as
c1(t) = exp(At) exp(Bt)c0.

Then we reduce order of the iterative scheme to O(ti), while norm of B is larger or equal
than O(1

t ) same is also with the operator A.
So the balancing below the so called CFL condition is important to preserve the order of the

splitting method.
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Proof 5.0.5 The theoretical order of the iterative splitting scheme is given as:
||ci+j − c|| ≤ ||A|| ||B||

; ti+j + O(ti+j+1)
where ||A|| = ρ(A) is the spectral or the maximum eigenvalue of operator A and ||B|| = ρ(B)

is the spectral or the maximum eigenvalue of operator B.
Based on the spatial discretization we have the following eigenvalues:
ρ(A) = a1

∆xp

ρ(B) = a2
∆xq

where we have a p-th order spatial discretization of A and a q-th order spatial discretization
of B, a1, a2 are the diagonal entries of the finite difference stencil, see [14].

If we assume to have a CFL-condition ≥ 1 for the operator B we obtain:

a1

∆xp
t ≥ 1 (82)

and therefore:

||A2||
jtj = O(1). (83)

We lost the order for operator B and reduce to the order of the operator A.
Same can be done for operator A.
Therefor we have a necessary restriction to preserve the order of the splitting method given

as:
O(1) ≥ ρ(A) ≥ O(1

t ).
We preserve the order:

||B||jtj = O(tj). (84)

Remark 5.0.6 By using implicit method for the discretization scheme, we did not couple the
time-scale and the spatial scale by a CFL condition and are so fare independent of the reduction
but taken into account less accurate results.

6 Numerical Examples

We consider the following test problems in order to verify our theoretical findings in the previous
sections.

6.1 First Test- Example : Eigenvalue Problem

We first deal with the following ordinary differential Equation

∂c(t)

∂t
= λc(t)with t ∈ [0, T ], c(0) = 1. (85)

We divide our ODE’s in subequations after applying the one operator splitting method as fol-
lowing

∂ci(t)

∂t
= −λ1ci(t) + λ2ci−1(t), with ci(t

n) = cn, i = 1, 2, . . . ,m (86)

where λ1 = −1 and λ2 = 2, initial condition is c(0) = 1. The exact solution of the problem
is cexact = ex. We applied the midpoint rule to find the approximate solution. Since there is no
splitting error we have following proposition:
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Proposition 6.1.1 The order of the accuracy of the iterative splitting (10) is two after applying
the midpoint to each sub equations.

Proof 6.1.1 We obtain following finite difference approximation after discretization the Equa-
tion (10) by midpoint method on [0, τ ],

ci(τ) = χ1c
0 + χ2

τ

2
λ2(ci−1(0) + ci−1(τ))(τ) i = 1, 2, . . . ,m (87)

where χ1 is defined as follows if |λ1
2 τ | < 1,

χ1 =
1 − λ1

2 τ

1 + λ1
2 τ

(88)

= 1 − (λ1τ) +
λ2

1τ
2

2
+ O(τ3), (89)

= e−λ1τ + O(τ3) (90)

and Pade Approximation of the e−λ1τ up to the order O(τ3) and χ2 is defined as follows if
|λ1

2 τ | < 1

χ2 =
λ2

τ
2

1 + λ1τ
2

(91)

=
λ2τ

2
−

λ1λ2τ
2

4
+ O(τ3), (92)

assume that ci−1 = 0, by inserting this into Equation (87), we have for i= 1,

c1(τ) = χ1c
0 (93)

(94)

for i=2,

c2(τ) = (χ1 + χ2(1 + χ1))c
0 (95)

We can easily see that this approximation does not give the exact solution up to the second
order, then we need to compute next iteration as follows,

c3(τ) = (χ1 + χ2(1 + (χ1 + χ2(1 + χ1))))c
0 (96)

= χ1(1 + χ1
−1χ2(1 + (χ1 + χ2(1 + χ1))))c

0 (97)

after expanding the terms up to third order we may see that following result

c3(τ) = e(−λ1+λ2)τ + O(τ3). (98)

In the first experiment, we exhibit the solution of the eigenvalue problem by using the weight
in Equation (54) as w = 1 + τλ2, since W = B = λ2. The Figure (1) shows that the same order
of accuracy can be reached by using the less iteration via Weighted Polynomial.
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Figure 1: Comparison of the solutions obtained by midpoint method for different number of
iterations and iteration with weight

6.2 Second Test-Example: Matrix Problem

We deal with the following problem:

∂u(t)

∂t
=

(

0 1
1 0

)

u (99)

with the initial conditions u0 = (1 − 1) on the interval [0, T].
The analytical solution is given by :

u(t) =

(

e−t

et

)

(100)

We split our linear operators into two operators by setting:

∂u(t)

∂t
=

(

2 −1
−1 0

)

u +

(

−2 2
2 0

)

u (101)

Not that the matrices are not commute. For integration constants we use a step size of
h = 10−2. We apply the third order Runge-Kutta method to our iterative scheme with respect
to the one operator. We compare the first component of the solution obtained from weighted
and without weighted iterative scheme with exact solution in Figure 2.

In the Figure (3), we show the rate of convergence on [0,△t] obtained from weighted and
without weighted iterative scheme.

In Figures (4) and (5), we compare the different weight polynomials, one term weight we
mean w1 = I + Bt, two term weight we mean

w2 = I + Bt + (B2 − [A,B])
t2

2

for dt = 0.04 and dt = 0.02, respectively for alternating operator splitting.
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Figure 2: Comparison of the solutions of matrix problem by one-operator splitting solved by the
third order Runge-Kutta method with weight or without weight for dt=0.01.
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Figure 3: Rate of the convergency of the Matrix Problem solved one-operator splitting solved by
the third order Runge-Kutta Method.
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Figure 4: Comparison of the solutions of Matrix Problem obtained by iterative-splitting method
solved the third order Runge-Kutta method with weight, without weight, one term weight, two
terms weight for dt=0.04.
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Figure 5: Comparison of the solutions of Matrix Problem obtained by iterative-splitting method
and the third order Runge-Kutta method with weight, without weight, one term weight, two
terms weight for dt=0.02
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Figure 6: Comparison of the solutions of Matrix Problem obtained by Lie-Trotter splitting
solved by fourth order Runge-Kutta Method without weight , one term weight,two term weight
for dt=0.01.
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Figure 7: Comparison of the errors for Matrix Problem obtained by Lie-Trotter splitting solved
by fourth order Runge-Kutta Method without weight , one term weight,two term weight for
dt=0.01.
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errL∞ errL1

Lie Trotter Splitting Without w 0.1194 0.0060
With one w 0.0292 0.0014
With two w 0.0284 0.0013

Table 1: Comparison of errors for matrix problem solved by Lie-Trotter Splitting and Runge
-Kutta 4th-order method
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1

Figure 8: Comparison of the solutions obtained by Strang splitting solved fourth order Runge-
Kutta Method without weight , one term weight for dt=0.01

Next, We apply fourth order Runge-Kutta method with Lie-Trotter Splitting to the same
problem and compare the solutions without weight, one term weight and two term weight. Results
are given in the following figures.

In the following Table, we used the weight obtained in Corollary 3.4.2 for Strang Splitting
solved by fourth order Runge-Kutta Method :

errL∞ errL1

Strang Splitting Without w 0.0055 2.7104e-004
With one w 0.0051 2.3562e-004

Table 2: Comparison of errors for Matrix Problem with Strang Splitting and Runge -Kutta 4th
order method for dt = 0.01.

6.3 Third Test-Example: Hyperbolic Equation

We consider the following test problem:

ut + aux − bu = 0 (102)
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Figure 9: Comparison of the errors for Matrix problem obtained by Strang splitting solved by
fourth order Runge-Kutta Method without weight , one term weight for dt=0.01

where (x, t) ∈ [0, 20] × [1900, 2000] , R = 1, v = 0.001 , D = 0.0001 and λ = 10−5 with exact

solution u(x, t) = 1
2
√

DΠt
e

−(x−vt)2

4DΠt e−λt and initial conditions ,boundary conditions are taken from

exact solution.
Comparison of errors with Iterative splitting solved by Trapezoidal rule for space discretiza-

tion, h = 0.02 and time discretization dt = 0.01 is exhibited in Table (3) for hyperbolic test
problem.

errL∞ errL1

Iterative Method Without w 0.0284 0.0216
w1 0.0072 0.0025
w2 0.0048 0.0023

Table 3: Comparison of errors for Hyperbolic Problem with Iterative splitting solved by Trape-
zoidal rule for h = 0.02 and dt = 0.01.

The L∞ norm is given by

errL∞ := max(max(|u(xi, yj, t
n) − uanaly(xi, yj, t

n)|))

.
The numerical convergence rate is given by

errp :=
ln(errL∞(△t1)/errL∞(△t2))

ln(△t1/△t2)
(103)
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Figure 10: Comparison of the solutions of Matrix Problem with Strang Splitting solved by fourth
order Runge -Kutta with weight, without weight, one term weight for dt=0.1

In Table (6.3), the rate of the convergence of iterative splitting solved by trapezoidal rule for
hyperbolic Equation is exhibited.

Convergence Rate for iterative Splitting Without w 0.5883

w1 1.7843

w2 2.6630

Table 4: Rate of convergence with L∞ norm when △t1 = 0.01 and △t2 = 0.02

Convergence Rate Without w -0.3370

w1 1.2630

w2 1.4537

Table 5: Rate of convergence with L1 norm when △t1 = 0.01 and △t2 = 0.02

6.4 Fourth Test-Example: Parabolic Equation

We consider the following test problem as final example:

Rut + vux − Duxx = −λu (104)

where (x, t) ∈ [0, 10] × [1900, 2000] , R = 1, v = 0.001 , D = 0.0001 and λ = 10−5 with

exact solution u(x, t) = 1
2
√

DΠt
e

−(x−vt)2

4DΠt e−λt and initial conditions ,boundary conditions are taken

from exact solution. Figure (11) exhibits the solution of the parabolic problem by iterative



7 CONCLUSION 22

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 
without w
exact
one term w

Figure 11: Comparison of the solutions of Parabolic Problem obtained by Iterative splitting and
fourth order Runge-Kutta Method without weight , one term weight for h=0.2 and dt=1.

splitting method solved by 4-th order Runge-Kutta method for without weight, w1, w2 given in
the Equations (54) and (55), respectively.

Errors computed by L∞ norm and L1 norm are presented in the next table.

errL∞ errL1

Iterative Method Without w 0.0574 1.2108
w1 0.0037 0.0569
w2 0.0037 0.0569

Table 6: Comparison of errors in Parabolic problem measured by L∞ norm and andL1 norm
after applying Iterative splitting solved by fourth order Runge-Kutta Method for h = 0.2 and
dt = 1.

The errors of solutions of parabolic problem using Iterative splitting solved by fourth order
Runge-Kutta for without weight, w1 are presented in Figure (12).

The errors of solutions of parabolic problem using Iterative splitting solved by fourth order
Runge-Kutta for without weight, w1, w2 are presented in Figure (13).

7 Conclusion

In the paper we presented the benefits of improving standard splitting methods with weighting
schemes. Here the benefit of accelerating the wel-known Lie-Trotter and Strang splitting methods
by the Zassenhaus product help to understand a general framework. By adding additional terms
the starting conditions of the splitting methods improved and all weighted methods achieved more
accurate results. The applications in parabolic equations shows the verification of the theoretical
results. In future, we present a frame work for iterative and non-iterative operator-splitting



7 CONCLUSION 23

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

 

 
without w
one term w

Figure 12: Comparison of errors for Parabolic Problem obtained by Iterative splitting and fourth
order Runge-Kutta Method without weight , w1 when h=0.2 and dt=1.
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Figure 13: Comparison of errors for Parabolic Problem obtained by Iterative splitting and fourth
order Runge-Kutta Method without weight , w1, w2 for h=0.2 and dt=1.
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