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Abstract. We motivate our study by simulating the particle transport
of a thin film deposition process done by PVD (physical vapor deposition)
processes. In the paper we present several collision models for projectile
and target collisions in order to compute the mean free path and the
differential cross section (angular distribution of scattered projectiles)
of the scattering process. The detailed description of collision models
is of highest importance in Monte Carlo Simulations of high power im-
pulse magnetron sputtering and DC sputtering. We derive an equation
for the mean free path for arbitrary interactions (cross sections) that
include the relative velocity between the particles. We apply our results
to two major interaction models: hard sphere interaction & Screened
Coulomb interaction. Both types of interaction separates DC sputtering
from HIPPIMS. Further investigations presented in this paper involve
modifications of the scattering angle probability distribution due to ini-
tially moving background targets. In order to tackle this modification,
an appropriate Monte-Carlo-Markov-Chain approach is proposed.
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We motivate our studying on simulating thin film deposition processes that
can be done by sputtering processes, see [2]. In the last years, the research
in producing high temperature films by depositing of low pressure processes
have increased. Due to standard applications in deposing TiN and TiC, that are
immense, recently also deposition with new material classes known as MAX-
phases became be more and more important. The MAX-phase are nanolayered
terniar metal-carbides or -nitrids, where M is a transition metal, A is an A-
group element (e.g. Al, Ga, In, Si, etc.) and X is C (carbon) or N (nitrid). We
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present a particle tracking model for low temperature and low pressure plasma.
The aim of the first part is to check an easy model for the particle dynamics
within a magnetron sputtering process, which is ultimately designed in order
to create thin films of so-called MAX-phases at the workpiece. In this model a
purely Monte Carlo dominated approach is presented and some numerical results
are given. In the next part, the model is extended with respect to the pathway
model, see [7], to achieve the parameters of the model obtain the deposition rates
of the stoichiometry 3T i, Si and 2C.

This paper is outlined as follows: In Section 1 we define the reasons for our
investigation on the scattering process of hard spheres and Coulomb interactions.
In Section 2 we describe the concept of mean free path and derive on the basis
of kinetic theory an appropriate expression for the mean free path of an external
particle (projectile) that is probing into an ensemble of target particles, which
constitute an ideal gas (background gas). The main modification to standard
mean free paths is the implementation of initially moving targets. Subsequently
in Section 3 we study from first principles the concept of differential cross section
and perform again a modification of standard formulae to obtain a realistic scat-
tering angle probability distribution for the projectiles, which respects initially
moving targets. In 4 we present our Monte Carlo Method based on a Pathway
model[7] and perform several simulations to direct current (DC) and high power
pulsed magnetron sputtering (HIPPIMS). At the end in Section 5 we summarize
our results and show an outlook to our future work.

1 Motivation

The main reason for studying in detail the collision processes of elastic scattering
is the need for a reliable physical description of interactions between ions and a
plasma (background gas) in high power impulse magnetron sputtering processes
in order to create thin films by plasma techniques. The MAX phases experienced
a renaissance in the mid-1990s, when Barsoum synthesized relatively phase-pure
samples of the MAX phase T i3SiC2, and discovered a material with a unique
combination of metallic and ceramic properties: it exhibited high electrical and
thermal conductivity, and it was extremely resistant to oxidation and thermal
shock, which makes them very attractive for industrial applications like proton
exchange fuel cells (PEFC). These stoichiometries (MAX phases) are described
by a general formula: Mn+1AXn, whereby M is an early transition metal (Se,
Ti, V, Cr, Zr, Nb, Mo, Hf, Ta), A is an A-group element (Al, Si, P, S, Ga, Ge,
As, Cd, In, Sn, Ti, Pb), and X is either Carbon and/or Nitrogen. The different
MAX stoichiometries are often referred to as 211 (n = 1), 312 (n = 2). Recent
developments has led to a new method to evaporate thin films of MAX-phases
at a substrate (workpiece): high power impulse magnetron sputtering (HIPIMS
or HPPMS). The most important ingredient in sputtering processes is a plasma,
i.e. a partially ionized gas, which is electrically neutral at macroscopic scales. If
any material body like a substrate is immersed into a plasma it will acquire a po-
tential slightly negative with respect to ground. This effect is known as floating
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potential. The physical reason for this is the higher mobility of electrons than
that of ions. Hence, more electrons reach the substrate surface than ions. The
most sensitive quantity in sputtering processes (with respect to the experimental
setup: gas-pressure, temperature, target-material, etc.) is the sputtering yield,
which describes the ratio of atoms ejected from a target surface per incident ion.
The sputtering yield can take almost any value from 0.1 up to 10. For reasons
of optimized production, one is generally interested in obtaining as high values
for the sputtering yield as possible. In order to obtain a well defined stoichio-
metric at the substrate, one has to take transport mechanism of the sputtered
particles within the plasma into account. This can be done within a macroscopic
description of the transport phenomena, i.e. solution of the advection-diffusion
equation, or at a microscopic scale, via Monte-Carlo simulations of the transport
phenomena. This paper deals almost exclusively with the last approach, whereby
the ultimate goal of our work will be in future to link both approaches to each
other (this will be presented in future papers).

2 Collision Model : mean free path

The mean free path or average distance between collisions for a gas molecule
may be estimated from kinetic theory. If one assumes the gas be consisted of
hard spheres (non overlapping spheres), then the effective collision area is given
by

σ = π (d1 + d2)
2

= πD2. (1)

In time δt, the area sweep out the volume Vinteraction and the number of collisions
can be estimated from the number of target molecules (nV ) that are in that
volume.

Vinteraction = σvδt. (2)

λ =
|vproj |δt

VinteractionnV
=

|vproj |δt
πD2vδtnV

=
1

πD2nV
(3)

This expression for the mean free path is a good approximation, but it suffers
from a significant flaw - it assumes the target objects being at rest, which is of
course physically nonsense. By introducing an relative velocity between the gas
objects

vrel =
√

2v. (4)

Whereby the
√

2 results from the molecular speed distribution of a mono atomic
ideal gas (Maxwell Boltzmann distribution). We therefore have the expression

λ =
1√

2πD2nV

. (5)

The number of molecules per unit volume can be determined from the state
equation of the gas

pV = (1 + B1 + B2 + ...) RT. (6)
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If one assumes an ideal gas (non interaction and non overlapping gas particles)
one can neglect the so called higher Virial coefficients (B1 + B2 + ...). Inserting
the state equation for an ideal gas into 5, one gets

λ =
(1)RT√
2πD2NAp

. (7)

Whereby R is the gas constant and NA is Avogadro’s number. This is an ap-
proximation for mean free path for an atom/molecule of an ideal gas. In our
problem however, we have to calculate the mean free path of an external parti-
cle (projectile) which is not a member of the background gas (ideal gas). This
can be done by modifying the average relative velocity between projectile and
target. This is done in the next part.

2.1 The mean relative velocity between projectiles and targets

The background gas is assumed to be Maxwell distributed in velocity (this is
motivated by the assumption of an ideal gas). Because of the fact that the
background particles being a particle ensemble (with statistically distributed
velocities) one can just speak of a mean relative velocity < |vrel| >=< |vproj −
vtarget| >, which can be calculated via:

< |vrel| >=

∫ ∫ ∫

V

|vproj − vtarget|Z(vtarget)dvtarget. (8)

Where Z is the three-dimensional Maxwell distribution given by

Z(vtarget) = (A/π)
3/2 1

2
√

2
exp

(
−Avtarget

2
)
. (9)

With the abbreviation A = Mtarget/2kBT . A complete derivation of the solution
can be found in the appendix. The result is

|vrel| =

[(
s + 1

2s

)
erf(s) + 1√

π
exp

(
−s2

)]

3s
× |vproj |. (10)

With s = a
√

A (scalar) and a = |vproj|. We now want to discuss a few special
cases.
If the velocity of the projectile is very small |vproj | ≈ 0, then s ≈ 0 and therefore
the following approximation holds

vrel ≈ vtarget. (11)

This gives equation number 3 as expected.
If the targets objects are identical the projectile objects (same mass and same
mean velocity), then the following limit holds

|vrel| ≈ 1.41|vtarget|, (12)
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which gives the factor
√

2 ≈ 1.41 and leads to the mean free path of an element
of a mono atomic ideal gas (as expected). However, the general expression for
the mean free path of a projectile probing into an ideal gas with pressure Pgas

and temperature T is given by

λproj =
3

4π

s[(
s + 1

2s

)
erf(s) + 1√

π
exp (−s2)

] kBT

(Rion + Rtarget)
2 Pgas

. (13)

There are a few things to say about this expression. First, the main assumption
that the background gas (ensemble of target particles) is an ideal gas, is just valid
within the high vacuum regime, i.e. small target density. Second, the interaction
between the the projectile and target atoms are assumed of hard sphere type,
i.e. purely geometric interaction. If the projectile is a free particle between the
interactions, its Hamilton function reads

H =
p2

2Mproj
= E. (14)

In this case one can easily compute a = |vproj | =
√

2E
Mproj.

. It follows immedi-

ately

s = a
√

A =

√
E

kBT

√
Mtarget

Mproj
. (15)

In appropriate units (atomic units) the scalar s reads:

s = 107.7242

√
E[eV ]

T [K]

√
Mtarget

Mproj
. (16)

And therefore the mean free path in units of cm is given by:

λproj [cm] =
s[(

s + 1
2s

)
erf(s) + 1√

π
exp (−s2)

]

× 3.297cm · T [K]

(Rion[pm] + Rtarget[pm])2 Pgas[mbar]
. (17)

Eklund ([2]) used a formula for the mean free path of ions surrounded by an
ideal gas of pressure par given by

λ[cm] =
4.39cm · T [K]√(

1 + Mion

Mtarget

)
(rion[pm] + rtarget[pm])

2
ptarget[mbar]

. (18)

The following table shows the mean free path for ions at E = 3eV and T = 300K
and gas pressure p = 4 ∗ 10−3 mbar.
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Ion Eq. 17 Eq. 18
carbon (12) 12.96cm 15.18cm
silicon (28) 7.52cm 7.71cm

titanium (48) 5.03cm 4.55cm

In a sputtering process, the the ions obey a kinetic energy distribution as well
as an angular-distribution at the target. Because of different transport mecha-
nism, the ion looses some extend of their initial kinetic energy. An individual ion
within a sputter process can therefore be classified into three groups. First, the
ballistic group, which is excelled in the way that any member of the ballistic
group travels from the target to the substrate in a straight line, because no colli-
sions occur. The transition group is characterized by the observation that the
path of the ion is not a straight line and therefore the ions of this group undergo
some collisions but still retain some of their initial energy. The last group is the
thermalized or diffusive group, whereby any member of this group is charac-
terized by an complete loss of their initial kinetic energy. The motion of such an
ion is therefore described by a random walk. The typical distances between the
target and the substrate are of the order of 5− 15cm. Hence, at low argon pres-
sures we can classify carbon as more or less ballistic, and silicon and titanium
as transition or thermalized. One can also see that the formula used by Eklund
(2007) ([2]) is quite a good approximation, although it lacks from an energy de-
pendency of the mean free path with respect to the ion energy. There are several
attempts to achieve an energy dependency in the mean free path. But most of
them are more or less physical consistent. For example, Mahieu et al. (2006) [5]
use a formula, whereby the energy dependency is arrived by modifying the naive
mean free path by multiplying the naive formula with the ion energy. This is of
course unphysical because it implies a zero mean free path at very low ion ener-
gies and consequently the associated cross section is infinite. We hope that our
formula for the mean free path will positively accepted within the community
and might help to implement a realistic description of the interactions between
particles. In Fig. 1 one can see the results from Eq. 16 and 17 with respect to
the ion energy E (kinetic energy) at an argon pressure of p = 4 · 10−3mbar and
a constant temperature of T = 700K, whereby the following constants were used.

element atomic mass [u] atomic radius [pm]
Ar 39.948 71
C 12.0107 67
Si 28.0855 110
Ti 47.867 150

One can see that the mean free path decrease with increasing kinetic energy of the
ion and that the mean free path is almost constant at energies above 2 eV. The
likelihood of ions to scatter off argon targets is not constant. Because if the ions
scatter off an target it looses some amount of energy and therefore its mean free
path becomes smaller. This iterative procedure continue. It is therefore of highest
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Fig. 1. mean free path of projectiles @ argon targets (p = 4∗10−3mbar and T = 300K).

importance in situations in which one has to deal with multiple scattering. this
is the case if the sputter-target and the substrate are more than 4 cm removed.

3 Collision Model: differential cross section & angular

distribution

With the help of the mean-free-path λ one is able within a Monte Carlo ap-
proach to determine collision frequency. But several questions are unsolved by
the mean-free-path. If one is interested in a detailed description (kinematic) of
the scattering process, one has to work out the differential cross section. We pro-
pose two descriptions, both are within their limits applicable. In the first model,
we assume the target particle is initially at rest, whereby the second model will
loose this restriction generally.

3.1 Scatter off initially fixed targets

If the projectile velocity is much higher than the target velocity one can assume
the target atoms initially at rest. In describing the scattering process within
the Center-of-Mass-System (CMS) of both particles one can simplify the cal-
culations. The theoretical analysis of such a scattering process can be found in
almost any text book on classical mechanics like [3]. We use spherical coordi-
nates, whereby θ,φ describing the coordinates in the laboratory and Θ,Φ are the
coordinates in the CMS. The ratio

ρ =
Mproj

Mtarget

vt,1

vrel,1
(19)

can be used to connect the scattering angles in the laboratory and the CMS
(radial symmetric scattering potential)

cos θ =
cosΘ + ρ√

1 + 2ρ cosΘ + ρ2
. (20)
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The transformation from CMS coordinates to laboratory coordinates commands
the Jacobian as an extra factor:

σ(θ) = σ(Θ)
sin Θ

sin θ

∣∣∣∣
d(Θ, Φ)

d(θ, φ)

∣∣∣∣ . (21)

Because of Φ = φ the Jacobian reduces to

σ(θ) = σ(Θ)

∣∣∣∣
d cosΘ

d cos θ

∣∣∣∣ . (22)

With the help of Eq.20 one gets:

σ(θ) = σ(Θ)

(
1 + 2ρ cosΘ + ρ2

)3/2

1 + ρ cosΘ
. (23)

The energy transfer from projectile to target (elastic scattering) is given by:

∆E =
Eproj,new

Eproj,old
=

1 + 2ρ cosΘ + ρ2

(1 + ρ)
2 . (24)

The differential cross section is however not exactly the scattering angle distri-
bution, because we have to remember that the angular distribution is given by
an extra factor of sin θ followed by an integration over φ, i.e

σtotal =

∫ π

0

∫ 2π

0

sin θσ(θ)

4π
dφ

︸ ︷︷ ︸
probability distribution

dθ. (25)

Hard sphere Collision In order to model the transport mechanism within
a DC sputtering process, one recognizes experimentally that most of the back-
ground targets as well as the sputter particles are not ionized and therefore it
seems absolutely reasonable that the interaction of both projectile and targets
are purely geometric and can be modeled by a hard sphere interaction. The
Scattering angle ΘCMS in the Center-Of-Mass system of a binary collision can
in generally be calculated for any given interaction potential V (r) with the help
of:

ΘCMS = π − 2

∫ ∞

r0

(rφ(r))
−1

dr (26)

φ(r) =

(
r2

p2
− 1 − r2V (r)

1/2µv2
relp

2

)

µ is the reduced mass in the CMS system, i.e. µ = M1M2

M1+M2

and vrel the relative
velocity of the scattering partner. p is called the impact parameter. In Fig. 2 one
can see the scattering angle θ in the laboratory of several incident projectiles
at argon atoms (held at rest) and the maximal scattering angle θmax in the
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laboratory with respect to the mass ratio ρ. In the case of a hard sphere potential,
i.e.

V (r) =

{
∞, for r < R

0. for r ≥ R
, (27)

the integral can be computed analytically and the result is:

ΘCMS = 2 cos−1 (z). (28)

Whereby we have used the dimensionless parameter z = p/pmax = p/R with
R = R1 + R2 the radius of interaction. The impact parameter p is chosen to
be uniformly distributed between 0 and pmax, i.e. z ∈ U [0, 1]. In Fig. 2 one can
see the results from single binary collisions for the sputter species C,Si and Ti
within the framework of hard sphere collisions. One can see, that as long as the
projectile mass is smaller than the target mass all scattering angles are allowed.
However, this changes if the mass ratio becomes greater than 1. In this case only
a cone of scattering directions is allowed, whereby the opening angle of the cone
decreases with increasing mass ratio. In the case of titanium projectiles at argon
targets, only scattering angles between 0 and θmax ≈ 60 degrees are allowed.
Titanium projectiles are therefore subjected to forward scattering and the cone
angle is around 120 degrees. The above given approach is quite satisfactory if
one assumes high energetic projectiles (with respect to target velocity) and the
suppression of multi-scattering events. A proper description of the kinematic
should include the random motion of the target projectiles and therefore an
energy dependency for the differential cross section. The total cross section has
to be unchanged, because the total area per target cannot depend on the relative
velocity of the target and projectile, because the total cross section is an intrinsic
quantity.

Screened Coulomb collision Now we want to investigate the kinematics of
the scattering process whereby we assume a Coulomb like interaction between
the sputter particles and the gas atoms (neglecting interactions between the
sputter particles again). This is motivated by the experimentally fact, that in
High power impulse Magnetron sputtering processes a fraction of the background
gas as well as the sputtered particles are ionized and consequently the interaction
model should include long range interaction due to electrical repulsion between
both particles (ions). Our method of investigation is quite the same as in the
the previous (hard sphere) collision model. First we will specify the interaction
potential and after that we compute the scattering angle in the CMS system.
With the help of the scattering angle in the CMS we can compute the scattering
angle in the LAB frame and also the energy loss. We have chosen the following
screened interaction potential

V (r) =
Z1Z2k

r
exp (−r/a). (29)

Whereby Z1 and Z2 are the atomic numbers of the collision partners, r is the
radial distance between both partners, k is a constant (k = 1.44MeV fm) and a
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is the screening length given by

a =
a0√(√

Z1 +
√

Z2

) . (30)

With a0 = 0.53·10−10m the first Bohr radius of the hydrogen atom. For any given
scattering potential, the scattering angle in the CMS system can be computed
with the help of Eq. 26 . As we mentioned earlier in this paper, the integral can
just be solved analytically with respect to the hard sphere interaction and a pure
Coulomb interaction. However, we have chosen a screened Coulomb potential and
we must therefore evaluate the integral numerically. In order to reduce round off
errors we reformulate the integral (this procedure is motivated by [6]):

ΘCMS = 2Arccot

(
2χ2

exp (−1/z0)

)
+ 2χ0χ2

∫ z0

0

(
y
1/2
0 (z) − y1/2(z)

)
dz. (31)

Whereby we made us of:

χ0 :=
b

a
=

Z1Z2

√(√
Z1 +

√
Z2

)

ECMS [eV]
· 27.17

χ2 :=
p

b
=

p[10−10m]ECMS [eV]

Z1Z2
· 1

14.4

ECMS =

(
(1 + 1/2s)erf(s) + 1/

√
π exp

(
−s2

))2

(
1 +

Mproj

Mtarget

)
9s2

· Eproj

y0(z) = 1 − (χ0χ2)
2
z2 − χ0z exp (−1/z0)

y(z) = 1 − (χ0χ2)
2
z2 − χ0z exp (−1/z)

z = r/a (32)

Our procedure is then as follows: for a given impact parameter p in units of fm
we can solve the integral numerically for every sputtering species. Because is is
very time consuming we have done this for several impact parameter and every
species before the simulation and we have stored the results in a data file, which
is used during the simulation. During the Monte Carlo simulation an impact
parameter is chosen from a uniform distribution between zero and pmax whereby
we have chosen pmax = 4 · 10−10m, because for impact parameter greater than
pmax the scattering angle in the laboratory system is in general smaller than 0.1
degree. With the help of the numerical integration of Eq. 26 we can compute
the scattering angle in the CMS and therefor compute the scattering angle in
the laboratory system. Remind, that here we choose the impact parameter to be
uniformly distributed in the CMS system and not the scattering angle (as we did
in the hard sphere scattering). Remind also, that we have chosen our appropriate
relative velocity between projectiles and targets (the derivation can be found in
the appendix). In Figure 3 one can see the scattering angle of several species with
respect to a screened Coulomb interaction potential. Again, all scattering angles
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between zero and 180 degree are possible for projectiles with a mass smaller
than the target mass. For projectiles with a mass greater than the target mass
there exists a maximum scattering angle and therefore the scattering occurs
only with an scattering cone of finite opening angle, i.e. forward scattering in
the laboratory system will be preferred for titanium. In Fig. 3 one can see the
functional dependency of the scattering angle in the laboratory stem with respect
to the impact parameter as well as the relative probability distribution of the
scattering angle θLAB in the laboratory system.

3.2 Scatter off an initially moving target

The following approach was proposed by Arnold Russek in the year 1960. His
manuscript [4] is an inspiring piece of physical literature. Russek modifies the
differential cross section in quite the same manner as we did in the last para-
graph, i.e. the calculation of the Jacobian of the transformation from CMS into
the laboratory system. But in the case of initially moving targets the Jacobian
becomes very complicated. Averaging of all orientations and target speeds (with
respect to a velocity distribution f(vt) he wrote[4]:

σ(θ, T ) =

∫ ∞

0

f(vt)dvt

∫ π

0

sin α

2
dα

∫ 2π

0

1

2π

(
sinΘ

sin θ

∣∣∣∣
d(Θ, Φ)

d(θ, φ)

∣∣∣∣ σ(Θ)

)
dφ. (33)

If one assumes that the targets constitute an ideal gas then the velocity distri-
bution f(vt) is the three-dimensional Maxwell distribution. Russek derived an
analytic expression for the Jacobian in terms of two parameter ξ = vt/vp and
η = mp/mt. But as we said before in general the integrals on the right hand side
cannot be solved analytically.

Hard sphere interaction Russek [4] performed (and we checked his calcula-
tions) a Taylor expansion of the Jacobian in the case of slowly moving targets
and light projectiles, i.e. ξ ≈ 0 and η ≈ 0 for elastic hard sphere scattering. The
result is:

σ(T, θ)

R2
= 1 +

1

4
(3 cos(2θ) + 1)η2 + 2 cos(θ)η + ...

+δ

(
1

4
(3 cos(2θ) + 1)η3 +

1

4
(6 cos(2θ) + 2)η2 + cos(θ)η

)
. (34)

Whereby we made use of the scalar δ := (KBT ) /Ep. This is the differential cross
section in second order. Of course the total cross section should not be affected
by the relative velocity between the targets and projectiles.This can be checked
by integration of Eq. 34 with respect of the scattering angles in the laboratory
(θ,φ):

σtotal =

∫ 2π

0

∫ π

0

σ(T, θ) sin θdθdφ = 4πR2 = πD2. (35)
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The associated scattering angle probability distribution is given by:

P (θ, η, δ) =

∫ 2π

0

[σ(T, θ) sin θ] dφ. (36)

In Fig. 4 one can see the scattering angle probability distribution for several
projectiles at E = 3eV scatter off a member of an ideal gas (T = 300 Kelvin),
which is constituted by argon atoms as well as the most probable scattering
angle θmost with respect to the parameter η. The scattering angle probability
distribution tend to move to smaller scattering angles θ with increasing values of
the mass ratio η. However, you have to keep in mind that our derived probability
distribution is just valid within small values of η and small values of ζ (high
projectile energy). The question arises whether we can trust our distribution
for values higher than θ ≈ 0.1 or not? One way might be to perform exactly
the same steps as before in order to derive the approximate scattering angle
probability distribution but with different expansion points (say η0 = 0.3 and
ζ0 = 0) and compare the results from both expansions with each other.

The assumption of slowly moving targets is again only valid if one neglect
multiple scattering of the projectile. The assumption of light projectiles is not
quite satisfactory for our purpose, because we are dealing with parameter-values
like η ≈ 0.3;0.7 and 1.2. One approach might be to perform a Taylor expan-
sion of the Jacobian at different values for η and ξ and try to solve as many
integrals in the triple integral as possible on an analytic way. The α,φ,θ and
ζ integration (averaging over the target velocities) are quite difficult. Within a
Monte Carlo Simulation if an interaction occurs, one has to evaluate the whole
four-dimensional integral to obtain the scattering angle distribution in the labo-
ratory system. This is of course a horrible task. But to obtain highest accuracy
even in high temperature regimes or the effect of thermalized sputter particles
one has almost no other back door. Hence, we suggest a Monte-Carlo-Markov-
Chain Method to evaluate the integrals. A detailed solution of this problem is
in progress and will be the subject of future paper.
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4 Monte Carlo simulations

In Fig. 5 one can see our geometry of the simulated sputter reactor.

4.1 Sputtering from targer

Sputtering from a circular planar magnetron causes the formation of a race-track
in the target (see Fig. 5). The profile of the race-track is approximated by a Gauss

distribution: P (R) = 1
σ
√

2π
exp

(
−R−µ

2σ2

)
. The radius of the experimental race-

track is 7.5mm (which is used for the mean µ of the gauss distribution) and the
width of the race-track is 5 mm (from which the standard deviation is calculated
3σ = 2.5mm).

4.2 Angular distribution

The angular distribution of out coming particles from the sputter material is
modeled by a sine distribution, i.e. the relative amount of particles leaving the
sputter material perpendicular to its surface (θ0 = 90) is 1. Differences in the
angular distribution between the different species are not modeled but can not
experimentally excluded.

4.3 Ionisition rates and ion energy distribution

The ionisation rate of sputtered particles are very low, and thus no influence
on the particle distribution is assumed. But in contrast, the particle’s energy
seems to be of high importance. Unfortunately, until now no energy distribution
for our compound target (T i3SiC2) is available. In Fig. 6 one can see the ion
energy distribution, which is modeled with reference to a Ti-target. One can see
that most of the ions are at energies close to 3eV. In order to simulate the ion
transport it is necessary to calculate the velocity of the ions.With

E = H =
p2

2M
=

1

2
Mv2

it follows that

v =

√
2E

M
. (37)

The energy of the ions is given in units of electron volts (eV) and the mass of
the ions is given in atomic units (u). Therefore one can compute the velocity in
units of cm per second by using

v =

√
2E[eV ]

m[u]
· 9.824 · 105 = v[cm/s]. (38)
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In two spatial dimensions, one has two velocity components. φ0 is the direction
angle of the ion (see angular distribution of the ions) the velocity components
can be calculated by

vx = v · cos (φ0) (39)

vy = v · sin (φ0) (40)

Now, we want to apply our two interaction models to DC and high power
impulse sputtering for T i3SiC2. In general if several independent interaction
mechanism can occur, the mean free path is not an additive quantity, but in
contrast the total cross section is an additive quantity. In order to reduce the
computational effort, we decided to use an event-driven Monte Carlo method
in contrast to the usually used time-driven Monte Carlo method. It is therefore
necessary to determine, when the next interaction will occur. If the velocity
(v) and the mean free path (λ) of the particle is known, one can compute the
collision frequency τ by using

τ =
v

λ
=

√
v2

x + v2
y

λ
. (41)

With the help of the collision frequency one is able to compute the time interval
until the interaction occurs

δt = − log(r)

τ
. (42)

Whereby r is a random number from a uniform distribution between zero and
one. Instead of simulating the trajectory of all particles in a Monte Carlo run
with a fixed time step, one can use the above mentioned formula to adjust the
time step. the strategy is as follows, one calculates the time interval δt for every
particle (except the background particles) within a Monte Carlo run (trial),
and finds the minimum value. The particle related to the minimum value of
δt will first undergo an interaction. The Monte Carlo time step is set to this
minimum value (event driven MC). After the time step, the specific particle
will undergo the interaction, and all other particles are just move along they’re
specific trajectory. i.e. in the absence of any external forces the trajectory is
just a straight line (this is motivated by the fact the even if external fields are
set up, inside the plasma the particles will behave as if they were free, due to
the electric conductance of the plasma). If an interaction with the background
gas (argon) occurs, we assume a uniform impact parameter distribution in the
center-of-mass-system (CMS) between the ion and the background gas. We first
describe the simulations of DC sputtering thereafter the simulations concerning
high power impulse magnetron sputtering. The several interaction processes can
be put into an abstract interaction model (Pathway model, see [7]) that binds
the interaction parameter together. A schematic drawing can bee seen in Fig. 7.
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4.4 DC sputtering

In DC sputtering with low direct currents one can use the elastic hard sphere
interaction to model the transport phenomena at the microscopic scale.

First experiment: only hard sphere interaction In Fig. 8 the results of
100.000 Monte Carlo events are shown, whereby we used the following experi-
mental setup parameter:

Parameter Value

Temperature (T ) 300K
Ar-pressure (pAr) 4 · 10−3mbar
S-T-distance (d) variable from 1cm to 24cm

4.5 High power impulse magnetron sputtering

In HIPPIMS one can assume that at least a fraction of particles (sputter par-
ticles as well as target particles) are ionized. Unfortunately, there is no specific
relation between pulse duration and/or pulse hight and the percentage of ionized
particles. The next results are therefore very academic. In our first experiment
concerning HIPPIMS we assume that all gas particles and sputter particles are
simply ionized. This is of course a realistic property for the gas particles (argon)
but not for the sputter particles.

Second experiment: only Coulomb interaction If one assumes all sputter
particles and all gas particles being at least simple ionized, then the interaction
is completely described by the Coulomb ar screened Coulomb interaction. For
sake of simplicity we assume only simple ionized particles. The results from
Monte Carlo simulations can be seen in Fig. 9 whereby we used the following
experimental setup parameter:

Parameter Value

Temperature (T ) 300K
Ar-pressure (pAr) 4 · 10−3mbar
S-T-distance (d) variable from 1cm to 24cm
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Third experiment: mixed interactions If one assumes the sputter particles
consists of ionized as well as neutral atoms two interactions with the background
gas can occur: hard sphere collisions if one of the collisions particles is neutral,
and Coulomb interaction if both collision particles are at least simple ionized.
We assumed the particles being only simple ionized and therefore we have chosen
the following effective atomic numbers Zeff with respect to the Slater rules in
atomic physics:

atom (ionized) electron configuration Zeff

6C
+ (1s2), (2s22p1) 6 − 2.75 = 3.25

14Si+ (1s2), (2s22p6)(3s23p1) 14 − 9.85 = 4.15

22T i+ (1s2), (2s22p6), (3s23p63d1), (4s2) 22 − 19 = 3

18Ar+ (1s2), (2s22p6), (3s23p5) 18 − 11.25 = 6.75

In Fig. 10 one can see the results from our simulation whereby we used the
following experimental setup parameter:

Parameter Value

Temperature (T ) 300K
Ar-pressure (pAr) 4 · 10−3mbar
S-T-distance (d) constant 5cm

percentage of ionized carbon 30%
percentage of ionized silicon 30%

percentage of ionized titanium 30%
percentage of ionized argon variable from 0% up to 100%

The results from the Monte Carlo simulation with several ionisation degrees of
argon atoms indicates that the ionisation degree plays almost nor role for our
experimental setup parameter. All results show a dominance of titanium atoms
at far distances from the target axis at the substrate. The most reliable member
of the stoichiometry is again silicon. One can easily see that the effect of the
ionisation degree of argon atoms is suppressed due to the low ionisation degree of
the sputter particles. There are several experimentally obtained indications that
the ionisation degree of the sputter particles is not the assumed one, but particle
dependent (electronic structure) as well as particle energy dependent. Therefore,
further investigations concerning the ionisation degree of the sputtered particles
as well as the argon atoms are important and will be the subject of future paper.

Link to the Pathway Model & convergence test: In the following section
we want to investigate the link to the Pathway Model[7] and our Monte Carlo
simulations. The most important parameter in the Pathway Model of the trans-
port phenomena is the Loss factor. First predictions (rough estimations) can be
made by inspection of the mean free paths for the sputter species. Carbon has
almost the largest mean free path and therefore it will be just slightly effected by
the interaction mechanism with the background gas. In Fig. 11 one can see our
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results for the Loss factor of several sputter species and the different interaction
models, i.e. pure hard sphere, pure Screened Coulomb and mixed interactions
(described by the three experiments). One can easily see that the values for the
Loss factor are almost constant after some equilibrium trials. This indicates a
way to observe the convergence behavior of our Monte Carlo algorithm. Thus,
with the help of the Loss factor we can estimate the minimum Monte Carlo
trials within a simulation and conclude from the equilibrium tendency that our
implementation was done correct. It is important to remember that the equilib-
rium MC time (number of MC trials) for Loss factor differ from Monte Carlo
run to Monte Carlo run even with the same experimental setup parameter. We
see that 100.000 Monte Carlo trials (events) our almost enough to equilibrate
the system, i.e. reach convergence.

5 Conclusion

So far, we developed an appropriate Monte Carlo Method based on a Pathway
Model for interactions between sputtered particles and a background gas, which
is assumed to be an ideal gas. We set up a novel equation for the mean free path
which incorporates all physical parameter like temperature and gas pressure, but
most important it respects the movement of target atoms, i.e. argon particles.
With the help of our theoretical investigations we performed several Monte Carlo
simulation for direct current (DC) and high power impulse magnetron sputter-
ing (HIPPIMS). The results from our simulations are qualitively in agreement
with experimentally obtained stoichiometric compositions at the substrate. We
were thus able to manifest that in DC sputtering the main interaction between
the sputter particles and the background gas is of hard sphere type, i.e. purely
geometric. In HIPPIMS a mixture of hard sphere and Coulomb interaction takes
place. Unfortunately, the lack of experimentally obtained data concerning the
ionisation degree of the sputtered particles and the background gas forbids a
direct comparison between simulation and experiments. In future we hope to
extract the ionisation degree from first principles or by data fitting to experi-
mentally obtained results. The effect of moving targets to the differential cross
section, i.e. angular distribution of sputtered particles after a collision needs an
appropriate Monte-Carlo-Markov-Chain method. The energy and angular distri-
bution of the sputter process needs also some investigations in order to achieve
a one to one correspondence between simulation and experiment. Our nearest
future work will dominantly deal with the energy and angular distribution at
the target. We are going to use Monte Carlo simulations (TRIM software) in
order to obtain a detail description of the sputter process too and incorporate
these results as boundary conditions to our transport simulation.
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A Derivation of the mean relative velocity

Within the framework of statistical mechanics - the mean value of an observable
O can be computed via

< O >=

∫ ∫
O(q, p)Z (q, p; H)d3Nqd3N

∫ ∫
pZ (q, p; H) d3Nqd3N

. (43)

With q describing canonical coordinates and p canonical momenta of an N -
particle-system, i.e. H(q, p) obey the Hamilton equation of motion. The proba-
bility distribution Z depends on the total Hamilton function H of the system.
Within the canonical ensemble one has the following relation

Z = exp

(
−H(q, p)

kBT

)
. (44)

With p = mv and the assumption of an ideal gas the Hamilton function for the
background gas is constructed only by the kinetic energies of the gas particles

H =

N∑

i=1

p2
i

2mi
. (45)

If O = O(p) then the coordinate integration gives a volume factor in the numer-
ator and denominator and therefor no contribution. The momentum integration
can be done immediately and results in gaussian integrals. The result for the
mean relative velocity is therefore given by

< O = vrel >=

∫ ∫ ∫

V

|vproj − vtarget|Z̃(vtarget)dvtarget, (46)

with Z̃ = (A/π)3/2 1
2
√

2
exp

(
−Av

2
)

the reduced partitition function (Maxwell

distribution) and A = Mtarget/2kBT . By substituting u = vtarget − vproj and
du = vtarget one gets

< |vrel| >=

∫ ∫ ∫

V

|u| exp
(
−Av2

proj − 2Avproju − Au2
)
du =

=
(A/π)3/2 exp

(
−Avproj

2
)

2
√

2︸ ︷︷ ︸
=:C(a,A)

∫ ∫ ∫

V

|u| exp
(
−2Avproju − Au

2
)
du. (47)
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By using spherical coordinates with r = |u|, a = |vproj.| and vproj · u =
|vproj | · |u| cos θ one gets

< |vrel| > = C(a, A)

∫ ∞

0

∫ 2π

0

∫ π

0

r exp
(
−Ar2 − 2A · a · r · cos θ

)
r2 sin θdθdφdr

= 2πC(a, A)

∫ ∞

0

r3

∫ π

0

exp
(
−Ar2 − 2Aar cos θ

)
sin θdθdr. (48)

The double integral on the right hand side can be evaluated and its solution is
given by:

∫ ∞

0

r3

∫ π

0

exp
(
−Ar2 − 2Aar cos θ

)
sin θdθdr =

(
A
π

)3/2
exp

(
−a2A

)

2
√

2




2
√

Aa +
(
2Aa2 + 1

)
exp

(
a2A

)√
πerf

(
a
√

A
)

4aA5/2


 .(49)

After some simplification the mean relative velocity reads

< |vrel| >=

(
2a + 1

Aa

)
erf

(
a
√

A
)

+
2 exp (−a2A)

√
A
√

π

4
√

2
. (50)

Whereby we made use of the scalar s := a
√

A.
With a = |vproj | the final result for the mean relative velocity between projec-
tiles probing into a mono atomic ideal gas is given by

< |vrel| >=

[(
s + 1

2s

)
erf(s) + 1√

π
exp

(
−s2

)]

3s
× |vproj |. (51)

q.e.d.
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Fig. 2. Results from one hard sphere collision (initially resting targets).
Upper left: scattering angle distribution of ΘCMS in the CMS system and upper

right: Monte Carlo results of the scattering angle probability distribution in the labo-
ratory system. Middle left: numerical determination of the maximal scattering angle
θmax in the laboratory and Middle right: probability distribution of the transfered
energy via Monte-Carlo Simulations. Lower left: scattering angle ΘCMS with respect
to the scattering parameter z.
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Fig. 5. Our chosen geometry of the simulated sputter reactor.
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Fig. 6. Assumed energy and angular distribution of the sputtered species at the target.
One can see that most of the sputter particles have energies around 3 − 5 eV. The
angular distribution is a transformed cosine transformation (this is justified by the
assumption that the sputter process can be described by elastic hard sphere interaction
between argon atoms and particles within the sputter compound target).
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Fig. 8. Results from the first experiment:
left: registered Monte Carlo events at the workpiece and right: stoichiometric compo-
sition at the workpiece for several target-substrate-distances in cm whereby we assumed
a pure hard sphere interaction between the sputter particles and the gas particles.
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Fig. 9. Results from the second experiment:
left: registered Monte Carlo events at the workpiece and right: stoichiometric compo-
sition at the workpiece for several target-substrate-distances in cm whereby we assumed
a pure Coulomb interaction between the sputter particles and the gas particles (simple
ionized species).
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Fig. 10. Results from the third experiment:
left: registered Monte Carlo events at the workpiece and right: stoichiometric com-
position at the workpiece for several ionization degrees of argon whereby we respected
mixed interactions between the sputter particles and the gas particles (simple ionized
species).
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Fig. 11. Link to the Pathway-Model (Loss factor):
top left: Loss factor for pure hard sphere interaction and top right: for pure Coulomb
(screened) interaction between the sputter species and the background gas. middle

left: Loss factor for a mixed interaction (40% ionisation of argon atoms and 10%
ionisation of the sputter atoms) and middle right: Loss factor for a mixed interaction
with 90% ionisation of argon atoms. bottom left: Loss factor for pure hard sphere
interaction (DC sputtering) with respect to the target-substrate-distance. bottom

right: Loss factor for pure Coulomb interaction with respect to the target-substrate-
distance.


