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Abstract. This paper is devoted to the numerical simulation of time-dependent convective
Bingham flow in cavities. Motivated by a primal-dual regularization of the stationary model, a
family of regularized time-dependent problems is introduced. Well posedness of the regularized
problems is proved and convergence of the regularized solutions to a solution of the original
multiplier system is verified. For the numerical solution of each regularized multiplier system,
a fully-discrete approach is studied. A stable finite element approximation in space, together
with a second order backward differentiation formula for the time discretization are proposed.
The discretization scheme yields a system of Newton differentiable nonlinear equations in each
time step, for which a semismooth Newton algorithm is utilized. We present two numerical
experiments to verify the main properties of the proposed approach.

1. Introduction

The numerical simulation of viscoplastic materials has recently received an increasing amount
of attention due to its importance in several industrial processes and natural phenomena. The
Bingham model, in particular, is widely used in food industry (production of sauces and pastes)
and in other important fields of application (see e.g. [4, 17, 20]).

The main characteristic of a Bingham flow is given by the presence of a yield stress: the
material behaves like solid in regions where the stresses are small and like an incompressible
fluid in regions where the stresses go beyond a given threshold. Since no exact information of
the solid-liquid zones is known beforehand, the numerical simulation of such materials becomes
challenging.

Based on a variational inequality formulation of the problem, several methods have been
proposed for its numerical solution. The methodologies can be broadly classified into two families:
direct global regularization and multiplier approaches.

Direct global regularization techniques replace the nondifferentiable term (related to the pres-
ence of the plasticity threshold) by a C∞-approximation. In that manner, the problem changes
of nature to a partial differential equation and many known numerical techniques may be ap-
plied (see [12] and the references therein). As the regularization parameter vanishes, however,
important analytical and numerical drawbacks may come into play (see [9]).

Multiplier approaches, on the other hand, are based on a reformulation of the modelling
variational inequality as a system involving a Lagrange multiplier. The Uzawa method [16],
the augmented Lagrangian method and, more recently, a penalty-Newton-Uzawa-CG method
[9] have been proposed to cope with such systems, mainly in the stationary case. For the time
dependent problem, a suitable time discretization is usually proposed, which makes it possible to
exploit the efficiency of the methods developed for the stationary problem. Particular members of
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the latter are operator splitting methods (see [9, 24]), which in addition look after an uncoupled
system in order to avoid problems related to the incompressibility condition and the convective
term.

In this paper, utilizing a multiplier approach and based on the efficiency of the semismooth
Newton method (SSN) for the numerical solution of the stationary Bingham model (see [8, 7]),
we propose a solution algorithm for the time-dependent flow.

To exploit the efficiency of the semismooth Newton method applied to the stationary problem,
a suitable time discretization scheme has to be considered in order to deal with the nonlinear
convective term. By means of a second order backward differentiation formula (BDF) we are
able to obtain an appropriate nonlinear system in each time step, for which the superlinear
convergent algorithm developed in [7] can be applied.

The propsed algorithm is based on a family of regularized problems, which are motivated
by a Tikhonov regularization of the stationary problem presented in [7]. Differently from [7],
however, the well-posedess cannot be justified by means of an auxiliar optimization problem.
Instead, monotonicity and compactness techniques are considered. Also the convergence of the
regularized solutions and multipliers is proved.

The outline of the paper is a follows. In Section 2 the Bingham model is presented and a
characterization of it in form of a variational inequality of the second kind and of a multiplier
system are given. In Section 3 a family of regularized problems for the approximation of the
original model is proposed. The well-posedness of the regularized problems and its convergence
properties are investigated. A full discretization scheme for the numerical approximation of
each regularized problem is given in Section 4. A finite element space discretization, together
with a backward differentiation formula for the time discretization and a semismooth Newton
method for the solution of the nonlinear systems arising in each time step, are proposed. Finally,
in Section 5 two detailed numerical experiments are presented. In particular, the property of
steady state in finite time, which typically fails when C∞-regularization approaches are used, is
verified experimentally.

2. Time-dependent Bingham model

Let Ω be an open bounded domain of Rd, d = 2, with Lipschitz boundary Γ. Let T > 0,
Q := Ω×]0, T [ and Σ := Γ×]0, T [. Throughout this paper we will use the notation Lp(W ),
1 ≤ p ≤ ∞, for the spaces

Lp(0, T ;W ) :=

{
f : [0, T ] → W :

∫ T

0

‖f(t)‖p
W dt <∞

}
,

where W is a Banach space. These spaces are endowed with the norm

‖f‖Lp(W ) :=

(∫ T

0

‖f(t)‖p
W dt

) 1

p

.

Throughout, L2(Ω) stands for the product space (L2(Ω))d and H1(Ω) for (H1(Ω))d, whereH1(Ω)
corresponds to the usual Sobolev space.

The norm in a Banach space X is denoted by ‖ · ‖X and the duality product between X ′ and
X by 〈·, ·〉X′,X . If X is a Hilbert space, we denote by (·, ·)X its scalar product. Further, 〈· , ·〉
and | · | stand for the Euclidian inner product and its associated norm, respectively.

The Frobenius scalar product in Rd×d and its associated norm are defined by

(A : B) := tr(AB⊤) and ‖A‖ :=
√

(A : A), for A,B ∈ Rd×d,
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where tr stands for the trace of the matrix. Further, we define L2×2(Ω) as the space of (2 × 2)-
matrices of L2(Ω)-functions. We endow this space with the norm ‖p‖L2×2, which is induced by
the following scalar product

(2.1) (p , q)L2×2 :=

∫

Ω

(p(x) : q(x)) dx.

Since L2×2(Ω) endowed with the scalar product (2.1) is isomorph to the space (L2(Ω))d×d en-
dowed with the usual L2(Ω)-scalar product (see [7, Sec. 5.1]), it constitutes a Hilbert space.

Let D(Ω) the space of infinitely differentiable functions with compact support. The space V
is defined by

V :=
{
v ∈ (D(Ω))d : divv = 0

}
,

and we define the spaces

V := closure of V in H1(Ω) and H := closure of V in L2(Ω).

Under the requirements on Ω, we can represent V and H also in the following form (see [26, pg.
13])

V =
{
v ∈ H1

0(Ω) : divv = 0
}
,

H =
{
w ∈ L2(Ω) : divw = 0 , w · ~n |Γ = 0

}
,

where ~n denotes the unit outward normal along the boundary. Throughout the paper we addi-
tionally use the notation u(t) := u(x, t).

The time-dependent Bingham flow is modeled by the following boundary value-problem: find
a velocity field y : Q→ Rd and a scalar pressure field p : Q→ R such that

(2.2)





∂ty(t) + (y(t) · ∇)y(t) = Div σ(t) −∇p(t) + f(t) in Q,

divy(t) = 0,

y = 0 on Σ,
y(0) = y0,

σ(t) = 2µEy(t) +
√

2g Ey(t)
‖Ey(t)‖ , if Ey(t) 6= 0,

‖σ(t)‖ ≤ g, if Ey(t) = 0,

where µ > 0 stands for the viscosity coefficient, g > 0 for the plasticity threshold (yield stress), f
is a body force and Div is the row-wise divergence operator. The deviatoric part of the Cauchy
stress tensor is denoted by σ and E stands for the deformation or rate of strain tensor, whose
components are given by

Eij(y) :=
1

2

(
∂yi

∂xj
+
∂yj

∂xi

)
, for y = (y1, · · · , yd)

⊤.

In order to obtain a solution to system (2.2) a-priori information about the regions where the
material behaves as a rigid body or as a viscoplastic flow has to be at hand. Since in most of
the cases this is not possible, an equivalent formulation of the problem in form of a parabolic
variational inequality of the second kind (see [10, 9]) is usually studied.

2.1. Variational inequality. A weak formulation of problem (2.2) is given in the following
way: find y(t) ∈ V a.e. on (0, T ) such that

(P)

(∂ty(t) , v − y(t))L2 + a(y(t),v − y(t)) + c(y(t),y(t),v − y(t))

+g̃j(v) − g̃j(y(t)) ≥ (f , v − y(t))L2 , for all v ∈ V ,

y(0) = y0,
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where g̃ :=
√

2g, ∂ty(t) := ∂y(t)
∂t and

a(y,v) := 2µ

∫

Ω

Ey : Ev dx,(2.3)

j(v) :=

∫

Ω

‖Ev‖ dx(2.4)

c(y,v,u) :=

∫

Ω

〈(y · ∇)v , u〉 dx.(2.5)

Problem (P) corresponds to the variational formulation of system (2.2), and it was first presented
in [10, Sec. 5].

Remark 2.1. Korn’s inequality (see e.g. [5, Cor. 11.2.22]) implies the existence of a positive
constant α0 such that

a(u,u) ≥ α0 ‖u‖2
H1

0

, for all u ∈ H1
0(Ω).

Thus, we conclude that a(·, ·) is a bilinear and coercive form in H1
0(Ω) × H1

0(Ω).
Furthermore, it is known that c(·, ·, ·) is a trilinear, continuous form in H1

0(Ω)×H1
0(Ω)×H1

0(Ω)
(see [26, pg. 109]). This fact implies the existence of a positive constant κ such that

c(u,v,w) ≤ κ ‖u‖H1

0

‖v‖H1

0

‖w‖H1

0

, for all u,v,w ∈ H1
0(Ω).

Next, an existence theorem for problem (P) is stated.

Theorem 2.1. Let f ∈ L2(V ′) and y0 ∈ H. There exists a unique solution y ∈ L2(V ) to (P),
such that ∂ty ∈ L2(V ′). Moreover, if Ω ⊂ R2 is of class C2 and f , y0 satisfy

(2.6) f , ∂tf ∈ L2(V ′), f(0) ∈ H and y0 ∈ V ∩H2(Ω),

then, problem (P) has a unique solution y ∈ C(0, T ;V ), with ∂ty ∈ L2(V ) ∩ L∞(H).

Proof. See [10, Chap. VI, Thm. 3.1 and Thm 4.1]. �

2.2. Multiplier approach. From the variational inequality (P) an alternative characterization
of the solution using a multiplier approach can be obtained. With such a characterization, a
partial differential equation involving a multiplier, together with additional complementarity
relations, is obtained.

In the following theorem the existence of such a multiplier is stated and a nonlinear system
of equations, which characterize both the velocity field and the multiplier, is presented.

Theorem 2.2. There exists a function q(t) ∈ L2×2(Ω) a.e. in (0, T ) which satisfies, together
with y ∈ L2(V ), the following system of equations

(2.7a)
(∂ty(t) v)L2 + a(y(t),v) + (q(t) Ev)L2×2

+c(y(t),y(t),v) = (f(t) , v)L2 , for all v ∈ V

(2.7b) ‖q(x, t)‖ ≤ g̃ a.e. in Q

(2.7c) (q(x, t) : Ey(x, t)) = g̃‖Ey(x, t)‖ a.e. in Q

(2.7d) y(0) = y0.

Proof. See [10, Chap. VI, Thm. 9.1] and [9, Thm. 2, p. 38]. �
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The active and inactive sets for (2.7) are respectively defined by

A := {(x, t) ∈ Q : ‖Ey(x, t)‖ 6= 0} and I := Ω \ A,

and they correspond to the regions where the material behaves like incompressible fluid and like
solid, respectively.

System (2.7) represents an equivalent formulation of problem (P). Since the multiplier q is
not necessarily unique (see [10, 9]), numerical instabilities in the approximation of system (2.7)
may occur.

3. Regularized problems

To overcome the ill-posedness of system (2.7), we approximate its solution by solving a se-
quence of regularized systems. The proposed family of regularized problems is motivated by a
Tikhonov regularization of the stationary Bingham model studied in [7, 8]. In those references
the numerical behavior of such a regularization together with the application of semismooth
Newton methods was investigated, and a comparison with other up-to-date methods was carried
out.

For a parameter γ > 0, the regularized problem consists in: find yγ(t) ∈ V and qγ(t) ∈
L2×2(Ω) a.e. in (0, T ) such that

(3.1a)
(∂tyγ(t) v)

L2 + a(yγ(t),v) + (qγ(t) , Ev)
L2×2

+c(yγ(t),yγ(t),v) = (f(t) , v)L2 , for all v ∈ V ,

(3.1b) qγ(x, t) =

{
g̃

Eyγ(x,t)
‖Eyγ(x,t)‖ a.e. in Aγ

γEyγ(x, t) a.e. in Iγ ,

(3.1c) yγ(x, 0) = y0.

Here, the active and inactive sets for system (3.1) are respectively defined by

Aγ := {(x, t) ∈ Q : γ‖Eyγ(x, t)‖ ≥ g̃} and Iγ := Q \ Aγ .

Note that, by definition, ‖qγ(x, t)‖ ≤ g̃ a.e. in Q.
It is easy to see that we can rewrite equation (3.1b) as follows:

(3.2) qγ(x, t) = g̃γ
Eyγ(x, t)

max (g̃, γ‖Eyγ(x, t)‖) , a.e. in Q.

Next, we define the operator b : V → L2×2(Ω) by

b(yγ) :=
g̃γ Eyγ

max (g̃, γ‖Eyγ‖)
.

Since 1/max(g̃, γ‖Eyγ‖) ∈ L∞(Ω), the operator is well-defined. Consequently, we may rewrite
system (3.1) as follows:

(3.3)





(∂tyγ(t) , v)
L2 + a(yγ(t),v) + (b(y(t)) Ev)L2×2

+c(yγ(t),yγ(t),v) = (f(t) , v)L2 , for all v ∈ V .

y(0) = y0.

Differently from the stationary case, system (3.3) does not correspond to the necessary con-
dition of an optimization problem. Therefore, in order to justify existence and uniqueness of
solutions to (3.3), techniques from the theory of partial differential equations have to be used.
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In the following theorem such an existence result is obtained by combining a monotonicity ar-
gument, to cope with the regularized multiplier representation, and a compactness technique, in
order to pass to the limit in the trilinear form.

Theorem 3.1. Let f ∈ L2(V ′) and y0 ∈ H. There exists a unique solution yγ ∈ L2(V ) for
problem (3.3).

Proof. See the Appendix. �

In the following theorem we analyze the convergence of the sequence of regularized solutions
(yγ ,qγ) of (3.1) towards a solution (y,q) of (2.7). For that purpose, an assumption with respect
to the problem data is needed.

Assumption 3.2. There exists a constant α > 0, such that

(α0 − κ‖y(t)‖H1) ≥ α, a.e in [0, T ],

where α0 and κ are the same constants as in Remark 2.1.

Theorem 3.3. If Assumption 3.2 hold, then the solutions (yγ ,qγ) of the regularized system
(3.1) converge, as γ → ∞, to a solution (y,q) of the original problem (2.7) in the following way:
yγ → y, strongly in L2(V ), and qγ ⇀ q, weakly in L2(L2×2(Ω)).

Proof. Let us start by recalling that (y(t), q(t)) and (yγ(t), qγ(t)) satisfy equations (2.7a) and
(3.1a), respectively. Thus, by subtracting (2.7a) from (3.1a), we have, a.e. in (0, T ), that

(3.4)

∫
Ω 〈∂t(yγ(t) − y(t)) , v〉 dx+ µ

∫
Ω (E(yγ(t) − y(t)) : Ev) dx

+c(yγ(t),yγ(t),v) − c(y(t),y(t),v) =
∫
Ω (q(t) − qγ(t) : Ev dx),

for all v ∈ V . Next, since Ω is a bounded set in Rd, we know that c(·, ·, ·) is a trilinear continuous
form in H1

0(Ω) × H1
0(Ω) × H1

0(Ω). Therefore, by an easy computation we get that

c(yγ(t),yγ(t),v) − c(y(t),y(t),v) = c((yγ − y)(t),y,v)

+c(y(t), (yγ − y)(t),v) + c((yγ − y)(t), (yγ − y)(t),v), for all v ∈ V ,

which implies, choosing v = (yγ − y)(t) ∈ V , a.e. in [0, T ] and due to the properties of the form
c(·, ·, ·) (see [26, Lem. 1.3, p. 109]), that

(3.5)
c(yγ(t),yγ(t), (yγ − y)(t)) − c(y(t),y(t), (yγ − y)(t))

= c((yγ − y)(t),y(t), (yγ − y)(t)).

Thus, by taking v = (yγ − y)(t), a.e. in (0, T ), in (3.4) and using (3.5), we obtain that

(3.6)

∫
Ω
〈∂t(yγ − y)(t) , (yγ − y)(t)〉 dx+ µ

∫
Ω
‖E((yγ − y)(t))‖2 dx

+c((yγ − y)(t),y(t), (yγ − y)(t)) =
∫
Ω

(q(t) − qγ(t) : E((yγ − y)(t))) dx.

Next, we establish pointwise bounds for ((q − qγ) : E(yγ − y)) in the following disjoint sets
A ∩ Aγ , A ∩ Iγ , Aγ ∩ I and Iγ ∩ I.

On A ∩ Aγ : Here, we use the facts that ‖q(x, t)‖ = ‖qγ(x, t)‖ = g̃ and qγ(x, t) = g̃
Eyγ(x,t)

‖Eyγ(x,t)‖ .

Thus, due to Cauchy-Schwarz inequality and (2.7c), we have the following pointwise estimate

(3.7)

((q − qγ)(x, t) : E(yγ − y)(x, t)) ≤ ‖q(x, t)‖‖Eyγ(x, t)‖ − g̃‖Ey(x, t)‖

−
(
g̃

Eyγ(x,t)
‖Eyγ(x,t)‖ : Eyγ(x, t)

)
+ ‖qγ(x, t)‖‖Ey(x, t)‖

= g̃‖Eyγ(x, t)‖ − g̃‖Ey(x, t)‖ − g̃‖Eyγ(x, t)‖ + g̃‖Ey(x, t)‖ = 0.
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On A ∩ Iγ : Here, we know that Eyγ(x, t) = γ−1qγ(x, t), ‖qγ(x, t)‖ < g̃ and ‖q(x, t)‖ = g̃.
Hence, from the Cauchy-Schwarz inequality and (2.7c), we get

(3.8)

((q − qγ)(x, t) : E(yγ − y)(x, t)) ≤ γ−1‖q(x, t)‖‖qγ(x, t)‖ − g̃‖Ey(x, t)‖
−γ−1‖qγ(x, t)‖2 + ‖qγ(x, t)‖‖Ey(x, t)‖
< γ−1(g̃ 2 − ‖qγ(x, t)‖2) < eg 2

γ .

On Aγ ∩ I: In this set it holds that Ey(x, t) = 0 and qγ(x, t) = g̃
Eyγ(x,t)

‖Eyγ(x,t)‖ . Then, due to the

Cauchy-Schwarz inequality and (2.7b), we have that

(3.9)
((q − qγ)(x, t) : E(yγ − y)(x, t)) = ‖q(x, t)‖‖Eyγ(x, t)‖ − g̃

Eyγ(x,t)
‖Eyγ(x,t)‖ : Eyγ(x, t)

≤ g̃‖Eyγ(x, t)‖ − g̃‖Eyγ(x, t)‖ = 0.

On Iγ ∩ I: Here, we have that Ey(x, t) = 0 and Eyγ(x, t) = γ−1qγ(x, t). Thus, the Cauchy-
Schwarz inequality and (2.7b) imply that

(3.10)
((q − qγ)(x, t) : E(yγ − y)(x, t)) = γ−1‖q(x, t)‖‖qγ(x, t)‖ − γ−1‖qγ(x, t)‖2

≤ γ−1
(
g̃ 2 − ‖qγ(x, t)‖2

)
< eg 2

γ .

Since Aγ ∩A, A∩Iγ , Aγ ∩I and Iγ ∩ I provide a disjoint partitioning of Q, estimates (3.7),
(3.8), (3.9) and (3.10) imply that

(3.11)
∫
Ω ((q − qγ)(x, t) : E(yγ − y)(x, t)) dx <

∫
Ω

eg 2

γ dx, a.e. in [0, T ].

Due to the coercivity of the form a(·, ·) and the continuity of c(·, ·, ·) (see Remark 2.1), we
conclude, from (3.6), that there exist two positive constants α0 and κ, such that

1

2

d

dt
‖(yγ − y)(t)‖2

L2 + (α0 − κ‖y(t)‖H1

0
)‖(yγ − y)(t)‖2

H1

0

<
g̃ 2

γ
meas(Ω), a.e. in [0, T ],

which, thanks to the Assumption 3.2, yields that

(3.12)
1

2

d

dt
‖(yγ − y)(t)‖2

L2 + α‖(yγ − y)(t)‖2
H1

0

<
g̃ 2

γ
meas(Ω), a.e. in [0, T ].

Now, by integrating (3.12) in (0, T ), we obtain that

(3.13)
1

2
‖yγ(T ) − y(T )‖2

L2 + α

∫ T

0

‖(yγ − y)(t)‖2
H1

0

dt < T meas(Ω)
g̃ 2

γ
.

Thus, from (3.13), we conclude that yγ → y strongly in L2(V ) and yγ(T ) → y(T ) strongly in
L2(Ω), as γ → ∞.

In order to prove the convergence of the multipliers qγ , first note that ‖qγ(x, t)‖ ≤ g̃, a.e.
in Q and, therefore, {qγ} is bounded in L2(L2×2(Ω)). Consequently, it is possible to extract a
subsequence (denoted in the same way) such that

(3.14) qγ ⇀ q∗ ∈ L2(L2×2(Ω)), as γ → ∞.

Moreover, since the set
{
q ∈ L2(L2×2(Ω)) : ‖q(x, t)‖ ≤ g̃, a.e in Q

}
is convex and closed, we

conclude that

(3.15) ‖q∗(x, t)‖ ≤ g̃, a.e in Q.

Next, we know that yγ converges to y strongly in L2(H1(Ω)). Moreover, we have that ∂tyγ ∈
H−1(H−1) and that ∂t ∈ L(L2(H1(Ω)), H−1(H−1(Ω))). Thus, we can conclude that

(3.16) ∂tyγ ⇀ ∂ty ∈ L2(H1), as γ → ∞.
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Furthermore, thanks to (3.14), (3.16) and to the weakly sequentially continuity of c(·, ·, ·), we
may pass to the limit in (3.1a) and obtain that

(∂ty(t) , v)L2 + a(y(t),v) + c(y(t),y(t),v) + (q∗(t) , E(v))L2×2(Ω)

= (f(t) , v)L2 , a.e. in (0, T ) and for all v ∈ V .

By taking v = y(t), we get that

(3.17)
(∂ty(t) , y(t))L2 + a(y(t),y(t)) + (q∗(t) , Ey(t))L2×2(Ω)

= (f(t) , y(t))L2 , a.e. in (0, T ).

On the other hand, by taking v = 0 and v = 2y(t) in (P), we obtain that

(3.18) (∂ty(t) , y(t))L2 + a(y(t),y(t)) + g̃ j(y(t)) = (f(t) , y(t))L2 , a.e. in (0, T ).

Thus, by subtracting (3.17) from (3.18), we get
∫

Ω

[g̃ ‖Ey(t)‖ − (q∗(t) : Ey(t))] dx = 0, a.e. in (0, T ),

which implies, due to the Cauchy-Schwarz inequality, that

(3.19) g̃‖Ey(x, t)‖ = (q∗(x, t) : Ey(x, t)), a.e. in Q

�

In the next theorem, we obtain an equivalent system to (3.1), which considers the pressure in
an explicit way.

Proposition 3.4. There exists a unique pγ(t) ∈ L2
0(Ω), a.e. in [0, T ], such that

(∂tyγ(t) , v)
L2 + a(yγ(t),v) + (qγ(t) , Ev)

L2×2 + c(yγ(t),yγ(t),v)

− (pγ(t) , divv)L2 = (f(t) , v)L2 , for all v ∈ H1
0(Ω),

(r , divyγ(t))L2 = 0, for all r ∈ L2(Ω).

Proof. First, we recall that (yγ(t), qγ(t)) ∈ V × L2×2(Ω) satisfy equation (3.1a), i.e.,

(3.20)
(∂ty(t) , v)L2 + a(yγ(t),v) + (qγ(t),v)

L2×2

+c(yγ(t),yγ(t),v) = (f , v)L2 , a.e. in [0, T ] and for all v ∈ V .

Since divyγ(t) = 0 and divv = 0, the result is a direct consequence of de Rham’s Theorem (see
[26, Rem. 1.9] and [13, Th. 3.6, p. 34]). �

Thanks to Proposition 3.4, we obtain the following equivalent variational formulation of system
(3.1): find (yγ(t),qγ(t), pγ(t)) ∈ H1

0(Ω) × L2×2(Ω) × L2
0(Ω), a.e. in [0, T ], such that

(3.21a)
(∂tyγ(t) , v)

L2 + a(yγ(t),v) + (qγ(t) , Ev)
L2×2 + c(yγ(t),yγ(t),v)

− (pγ(t) , divv)L2 = (f(t) , v)L2 , for all v ∈ H1
0(Ω),

(3.21b) (r , divyγ(t))L2 = 0, for all r ∈ L2(Ω),

(3.21c) max(g̃, γ‖Eyγ(x, t)‖)qγ(x, t) = gγEyγ(x, t), a.e. in Q,

(3.21d) y(x, 0) = y0.

8



Figure 1. (cross-grid P1)-Q0 elements. • are the velocity nodes and � the
pressure nodes.

Remark 3.1. Hereafter we identify the space L2×2(Ω) with the space (L2(Ω))4. The space
(L2(Ω))4 is endowed with the usual L2-scalar product (see [7, Sec. 5.1]), i.e.,

(q, p)(L2)4 :=

∫

Ω

〈q(x) , p(x)〉 dx.

4. Numerical approach

In this section, we propose a discretization scheme for system (3.21) which allows to exploit
the efficiency of the semismooth Newton method developed for the stationary Bingham model.
Similar to [7], a first order finite element approximation for the space variable with (cross-grid
P1)-Q0 elements is considered. With this choice, the same test functions for the velocity gradient
and the dual variable are utilized and a direct relation between them is obtained. This is of
importance for the accurate determination of active and inactive sets.

For the time variable discretization, the aim is to use an advancing scheme that leads us
to convection-independent systems in each time step. In that way, the semismooth Newton
algorithm developed in [7] to solve such nonlinear systems of equations can be used.

4.1. Space Discretization. We start by constructing a semi-discrete version of system (3.21)
with a first order finite element approximation. In our particular case, we choose the so called
(cross-grid P1)-Q0 elements (see Figure 1) and define the finite dimensional Hilbert spaces Vh ⊂
H1(Ω), Wh ⊂ (L2(Ω))4 and Uh ⊂ L2(Ω) by

Vh := (Vh ∩H1(Ω))2, where V h :=
{
vh ∈ C(Ω) : vh|T ∈ Π1, for all T ∈ T h

}
,

Wh :=
{
(qh

1 , q
h
2 , q

h
3 , q

h
4 ) ∈ (L2(Ω))4 : qh

j |T ∈ Π0, for j = 1, . . . , 4 and T ∈ T h
}
,

Uh := Oh ∩ L2(Ω), where Oh :=
{
rh ∈ C(Ω) : rh|Q ∈ Π0, for all Q ∈ Qh

}
.

with dimVh = 2n, dimWh = 4m and dimUh = l, n,m, l ∈ N, respectively. Here, Qh is
a regular quadrangulation of Ω, and T h is the regular triangulation obtained by dividing any
square in Qh by using its two main diagonals ([23, Sec. 6]). In order to simplify the analysis, we
assume that Ω has a polygonal boundary.

Remark 4.1. Let us mention that the (cross-grid P1)-Q0 elements satisfy the Ladyzhenskaya-
Babuska-Brezzi (LBB) condition and, therefore, lead to stable approximation of Stokes like
systems (see [23, p. 435]).
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As a consequence of the chosen space discretization, we obtain the following semi-discrete
approximation of system (3.21) (see [23, Sec. 13.3] and [7, Sec. 5] for further details):

(4.1)





Mh ∂
∂t
~y(t) + Ah

µ~y(t) + Qh~q(t) + Ch(~y(t)) ~y(t) +Bh~p(t) = ~f(t)

−(Bh)⊤~y(t) = 0

max
(
g̃~e, γN(Eh ~y(t))

)
⋆ ~q(t) = γg̃Eh~y(t),

~y(0) = ~y0.

where ~e ∈ R4m denotes the vector of all ones and ~y(t) ∈ R2n, ~q(t) ∈ R4m, ~p(t) ∈ Rl and
~y0(t) ∈ R2n are the time dependent vectors of coefficients in the finite element representation
of the triplet (yh(t),qh(t), ph(t)) and the initial condition y0(t), respectively. Ah

µ ∈ R2n×2n

and Mh ∈ R2n×2n are the stiffness and mass matrices, respectively, and the matrices Qh ∈
R2n×4m and Bh ∈ R2n×l are obtained in the usual way, from the bilinear forms (·, E(·))(L2)4 and

− (· , div ·)L2 , using the basis for Vh, Wh and Uh. The matrix Ch(~y(t)) is defined by

Ch(~y(t))ij :=

2n∑

ℓ=1

yℓ c(ϕℓ,ϕj ,ϕi),

where ϕj , j = 1, . . . , 2n are the basis functions of Vh. Further, the discrete approximation Eh of

the deformation tensor and the right hand side ~f are constructed by using these basis functions
(see [1, Sec. 6] and [7, Sec. 5]). Finally, the function N : R4m → R4m is defined by

N(~q)i = N(~q)i+m = · · · = N(~q)i+4m := |(qi, qi+m, . . . , qi+4m)⊤|

for ~q ∈ R4m and i = 1, . . . ,m.

4.2. Time Discretization by a BDF. When a fully implicit method (e.g. the one step θ-
method) is used to solve a Navier-Stokes type equation, a nonlinear and convective system of
equations, which changes in every time step, must be solved in each time iteration. This usually
implies the increase of the computational cost.

In order to avoid this issue, semi-implicit methods can be taken into account. The character-
istic of some of these methods is that they allow to obtain systems whose associated matrix is a
Stokes type one and does not change in every time step (see [23, Sec. 13.4]). These type of semi-
implicit methods can be constructed in many ways. For instance, it is possible to approximate
the linear terms in the equation by a Crank-Nicholson method and the nonlinear convective term
Ch(~y) by the explicit Adams-Bashforth method (see [23, p. 440]).

In this paper, we focus on a semi-implicit method constructed using the second order backward
differentiation formula (BDF2), which also presents the same kind of property: a system whose
associated matrix is a Stokes type one and does not change in every time step.

When applied to an equation u′ = Υ(u), the BDF2 scheme reads as follows

uk+2 − 4

3
uk+1 +

1

3
uk =

2

3
kΥk+2, for 0 ≤ k ≤ N − 2, and u0, u1 given,

where uk stands for the approximation of the solution u at each time step.
By following a similar argumentation as in [2, p. 370] and [23, pp. 440-441], we formulate

a second order backward differentiation-Galerkin method as follows: at each time level tk+1 =
10



(k + 1)δt, for k = 0, . . . ,N − 1, solve the system

(4.2)





(
3

2δtM
h + Ah

µ

)
~y k+2 + Qh~q k+2 +Bh~p k+2 = F̃ k+2

−(Bh)⊤~y k+2 = 0

max
(
g̃~e, γN(Eh~y k+2)

)
⋆ ~q k+2 = γg̃Eh~y k+2,

~y 0 = ~y0,

where ~y k represents the approximation of ~y(tk) and the right hand side F̃ k+2 is given by

F̃ k+2 := ~f k+2 − Ch(~̃y
k
) ~̃y

k
+

2

δt
Mh~y k+1 − 1

2δt
Mh~y k,

with ~̃y := 2~y k+1 − ~yk. Further, in order to calculate the initialization steps ~y 0 and ~y 1, we use
the one-step backward Euler scheme. This initialization is suggested in [2, p. 370], and can be
developed in the following way: first, we choose ~y 0 = ~y0. Next, we calculate two intermediate

values (~y
2/3
0 , ~q 2/3, ~p 2/3) and (~y

4/3
0 , ~q 4/3, ~p 4/3) by solving the next two systems

(4.3)





(
3

2δtM
h + Ah

µ

)
~y

2/3
0 + Qh~q 2/3 +Bh~p 2/3 = ~f 2/3 − Ch(~y 0) ~y 0 + Mh~y 0

−(Bh)⊤~y
2/3
0 = 0

max
(
g̃~e, γN(Eh~y

2/3
0 )

)
⋆ ~q 2/3 = γg̃Eh~y

2/3
0 ,

(4.4)





(
3

2δtM
h + Ah

µ

)
~y

4/3
0 + Qh~q 4/3 +Bh~p 4/3 = ~f 4/3 − Ch(~y 0) ~y 0 + Mh~y

2/3
0

−(Bh)⊤~y
4/3
0 = 0

max
(
g̃~e, γN(Eh~y

2/3
0 )

)
⋆ ~q 4/3 = γg̃Eh~y

4/3
0 ,

and finally, we define

~y 1 :=
1

2
(~y

2/3
0 + ~y

4/3
0 ).

In [2, p. 371] is proved that if we use the initialization defined above, δt ≤ C h4/5, with h the
size of the spatial mesh and C > 0, and if Assumption 3.2 holds, the scheme is second order
accurate with respect to the time variable.

4.3. Semismooth Newton algorithm. For the sake of readability let us firts recall some basic
notions about semismooth Newton methods (see e.g. [19]).

Definition 4.2. Let X and Z be Banach spaces and D ⊂ X an open subset. The mapping
F : D → Z is called Newton differentiable on the open subset V ⊂ D if there exists a generalized
derivative G : V → L(X,Z) such that

lim
h→0

1

‖h‖X
‖F (x+ h) − F (x) −G(x+ h)h‖Z = 0,

for every x ∈ V.

Proposition 4.1. If x∗ is a solution of F (x) = 0, F is Newton differentiable in an open neigh-
borhood V containing x∗ with generalized derivative G. If {‖G(y)−1‖L(Z,X) : y ∈ V } is bounded,
then the Newton iterations

xk+1 = xk −G(xk)−1F (xk)

converge superlinearly to x∗, provided that ‖x0 − x∗‖X is sufficiently small.
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For our specific problem, the nonlinear system (4.2) to be solved in each time step, as well as
the nonlinear systems (4.3) and (4.4), can be written in the following general form

(4.5)




A B Q
−B⊤ 0 0
−γg̃K 0 D(~y)





~y
~p
~q


 =



H
0
0


 ,

where the matrices A ∈ R2n×2n, B ∈ R2n×l and Q ∈ R2n×4m are sparse and constant with
respect to the variables ~y ∈ R2n, ~q ∈ R4m and ~p ∈ Rl, K ∈ R4m×2n stands for a linear operator
and the right hand side H depends on known values of previous time steps.

The matrix D(~y) is given by D(~y) := diag(m(~y)), where the vector function m(~y) is defined
by

m(~y) := max(g̃~e, γN (K~y)).

Here, N : R4m → R4m represents a nonlinear and Newton differentiable function. Therefore,
since the max function is Newton differentiable when defined from Rs to Rt, for all s, t ∈ N (see
[19]), we can conclude that D(~y) is also Newton differentiable with respect to the variable ~y (see
[22, 7, 25]). Furthermore, the Newton derivative is given by

(4.6) D′(~y) := γχAN ′(K(~y))K,

where N ′ is the Newton derivative of N and χA is defined by χA := diag(~ℓ), where

(4.7) ~ℓi :=

{
1 if N (K(~y))i ≥ eg

γ

0 else

Remark 4.3. The function χA is the indicator function of the active set associated to the
equation −γg̃K ~y + D(~y)~q = 0. In the particular case of system (4.2), this function allows us
to characterize the active set Aγ (see system (3.1)), which represents an approximation of the
regions in which the material behaves as a visco-plastic fluid.

The structure of (4.5) is therefore similar as the one obtained for the stationary model (see
[7, p. 15]) and the semismooth Newton algorithm developed in [7] may be used to solve the
nonlinear systems given by (4.5).

Indeed, system (4.5) can be reformulated as the following operator equation

F (~y, ~p, ~q) =



A~y + B~p+ Q~q−H

−B⊤~y
−γg̃K~y + D(~q)


 = 0

and its Newton step can be written as:

(4.8)




A B Q
−B⊤ 0 0

−γg̃K + D′(~y) diag(~q) 0 D(~y)





δy
δp
δq


 =



−A~y − B~p−Q~q + H

B⊤~y
γg̃K~y −D(~y)~q


 ,

where D′(~y) is given by (4.6).
Note that the matrix in the left hand side of (4.8) is a Stokes-type matrix. There are several

approaches for the efficient solution of this kind of systems. In this paper we use a penalization
of the equation −B⊤~y, representing the incompressibility constraint. The idea is to consider the
following equation

−B⊤~y + ς~p = 0,

with, ς > 0 sufficiently small. This procedure is motivated by continuous stabilization procedures
developed for the finite element approximation of Stokes and Navier-Stokes equations (see [3, 18]).
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The procedure described above leads us to the following system of equations

(4.8’)




A B Q
−B⊤ ςI 0

−γg̃K + D′(~y) diag(~q) 0 D(~y)





δy
δp
δq


 =



−A~y − B~p−Q~q + H

B⊤~y − ς~p
γg̃K~y −D(~y)~q


 ,

where I represents the identity matrix.
Note that, since D(~y) is invertible, system (4.8’) is an uncoupled nonlinear system of equations

for the Newton residuum δy, δp, δq. In fact, δq and δp can be calculated by

δq = −~q + D(~y)−1 [γg̃K~y + (γg̃K −D′(~y)diag(~q))δy](4.9)

δp =
1

ς

(
B⊤~y + B⊤δy

)
− ~p,(4.10)

and for the calculation of δy, we need to solve the following system of equations

Mδy = F ,
where M ∈ R2m×2m and F ∈ R2m are given by

M :=
[
A + QD(~y)−1(γg̃K −D′(~y)diag(~q)) + 1

ς BB⊤
]

F := −A~y + H + QD(~y)−1γg̃K~y − 1
ς BB⊤~y

In order to guarantee the existence of solution for the above system of linear equations, positive
definiteness of the system matrix M must be proved.

In the particular case of the stationary Bingham flow, which in [7] is analyzed as a minimization
problem, it is proved that positive definiteness of matrix M also implies that δy is a descent
direction of the associated energy functional. This fact guarantees global convergence of the
proposed semismooth-Newton algorithm (see [7, Lem. 6.3]). Further, it is proved that the matrix
M is uniformly positive definite if a condition like N (~q)i ≤ g is fulfilled for all i = 1, . . . , 4m.
Thus, in order to guarantee the positive definiteness of the matrix M, a projection procedure of

the multiplier ~q on the feasible set {~φ ∈ R4m : N (~φ)i ≤ g, for all i = 1, . . . , 4m} is performed

when constructing M. Due to this globalization procedure, we obtain a modified matrix M̂,
which is always positive definite. Moreover, in spite of the modifications of the system matrix in
the Newton step, a superlinear rate of convergence is guaranteed under the assumption that the
matrix A is positive definite (see [7, Sec. 6] and [25, Th. 4.1, Th. 4.2]).

In the case of time-dependent Bingham flow, the proposed approach is equivalent to analyze
the problem, in each time step k, as a minimization problem of a given energy functional. Thus,
the analysis developed in [7, Sec. 6] can be extended to the solution of system (4.8’).

We then propose to use the following algorithm to solve this problem.

Algorithm (SSN)

1. Initalize (~y0, ~q0, ~p0) ∈ R2n × R4m × Rl and set k = 0.
2. Estimate the active sets, i.e., determine χA.

3. Project ~q in the feasible set and construct matrix M̂. Solve

M̂δy = F .
4. Compute δq and δp according to (4.9) and (4.10) respectively.
5. Update ~yk+1 := ~yk + δy, ~qk+1 := ~qk + δq and ~pk+1 := ~pk + δp.
6. Stop, or set k := k + 1 and go to step 2.

Next, we propose a combined algorithm for the numerical solution of the time-dependent
Bingham flow problem.
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Figure 2. Experiment 1. H1-norm of the velocity field y(t). Variation of the
kinetic energy of the flow.

Algorithm (BDF2-SSN)

(1) Set ~y 0 := ~y0. By using Algorithm SSN, solve systems (4.3) and (4.4) to obtain ~y
2/3
0

and ~y
4/3
0 , respectively. Set ~y 1 := 1

2 (~y
2/3
0 + ~y

4/3
0 ) and set k = 0.

(2) For k = 0, . . . ,N − 2, define

F(~y k+2, ~q k+2, ~p k+2) :=




(
3

2δtM
h + Ah

µ

)
~y k+2 + Qh~q k+2 +Bh~p k+2 − F̃ k+2

−(Bh)⊤~y k+2 + ς~p k+2

−γg̃Eh~y k+2 + max
(
g̃~e, γN(Eh~y k+2)

)
⋆ ~q k+2


 ,

and solve the nonlinear algebraic equation F(~y k+2, ~q k+2, ~p k+2) = 0, by using Algorithm
SSN.

Remark 4.4. Note that, since the mass matrix Mh is positive definite, the matrix
(

3
2δtM

h + Ah
µ

)

is also positive definite (see [23, p. 148]), which implies that the approximated solution yk is
obtained, in any time iteration k, at a local superlinear rate.

5. Computational results

In this section, we present two experiments which show the behavior of the Algorithm BDF2-
SSN. First, we analyze the wall driven cavity flow and then the flow in a reservoir, i.e., consid-
ering homogeneous Dirichlet boundary conditions.

Let us discuss the parameters of the algorithm. Let ‖δk
h‖ := ‖δy‖H1,h + ‖δq‖(L2,h)4 + ‖δp‖L2,h ,

where the upper index k represents each time step and ‖ · ‖H1,h , ‖ · ‖(L2,h)4 and ‖ · ‖L2,h stand for
the discrete versions of ‖ · ‖H1 , ‖ · ‖(L2)4 and ‖ · ‖L2, respectively. We stop the inner algorithm

SSN, in each time step k, as soon as ‖δk
h‖ is lower than

√
ǫ, where ǫ denotes the machine accuracy

(≈ 2.2204e-016). Additionally, we choose ς :=
√
ǫ, and fix the regularization parameter γ = 103.

We consider uniform space meshes whose components have all the same area and measure the
14
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Figure 3. Experiment 1. Streamlines and rigid (black) and plastic (white)
zones in the flow for: t = 0.01, t = 0.03, t = 0.05 and T = 0.1.

size of these meshes by the constant radius of the inscribed circumferences of the triangles in the
mesh, represented by h. Further, we define the time step size as δt := 0.1 ∗ (h4/5).

Let us recall that the following experiments are based on the tests and examples presented
in [9, 14, 15, 16, 24]. Furthermore, the obtained results with the proposed methodology are in
good agreement with the results presented in these contributions.

5.1. Experiment 1. Here we analyze the wall driven cavity flow in the time interval [0, 0.1]. We
consider that Ω :=]0, 1[×]0, 1[, ΓD := {(x1, x2) : 0 < x1 < 1 x2 = 1} and the following boundary
condition

yD(x1, x2) :=

{
0 if (x1, x2) ∈ Γ \ ΓD,
{1, 0} if (x1, x2) ∈ ΓD.

We study a flow given by f = 0, g = 2.5 and µ = 1. We choose ~y 0 = 0 and ~y 1 = 1
2 (~y

2/3
0 +

~y
4/3
0 ), where the intermediate values ~y

2/3
0 and ~y

4/3
0 are calculated according to (4.3) and (4.4),

respectively. Further, we consider a space mesh given by h = 0.0033 (≈ 1/300) and a time mesh
given by δt= 0.001 (= 0.1 ∗ (h4/5))
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t 0.01 0.03 0.05 0.1
0.0187 0.1136 0.0905 –

‖δk
h‖ 4.63e-5 4.27e-4 8.48e-5 2.19e-4

2.75e-9 1.48e-8 3.99e-9 4.05e-9
# it 8 4 3 2

Table 1. Values of ‖δk
h‖ in the last three inner iterations of the algorithm SSN

and total number of inner iterations, for t = 0.01, t = 0.03, t = 0.05 and T = 0.1.

In Figure 2, we show the evolution of ‖y(t)‖H1,h in the time interval [δt, 0.1]. This figure gives
insight into the variation of the kinetic energy of the flow. Since the norm of the velocity profile
‖y(t)‖H1,h tends to a constant limit as t → ∞, we can conclude that the kinetic energy of the
flow also tends to be constant as t → ∞. This fact implies that the flow will reaches a steady
state for a finite t (see [14, p. 954]).

In Figure 3, the calculated rigid and plastic regions, as well as the streamlines of the flow, for
several instants, are presented. We can observe the evolution of the flow until T = 0.1.

With respect to the behavior of Algorithm SSN, the average number of iterations is 4.27.
That means that the inner SSN algorithm only needs to solve, in average, approximately four
2n× 2n systems of equations per time iteration. Further, in Table 1, we show the values of ‖δk

h‖
in the last three inner iterations of the algorithm SSN, for several time steps, as well as the
total number of inner iterations in each of these time steps. Here, it is possible to appreciate
the fast decay of the residuum in the last iterations. This fact helps us to show the superlinear
convergence rate of the inner algorithm in each time step.

5.2. Experiment 2. In this experiment, we consider the flow in a reservoir, i.e., we consider
homogeneous Dirichlet boundary conditions and a forcing term given by

f(x1, x2) := 300(x2 − 0.5, 0.5 − x1)

Further, we take g = 10 and µ = 1, and we consider a space mesh given by h = 0.0033 (≈ 1/300)
and a time mesh given by δt= 0.001 (= 0.1 ∗ (h4/5)).

In Figure 4, the calculated rigid and plastic regions, as well as the streamlines in the flow, for
several instants, are presented. We can observe the evolution of the flow until T = 0.1.

In this experiment, we investigate the behavior of the flow when the sources of energy, which
provoke the flow, are cut off. Thus, we analyze the behavior of the fluid in two time intervals
[0, 0.1] and [0.1,∞). For the first interval we assume that the given forcing term rules the flow.

We take the initial values ~y 0 = 0 and ~y1 = 1
2 (~y

2/3
0 + ~y

4/3
0 ), where the intermediate values ~y

2/3
0

and ~y
4/3
0 are calculated according to (4.3) and (4.4), respectively.

Then, at t = 0.1, we stop the flow by eliminating the only source of energy for the flow, given
by the forcing term. Therefore, in the time interval [0.1,∞) we consider that f = 0. In this

interval, we consider the initial values ~y 0 = ~y0.1 and ~y1 = 1
2 (~y

2/3
0.1 +~y

4/3
0.1 ), where the intermediate

values ~y
2/3
0.1 and ~y

4/3
0.1 are also calculated according to (4.3) and (4.4), respectively.

In Figure 5, we present the evolution of ‖y(t)‖H1,h in the time interval [0,∞). As in the
previous experiment, here we observe that the kinetic energy of the flow tends to a constant
value implying that the fluid will reach a steady state in finite time. Moreover, as expected, the
kinetic energy goes fast to zero, since there is no source of energy to provoke movement. This
fact shows that our approach fulfills the propertie that y(t) → 0 in finite time if f = 0 and y = 0
on Σ.
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Figure 4. Experiment 2. Streamlines and rigid (black) and plastic (white)
zones in the flow for: t = 0.01, t = 0.03, t = 0.05 and T = 0.1.

appendix

Proof of Theorem 3.1. Let us consider a base {w1, . . . ,wm, . . .} ⊂ V , free and total in V ,
and let us introduce the following problem, for m ∈ N: find ym(t) =

∑m
j=1 gjm(t)wj such that

(5.1)





(∂tym(t) , wi)L2 + a(ym(t),wi) + b(ym(t), Ewi)

+c(ym(t),ym(t),wi) = (f(t) , wi)L2 , for i = 1, . . . ,m,

ym(0) = y0m ∈ Vm := span{w1, . . . ,wm},

with limm→∞ y0m = y0 ∈ H .
We divide the proof in four steps.

i)Existence and uniqueness of solutions for (5.1). First, note that system (5.1) constitutes a
17
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Figure 5. Experiment 2. H1-norm of the velocity field y(t). Variation of the
kinetic energy of the flow

nonlinear differential system with respect to the variables g1m, . . . , gmm, namely
∑m

j=1 ∂tgjm(t) (wj , wi)L2 + γ
∑m

j=1 gjm(t) (Ewj , Ewi)L2×2

+g̃γ

( ∑m
j=1 gjm(t)Ewj

max(g̃, γ‖∑m
j=1 gjm(t)Ewj‖)

, Ewi

)

L2×2

+
∑m

j,k=1 c(wj ,wk,wi)gim(t)gkm(t) = (f(t) , wi)L2 .

By inverting the matrix (wj , wi)L2 , the system can be reformulated as a standard ODE system.
Moreover, we have that

∥∥∥∥∥
g̃γ
∑m

j=1 gjm(t)Ewj

max(g̃, γ‖∑m
j=1 gjm(t)Ewj‖)

∥∥∥∥∥
L2×2

≤ g̃,

which implies that the Carathéodory hypotheses are verified (see [6, p. 43] or [11, p. 45]) and,
therefore, there exists a maximal solution for (3.2), on some interval [0, tm]. The choice tm = T
can be made from the a-priori estimates derived next.

ii)A-priori estimate. Multiplying the equations in (5.1) by gim(t) and adding them, we obtain
that

(y′
m(t) , ym(t))L2 + µ‖ym(t)‖2

V + (b(ym(t)) , Eym(t))L2

+ c(ym(t),ym(t),ym(t)) = (f(t) , ym(t))L2 ,

which, from the properties of c(·, ·, ·) and since (b(v), Ev)L2 ≥ 0, for all v ∈ V , implies that

d
dt‖ym(t)‖2

H + 2µ‖ym(t)‖2
V ≤ 2‖f(t)‖V ′‖ym(t)‖V

≤ µ‖ym(t)‖2
V + 1

µ‖f(t)‖2
V ′ .

Consequently, proceeding as in the proof of [26, Th. 3.1, p. 193], it follows that ym is uniformly
bounded in L∞(H)∩L2(V ). Moreover, ‖ym(T )‖H is bounded and, therefore, tm = T in step i).
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iii)Boundedness in Hθ(R, V,H). First, let ũ represent the extension of u(t) from [0, T ] to R,
for x ∈ Ω, i.e., ũ(x, t) : Ω × R → V and

ũ(x, t) :=

{
u(x, t) if (x, t) ∈ Q
0 elsewhere.

Furthermore, let û(τ) represent the Fourier transform of the function ũ. Next, by following [26,
p. 185], we define the space Hθ(R, V,H) by

Hθ(R, V,H) :=
{
u ∈ L2(R;V ) : τ → |τ |θû(τ) ∈ L2(R, H)

}
, θ > 0,

Proceeding as in [26] we define the operators A : V → V ′, B : V → V ′ and C : V → V ′ by

(5.2)

〈Ay,v〉V ′,V = a(y,v), for all v ∈ V ,

〈By,v〉V ′,V = (b(y), Ev)L2 , for all v ∈ V

〈Cy,v〉V ′,V = c(y,y,v), for all v ∈ V ,

In order to proof that ỹm is bounded in Hθ(R, V,H), it suffices to verify that

(5.3)

∫ T

0

‖fm(t)‖V ′ dt ≤ const., for all m,

where fm(t) := f(t) − µAym(t) − Bym(t) − Cym(t) (see [26, pp. 193-194]).
Since ‖b(w)‖L2 ≤ g̃, for all w ∈ V , we have that

(5.4)

‖Bym‖V ′ = sup‖v‖V =1 | 〈Bym(t) , v〉V ′,V |
= sup‖v‖V =1 | (b(ym(t)), Ev)L2 |
≤ sup‖v‖V =1 ‖b(ym(t))‖L2‖Ev‖L2 ≤ g̃.

Furthermore, we know that ‖Cw‖V ′ ≤ c‖w‖2
V , for all w ∈ V (see [26, p. 191]), which implies,

together with (5.4), that
∫ T

0

‖fm(t)‖V ′ dt ≤
∫ T

0

(
‖f(t)‖V ′ + µ‖ym(t)‖V + g̃ + c‖ym(t)‖2

V

)
dt.

Due to the fact that ym(t) is uniformly bounded in L∞(H) ∩ L2(V ), we verify (5.3). Conse-
quently, we get that ỹ is bounded in Hθ(R, V,H) for some θ > 0 (for more details see [26, p. 194]).

iv)Convergence along a subsequence. Since by step ii) the sequence {ym} is uniformly bounded
in L∞(H) ∩ L2(V ), there exists a subsequence {yℓ} ⊂ {ym} such that

yℓ
∗
⇀ y in L∞(H) weakly star,

yℓ ⇀ y in L2(V ) weakly,

yℓ(T ) ⇀ ξ in L2(Ω) weakly.

Additionally, since ‖Bw‖V ′ ≤ g̃, for all w ∈ V , it follows that

Byℓ ⇀ χweakly in L2(V ′).

Since ỹm is bounded in Hθ(R, V,H), for some θ > 0, it follows (see [26, Th. 2.2, p. 186]) that

yℓ → y strongly in L2(H)

and, consequently, (see [26, Lem. 3.2, p. 196]), we have that
∫ T

0

c(yℓ,yℓ,v) dt →
∫ T

0

c(y,y,v) dt, for all v ∈ C1(Q).
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Multiplying the equations in (5.1) by a continuous differentiable function ψ : [0, T ] → R, such
that ψ(T ) = 0, and integrating by parts yields

−
∫ T

0 (yℓ(t) , ψ
′(t)wi)L2 +

∫ T

0 a(yℓ(t), ψ(t)wi) +
∫ T

0 〈Byℓ(t) , ψ(t)wi〉V ′,V

+
∫ T

0
c(yℓ(t),yℓ(t), ψ(t)wi) = ψ(0) (y0ℓ , wi)L2 +

∫ T

0
(f(t) , ψ(t)wi)L2 .

By passing to the limit in the previous equation, we obtain that

(5.5)
−
∫ T

0
(y(t) , ψ′(t)v)L2 +

∫ T

0
a(y(t), ψ(t)v) +

∫ T

0
〈χ , ψ(t)v〉V ′,V

+
∫ T

0
c(y(t),y(t), ψ(t)v) = ψ(0) (y0 , v)L2 +

∫ T

0
(f(t) , ψ(t)v)L2 ,

for all v which is a linear combination of wi. Since, span{w1, . . . ,wm, . . .} = V , equation (5.5)
holds for all v ∈ V . Furthermore, taking ψ ∈ D(0, T ), we get that y satisfies

(5.6) (∂ty(t) , v)L2 + a(y,v) + 〈χ , v〉V ′,V + c(y,y,v) = (f(t) , v)L2 , for all v ∈ V ,

in distributional sense.
Next, in order to verify the initial and final condition, we consider the system

(ỹℓ(t) , wj)L2 +
〈
Ãyℓ(t) , wj

〉
V ′,V

+
〈
B̃yℓ(t) , wj

〉
V ′,V

+
〈
C̃yℓ(t) , wj

〉
V ′,V

=

(
f̃(t) , wj

)
L2

+ (y0ℓ , wj)L2 δ(t− 0) − (yℓ(T ) , wj)L2 δ(t− T ),

where ỹℓ, Ãyℓ, B̃yℓ, C̃yℓ and f̃ stand for the extension to R of yℓ, Ayℓ, Byℓ, Cyℓ and f ,
respectively. Passing to the limit as ℓ→ ∞ yields

(ỹ(t) , wj)L2 +
〈
Ãy(t) , wj

〉
V ′,V

+ 〈χ̃(t) , wj〉V ′,V +
〈
C̃y(t) , wj

〉
V ′,V

=

(
f̃(t) , wj

)
L2

+ (y0 , wj)L2 δ(t− 0) − (ξ , wj)L2 δ(t− T ), for all j,

which by density implies that

(5.7)





(ỹ(t) , v)L2 +
〈
Ãy(t) , v

〉
V ′,V

+ 〈χ̃(t) , v〉V ′,V +
〈
C̃y(t) , v

〉
V ′,V

=

(
f̃ (t) , v

)
L2

+ (y0 , v)L2 δ(t− 0) − (ξ , v)L2 δ(t− T ).

Now, since (5.6) holds in distributional sense, it follows, by restricting (5.7) to [0, T ] and com-
paring with (5.6), that

y(0) = y0 and ξ = y(T ).

Finally, it has to be verified that χ = By. Since, By corresponds to the derivative of the
convex functional ∫

Ω

Ψ(Ey),

with Ψ : Rd×d → R defined by

Ψ :=

{
g̃‖A‖ − eg2

2γ if ‖A‖ ≥ eg
γ

γ
2‖A‖2 if ‖A‖ < eg

γ ,

it constitutes a monotone and hemicontinuous operator (see [21, p. 158]). Therefore,

(5.8) χℓ :=

∫ T

0

〈Byℓ(t) − Bv(t) , yℓ(t) − v(t)〉V ′,V dt ≥ 0, for all v ∈ L2(V ).
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From (5.1) and the properties of c(·, ·, ·), it follows that
∫ T

0 〈Byℓ(t) , yℓ(t)〉V ′,V dt =
∫ T

0 (f(t) , yℓ(t))L2 dt

−
∫ T

0
〈Ayℓ(t) , yℓ(t)〉V ′,V dt+ 1

2‖y0ℓ‖2
H − 1

2‖yℓ(T )‖2
H ,

and, therefore,

χℓ =
∫ T

0 (f(t) , yℓ(t))L2 dt−
∫ T

0 〈Ayℓ(t) , yℓ(t)〉V ′,V dt+ 1
2‖y0ℓ‖2

H

− 1
2‖yℓ(T )‖2

H −
∫ T

0
〈Byℓ(t) , v〉V ′,V dt−

∫ T

0
〈Bv(t) , yℓ − v〉V ′,V dt,

which, since lim inf ‖yℓ(T )‖2
H ≥ ‖y(T )‖2

H , implies that

(5.9)
lim sup

ℓ→∞
χℓ ≤

∫ T

0
(f(t) , y)L2 dt−

∫ T

0
〈Ay(t) , y(t)〉V ′,V dt+ 1

2‖y0‖2
H

− 1
2‖y(T )‖2

H −
∫ T

0
〈χ(t) , v〉V ′,V dt−

∫ T

0
〈Bv , y(t) − v〉V ′,V .

Multiplying (3.3) by y and integrating by parts with respect to t, we obtain that

(5.10)

∫ T

0

(
(f(t) , y(t))L2 − 〈Ay(t) , y(t)〉V ′,V

)
dt

+ 1
2‖y0‖2

H − 1
2‖y(T )‖2

H =
∫ T

0
〈χ(t) , y(t)〉V ′,V dt,

which, together with (5.8) and (5.9), implies that

(5.11)

∫ T

0

〈χ(t) − Bv , y(t) − v〉V ′,V dt ≥ 0, for all v ∈ V .

Using the hemicontinuity of B and taking v = y − λw, λ > 0 with w ∈ L2(V ), we obtain, from
(5.11), that

λ

∫ T

0

〈χ(t) − B(y(t) − λw) , w〉V ′,V dt ≥ 0,

which implies that

(5.12)

∫ T

0

〈χ(t) − B(y(t) − λw) , w〉V ′,V dt ≥ 0.

Taking the limit as λ→ 0 in (5.12), we get, by Lebesgue’s Theorem, that
∫ T

0

〈χ(t) − By(t) , w〉V ′,V dt ≥ 0, for all w ∈ V ,

and, therefore, χ = By.
For the uniqueness, the proof is similar to the one for the unregularized problem given in

[10]. �
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7. J.C. De los Reyes and S. González, Numerical simulation of two-dimensional Bingham fluid flow by semis-

mooth Newton methods, submitted.
8. , Path following methods for steady laminar Bingham flow in cylindrical pipes, ESAIM: Mathematical

Modelling and Numerical Analysis 43 (2009), 81–117.
9. E.J. Dean, R. Glowinski, and G. Guidoboni, On the numerical simulation of Bingham visco-plastic flow: Old

and new results, Journal of Non-Newtonian Fluid Mechanics 142 (2007), 36–62.
10. G. Duvaut and J.L. Lions, Inequalities in mechanics and physics, Springer-Verlag, Berlin, 1976.
11. H.O. Fattorini, Infinite dimensional optimization and control theory, Cambridge University Press, 1999.
12. I. Frigaard and C. Nouar, On the usage of viscosity regularisation methods for visco-plastic fluid flow com-

putation, Journal of Non-Newtonian Fluid Mechanics 127 (2005), 1–26.
13. V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations, Lecture Notes

in Mathematics, Springer, 1981.
14. R. Glowinski, Finite element methods for incompressible viscous flow, Numerical Methods for Fluids (Part

3) (P.G. Ciarlet and J.L. Lions, eds.), Handbook of Numerical Analysis, vol. 9, Elsevier, 2003.
15. R. Glowinski and P. Le Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics,

SIAM Studies in Applied Mathematics, SIAM, Philadelphia, PA, 1989.
16. R. Glowinski, J.L. Lions, and R. Tremolieres, Analyse numerique des inequations variationnelles. Applications
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Politécnica Nacional Quito, Ecuador and Institut für Mathematik und Wissenschaftliches Rechnen,

University of Graz, Austria.

E-mail address: sgonzalez@math.epn.edu.ec

22


