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Abstract. In this paper we present a kinetic model based on numerical
simulations of a chemical vapor deposition (CVD) process.
We discuss a model that is based on kinetics of the deposition rates to
the material. Such a simple model can explain the experimental results.
Based on experiments with T i3SiC2 we verify our model. Here differ-
ent processes of ionized T i+, T i++ and C are important to achieve our
stoichiometry. The numerical methods are based on iterative schemes to
solve coupled and nonlinear differential equations. The results are dis-
cussed with physical experiments to give a valid model for the assumed
growth of thin layers.

Keywords: PE-CVD process, pathway model, convection-diffusion equations.
AMS subject classifications. 35K25, 35K20, 74S10, 70G65.

1 Introduction

We motivate our studying on simulating a thin film deposition process that can
be done with plasma enhanced chemical vapor deposition (PECVD) processes.
In the last years, due to the research in producing high temperature films by
depositing of low pressure, processes have increased. The interest on standard
applications to TiN and TiC are immense but recently also deposition with new
material classes known as MAX-phases are important. The MAX-phases are
nanolayered terniar metal-carbides or -nitrides, where M is a transition metal,
A is an A-group element (e.g. Al, Ga, In, Si, etc.) and X is C (carbon) or N
(nitrogen).
We present a model for the kinetic processes of the precursor gases in a low
temperature and low pressure plasma. The model can be extended as a pathway
model, see [1], to achieve the deposition rates of the stoichiometry 3T i, Si and
2C.
We take into account the kinetics of CVD processes in the reactor and the less
retardation of molecules, which are not treated by the plasma.
The model is discussed as a kinetic model with systems of reaction equations.
The paper is outlined as follows.
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In section 2 we present our mathematical model and a possible reduced model
for the further approximations. In section 3 we present the underlying analysis
of the numerical methods. The numerical experiments are given in Section 4. In
the contents, that is given in Section 5, we summarize our results.

2 Mathematical Model

In the following, the models are discussed in two directions of qualitative and
quantitative models:

1. Reaction-diffusion equations, see [7] (qualitative results);
2. Pathway model, see [1] (quantitative results).

In the models we assume a moderate Knudsen Number (Kn < 1), so that we
can deal with continuous descriptions. The Knudsen Number (Kn) which is the
ratio of the mean free path λ over the typical domain size L.

2.1 Transport Model

Here we deal with a transport model and continuum flow of our gaseous and
ionized species. Such a mass transport can be treated with a convection-diffusion
reaction equation, when assuming low temperatures and low pressures. So we
take into account the balance of impulse and energy.
Three basic equations describe the conservation of mass, momentum and energy,
that are sufficient to describe the gas transport in the reactors, see [14].
We concentrate on the conservation of mass and assume that the energy and
momentum is conserved, see [7]. Therefore the continuum flow can be described
as a convection-diffusion equation given as:

∂
∂t

c + ∇F − Rg = 0, in Ω × [0, T ] (1)

F = vc − D∇c,

c(x, t) = c0(x), on Ω, (2)

c(x, t) = c1(x, t), on ∂Ω × [0, T ], (3)

where c is the molar concentration and F the flux of the species. D is the diffusion
of the species, v is the velocity and Rg is the reaction term. The initial value
is given as c0 and we assume a Dirichlet Boundary with the function c1(x, t)
sufficient smooth.

2.2 Pathway model

If we assume a simple consideration of the rates in the reactor, we can also deal
with a pathway model. Such a model takes into account the rates of the different
species, here for example T i+, Si+, C.
We are only interested on a quantitative result and verify with physical experi-
ments.
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Single Pathway

Here our model is based on the following pathway model of [1], see Figure 1.
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Fig. 1. Pathway model (Christie 2005).

Here our model is based on a generalization of a single species pathway model
of [1], see Figure 2.

Remark 1. We are interested on simulating the loss rates of the processes in the
plasma enhanced process.

2.3 Kinetic: Chemical Reactions

The kinetic processes involve reactions with the following precursor gases.
Tetramethylsilane (CH3SiCl3):
According to Zhang and Huettinger (see [25]) and the available data (see Table
1) we first of all propose the following reaction mechanism for the CVD of SiC
from Methyltrichlorosilane:

CH3SiCl3
k1−→ ·CH3 + ·SiCl3 (4)

·CH3 + H2
k2−→ CH4 + ·H (5)
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Fig. 2. Pathway model.

·CH3 + CH3SiCl3
k3−→ CH4 + Cl3SiĊH2 (6)

·SiCl3 + HCl
k4−→ HSiCl3 + Ċl (7)

2 · SiCl3
k5−→ SiCl4 + S̈iCl2 (8)

HSiCl3
k6−→ S̈iCl2 + HCl (9)

SiCl4 + ·H
k7−→ SiCl3 + HCl (10)

S̈iCl2 + CH4
k8−→ ClS̈iCH3 + HCl (11)

2ClS̈iCH3
k9−→ [ṠiHClĊH2]2 (12)

The last reaction ends up in the deposition of SiC. The reaction constants k1 to
k9 are given in Table 1, where R = 8.314472 J

mol
.

According to the previous mechanism we formulate the deposition of SiC via
Tetramethylsilane:

Si(CH3)4 → ·CH3 + ·Si(CH3)3 (13)

·CH3 + H2 → CH4 + ·H (14)

·CH3 + Si(CH3)4 → CH4 + (CH3)3SiĊH2 (15)

·Si(CH3)3 + H2 → HSi(CH3)3 + Ḣ (16)

2 · Si(CH3)3 → Si(CH3)4 + S̈i(CH3)2 (17)

Si(CH3)4 + H2 → HSi(CH3)3 + CH4 (18)

HSi(CH3)3 → S̈i(CH3)2 + CH4 (19)

S̈i(CH3)2 → ṠiH2ĊH2 (20)

The last reaction ends up in the deposition of SiC.
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ki rate reaction order source

k1 1018s−1
· exp(−408 kJ

mol
/(RT )) 1 [18]

k2 1.45 · 10−11 cm
3

mol·s
· exp(−56 kJ

mol
/(RT )) 2 [19]

k3 1.26 · 10−11 cm
3

mol·s
· exp(−48 kJ

mol
/(RT )) 2 [20]

k4 1.54 · 10−20 cm
3

mol·s
· exp(−7.8 kJ

mol
/(RT )) 2 [21]

k5 109 cm
3

mol·s
2 [22]

k6 4.39 · 1014s−1
· exp(−301 kJ

mol
/(RT )) 1 [23]

k7 2.3 · 10−11 cm
3

mol·s
· exp(−40 kJ

mol
/(RT )) 2 [24]

k8 102 cm
3

mol·s
2 [22]

k9 109 cm
3

mol·s
2 [22]

Table 1. Reaction constants for the formation of SiC from Methyltrichlorosilane

Titanium precursor:
We will now investigate the consecutive decay of Tetraethyltitanium which can
lead to the deposition of TiC:

T i(CH2CH3)4 → ·T i(CH2CH3)3 + ·CH2CH3 (21)

·T i(CH2CH3)3 → T̈ i(CH2CH3)2 + ·CH2CH3 (22)

T̈ i(CH2CH3)2 → ·T̈ iCH2CH3 + ·CH2CH3 (23)

Additionally we can use a titanium precursor shown in Figure 3. Here we can
step by step separate the ·CH3 groups.
The optimization of this processes is used to derive T i3SiC2 at last.

Fig. 3. Cp*TiMe3 or (Trimethyl)pentamethylcyclopentadienyltitanium(IV)
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The apparatus is given as in Figure 4, where the sources are given.
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Fig. 4. Real-life domain of the CVD apparatus and their inflow- and outflow sources.

3 Iterative Methods

We deal with the method of successive approximations, or Picard iteration, which
provides a method that can, in principle, be used to solve any initial value
problem.

y = f(t, y), y(t0) = y0 (24)

It starts by observing that any solution to (24) must also be a solution to

φ(t) = y0 +

∫ t

t0

f(s, φ(s)) ds (25)

which is proofed, see [12] and [13], and then iteratively constructing a sequence
of solutions that get closer and closer to the actual solution of (25).
The successive approximations are all based on the integral equation (25), as
follows:

φ0(t) = y0 (26)
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φ1(t) = y0 +

∫ t

t0

f(s, y0) ds (27)

φ2(t) = y0 +

∫ t

t0

f(s, φ1(s)) ds (28)

φ3(t) = y0 +

∫ t

t0

f(s, φ2(s)) ds (29)

and in general

φk(t) = y0 +

∫ t

t0

f(s, φk−1(s)) ds (30)

If one can demonstrate that a sequence of solutions φ0, φ1, φ2, . . . converges to
some function φ(t) that satisfies equation (25) then, the argument goes, one has
not only proven the existence of a solution to the initial value problem, but has
also constructed a formula (however unwieldy) for the solution.
Based on this results we introduce the following iterative operator splitting meth-
ods.

3.1 Iterative Operator Splitting Method

A method to solve large coupled differential equations is the Waveform-Relaxation
scheme.
The iterative method was discussed in [17] and [9]. For the method, there exist
Gauss- or Jacobian schemes to decouple at least the schemes more or less effec-
tive. To accelerate the schemes, analytical support is important.
We deal with the following ordinary differential equation or assume a semi-
discretized partial differential equation:

ut = f(u, t), in (0, T ) ,

u(0) = v0,

where u = (u1, . . . , um)t and f(u, t) = (f1(u, t), . . . , fm(u, t))t.
We apply the Waveform-Relaxation method in the Jacobian form for i = 0, 1, . . .m
and have:

∂u1,i(x, t)

∂t
= f1(u1,i, u2,i−1, . . . , um,i−1) with u1,i(t

n) = u1(t
n) (31)

∂u2,i(x, t)

∂t
= f2(u1,i−1, u2,i, u3,i−1 . . . , um,i−1) with u2,i(t

n) = u2(t
n) (32)

...
∂um,i(x, t)

∂t
= fm(u1,i−1, . . . , um−1,i−1, um,i) with um,i(t

n) = um(tn) (33)
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where for the initialization of the first step we have u1,−1(t) = u1(t
n), . . . , um,−1(t) =

um(tn).
We reduce to the operator notation and assume the decomposition into two
operators. So we deal with:

∂ui

∂t
= A1(ui) + A2(ui−1), in (0, T ) , (34)

ui(0) = u(0) (35)

where ui = (u1,i, . . . , um,i).
We assume a linear part in the diagonal and a nonlinear part in the outer-
diagonal parts:

A1 = D, A2(u) = L(u) + U(u), (36)

where D is the diagonal part of matrix A(u) and L(u) + U(u) are the outer-
diagonal part of A(u).
The iterative splitting method as Waveform-Relaxation method written in the
analytical form for i = 0, 1, . . .m is:

ui(t
n) = exp(A1(t

n − tn−1))u(tn−1) +

∫ tn

tn−1

exp(A1(t
n − s)A2(ui−1(s))ds(37)

with ui(t
n) = u(tn), (38)

3.2 Application to a linear outer-diagonal part

We deal with the following equations:

∂tu1 = −λ1 u1 + λ2 u2 + . . . + λm um in Ω × (0, T ) , (39)

... (40)

∂tum = λ1 u1 + λ2 u2 + . . . − λm um in Ω × (0, T ) , (41)

u(0) = (c1, . . . , cm) ∈ Ω , (42)

The algorithm is given with semi-analytical solutions of the reaction equations

ũk = exp(−Λt)ũ0 + Λ−1(I − exp(−Λt))Λ̃ũk−1 , (43)

where the matrices are given as

ũk =











uk
1

uk
2
...

uk
m











, (44)

ũk−1 =











uk−1
1

uk−1
2
...

uk−1
m











, (45)
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Λ =











λ1 0 . . . 0
0 λ2 . . . 0
...

. . .
. . .

...
0 0 . . . λm











, (46)

Λ̃ =











0 λ2 . . . λm

λ1 0 . . . λm

...
. . .

. . .
...

λ1 λ2 . . . 0











, (47)

The iterative algorithm is given as
Step 1: ũ0 = (c0(x), . . . , cm(x))T

Step 2: Solve ũ1 with

ũ1 = exp(−Λt)ũ0 + Λ−1(I − exp(−Λt))Λ̃ũ0 , (48)

.....
Step k :

ũk = exp(−Λt)ũ0 + Λ−1(I − exp(−Λt))Λ̃ũk−1 , (49)

The stop-criterion is controlled after each step:
We have the absolute error of the solution-vector |ũk− ũk−1| ≤ err and we finish
the algorithm and obtain the results: u(t) = uk(t).

Remark 2. For modification to the Waveform-Relaxation method, we have the
following contributions:
1.) Gauss-Seidel Waveform Relaxation Method:
Here we apply the lower matrix for the iteration method.
2.) Block Jacobian Waveform Relaxation Method:
Here we have 2 × 2 blocks for the diagonals.
3.) Block Gauss-Seidel Waveform Relaxation Method:
Here we have 2 × 2 blocks for the diagonals and the lower matrix.

3.3 Nonlinear outer-diagonal part

For nonlinear outer-diagonal parts we have to apply successive approximations
given as:

ui(t
n) = exp(A1(t

n − tn−1)u(tn−1) +

∫ tn

tn−1

exp(A1(t
n − s)A2(ui−1(s))ds(50)

with ui(t
n) = u(tn), (51)

Because of the diagonal structure of the matrix A1 we can write the problem as
an m-vector function given as:

ui,j(t
n) = exp(ajj(t

n − tn−1)uj(t
n−1) +

∫ tn

tn−1

exp(ajj(t
n − s)fj(ui−1,j(s))ds(52)

with ui,j(t
n) = uj(t

n), (53)
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where fj(ui−1,j(s)) is the j-th row of the outer-diagonal part.

3.4 Numerical integration schemes

We have to apply to integrate the equation:

u(t) =

∫ t

tn

f̃(s)ds (54)

1.) Trapezoidal rule: u(t) = ∆t
2 (f̃(tn) + f̃(t)).

2.) Simpson rule: u(t) = ∆t
6 (f̃(tn) + 4 · f̃(tn + 1

2 (t − tn)) + f̃(t)), where the

values for f̃(tn + t−tn

2 ) are computed with the trapezoidal rule.

3.) Simplified Runge-Kutta method: u(t) = ∆t
4 (f̃(tn) + 3 · f̃(tn + 2

3 · (t − tn)))

4.) Runge-Kutta method: dy
dt

= f(t, y)
which takes the form
yn+1 = yn + h

∑s
i=1 biki,

ki = f
(

tn + cih, yn + h
∑s

j=1 aijkj

)

.

Implicit trapezoidal rule

0

1 1
2

1
2

1
2

1
2

(55)

Gauss Runge-Kutta

1
2 −

√

3
6

1
4

1
4 −

√

3
6

1
2 +

√

3
6

1
4 +

√

3
6

1
4

1
2

1
2

(56)

Lobatto IIIA

0 0 0 0
1
2

5
24

1
3 − 1

24
1 1

6
2
3

1
6

1
6

2
3

1
6

(57)

Remark 3. Special so called exponential Runge-Kutta Methods are also devel-
oped to taken into account the benefit of the exp operators, see [8]

5.) Exponential Runge-Kutta Methods:
To apply a more specific Runge-Kutta method that take into account the expo-
nential functions, we can apply an exponential Runge-Kutta method, see [8].
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The equation is given as:
dy
dt

= Ay + f(t, y)

0
c2 c2φ1,2

(1 − 1
2c2

)φ1
1
c2

φ1

(58)

where for c2 = 1
2 , we have b1 = 0 and

φ0(Aτ) = exp(Aτ)

φ1(Aτ) = exp(Aτ)−I

Aτ

φ2(Aτ) = φ1(Aτ)−I

Aτ

and
φi,j = φi,j(Aτ) = φi(cjAτ), 2 ≤ j ≤ s
and s is the stage of the RK method.

4 Numerical experiments

In the next experiments we deal with the kinetics of different precursor gases.

4.1 First experiment

We will now compute the following reaction:

SiH2 → Si + H2 (59)

The reaction is of first order and we get the following velocity law, where brackets
denote concentrations:

d[SiH2]

dt
= −k · [SiH2], (60)

where the temperature dependent reaction constant k is given as k(T ) = 9.73 ·
108 · exp(−261 kJ

mol
/(RT )) with R = 8.314472 J

mol·K
. The analytical solution is

then given as

[SiH2] = exp(−k(T )) · [SiH2]0. (61)

Figure 5 shows the graphs at the Temperatures 573K, 773K and 973K, where
the initial condition is [SiH2, 0]0 = 1mol

l
. We will now compute the following

reaction:

SiH4 → Si + 2H2 (62)

The reaction is of first order and we get the velocity law:

d[SiH2]

dt
= −k · [SiH2], (63)
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where the temperature dependent reaction constant k is given as k(T ) = 5.66 ·
1014 · exp(−244 kJ

mol
/(RT )) with R = 8.314472 J

mol·K
. The analytical solution is

then given as

[SiH4] = exp(−k(T )) · [SiH4]0. (64)

Figure 6 shows the graphs at the Temperatures 573K, 773K and 973K, where
the initial condition is [SiH4]0 = 1mol

l
.

We will now investigate the consecutive decay of Tetramethylsilane (TMS):

Si(CH3)4 → ·Si(CH3)3 + ·CH3 (65)

·Si(CH3)3 → S̈i(CH3)2 + ·CH3 (66)

S̈i(CH3)2 → ·S̈iCH3 + ·CH3 (67)

We assume the following velocity laws:

d[Si(CH3)4]

dt
= −k · [Si(CH3)4] (68)

d[·Si(CH3)3]

dt
= k · [Si(CH3)4] − 0.9k · [·Si(CH3)3] (69)

d[S̈i(CH3)2]

dt
= 0.9k · [·Si(CH3)3] − 0.85k · [S̈i(CH3)2] (70)

d[·S̈i(CH3)]

dt
= 0.85k · [S̈i(CH3)2], (71)

where the temperature dependent reaction constant k is given as k(T ) = 2 ·1014 ·
exp(−283 kJ

mol
/(RT )) with R = 8.314472 J

mol·K
. Figure 7 shows the graphs at the

Temperatures 573K, 773K and 973K, where the initial condition is [SiH2]0 =
1mol

l
.

In table 2 (trapezoidal rule), table 3 (Simpson rule) and table 4 (simplified

Runge-Kutta method) we present the computed errors (1/n ·
∑T

n=0 |c
k
i (tn) −

ck(tn)|/(ck(tn)), n-number of time steps, T-end time, i-iteration, k-component)
in comparison to the exact solution.

Remark 4. Based on the different temperatures, we obtain a slow reaction pro-
cess to low temperatures and a fast reaction process to high temperatures. So
a temperature between 700− 900K is appropriate for the reaction process time
which is about 2h. Here the remaining time in the reaction chamber is important
to have stable deposition rates.

4.2 Second experiment

In the second experiment we extend the kinetic reactions to MCS (precursor
gas).
For the formation of SiC via MCS we can formulate the following system of
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ci iteration number of time steps error

1 ≥ 1 10 3.79 · 10−11

1 ≥ 1 50 9.87 · 10−10

1 ≥ 1 100 2.73 · 10−9

2 ≥ 2 10 0.0003437234605
2 ≥ 2 50 0.00001374968496
2 ≥ 2 100 0.000003438763040

3 ≥ 3 10 0.005750371509
3 ≥ 3 50 0.0003643759657
3 ≥ 3 100 0.0001058235010

Table 2. Errors of the computations for the decay of TMS via trapezoidal rule (c1 =
Si(CH3)4, c2 = ·Si(CH3)3, c3 = S̈i(CH3)2)

ci iteration number of time steps error

1 ≥ 1 5 1.83 · 10−10

1 ≥ 1 25 7.52 · 10−10

1 ≥ 1 50 9.87 · 10−10

2 ≥ 2 5 9.44 · 10−8

2 ≥ 2 25 7.83 · 10−10

2 ≥ 2 50 3.26 · 10−10

3 ≥ 3 5 0.0002280476352
3 ≥ 3 25 0.000009163439105
3 ≥ 3 50 0.000002291716311

Table 3. Errors of the computations for the decay of TMS via Simpson rule (c1 =
Si(CH3)4, c2 = ·Si(CH3)3, c3 = S̈i(CH3)2)

ci iteration number of time steps error

1 ≥ 1 4 8.65 · 10−10

1 ≥ 1 17 1.46 · 10−9

1 ≥ 1 34 1.97 · 10−9

2 ≥ 2 4 0.04012194969
2 ≥ 2 17 0.009444739948
2 ≥ 2 34 0.004722463966

3 ≥ 3 4 0.2205151890
3 ≥ 3 17 0.09236895448
3 ≥ 3 34 0.05624757203

Table 4. Errors of the computations for the decay of TMS via simplified Runge-Kutta
method (c1 = Si(CH3)4, c2 = ·Si(CH3)3, c3 = S̈i(CH3)2)
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ode’s:

d[CH3SiCl3]

dt
= −k1 · [CH3SiCl3] − k3 · [CH3SiCl3][·CH3] (72)

d[·CH3]

dt
= k1 · [CH3SiCl3] − k2 · [·CH3][H2] −

− k3 · [CH3SiCl3][·CH3] (73)

d[·SiCl3]

dt
= k1 · [CH3SiCl3] − k4 · [·SiCl3][HCl] − k5 · [·SiCl3]

2 +

+ k7 · [SiCl4][·H ] (74)

d[H2]

dt
= −k2 · [·CH3][H2] (75)

d[·H ]

dt
= k2 · [·CH3][H2] − k7 · [SiCl4][·H ] (76)

d[CH4]

dt
= k2 · [·CH3][H2] + k3 · [CH3SiCl3][·CH3] −

− k8 · [S̈iCl2][CH4] (77)

d[HCl]

dt
= k6[HSiCl3] + k7 · [SiCl4][·H ] + k8 · [S̈iCl2][CH4] −

− k4 · [·SiCl3][HCl] (78)

d[HSiCl3]

dt
= k4 · [·SiCl3][HCl] − k6[HSiCl3] (79)

d[SiCl4]

dt
= k5 · [·SiCl3]

2 − k7 · [SiCl4][·H ] (80)

d[S̈iCl2]

dt
= k5 · [·SiCl3]

2 − k8 · [S̈iCl2][CH4] (81)

d[ClS̈iCH3]

dt
= k8 · [S̈iCl2][CH4] − k9[ClS̈iCH3]

2 (82)

d[ṠiHClĊH2]

dt
= k9 · [ClS̈iCH3]

2 (83)

Such equation systems are stiff and can only be solved with special ODE solvers.

Remark 5. In the more extended kinetic reactions, we have qualitatively the
same results. The stiffness of the equations are more delicate, because we have
scale ranges about 1025.

Because the parameters k5, k8 and k9 are very large in relation to the other
coefficients and because of the huge effort (∆t ≤ min 1/ki, with i = 1, 2 . . . , 9) in
computing a solution, we use the principle of the quasi-stationary state (see [22])
to reduce the system of odes. As a result we obtain a reduced reaction scheme
and a reduced ode system:

CH3SiCl3
k1−→ ·CH3 +

1

2
SiCl4 +

1

2
S̈iCl2 (84)

·CH3 + H2
k2−→ CH4 + ·H (85)
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·CH3 + CH3SiCl3
k3−→ CH4 + Cl3SiĊH2 (86)

1

2
SiCl4

k7−→
1

2
S̈iCl2 + HCl (87)

d[CH3SiCl3]

dt
= −k1 · [CH3SiCl3] − k3 · [CH3SiCl3][·CH3] (88)

d[·CH3]

dt
= k1 · [CH3SiCl3] − k2 · [·CH3][H2] −

− k3 · [CH3SiCl3][·CH3] (89)

d[H2]

dt
= −k2 · [·CH3][H2] (90)

d[·H ]

dt
= k2 · [·CH3][H2] − k7 · [SiCl4][·H ] (91)

d[SiCl4]

dt
=

1

2
k1 · [CH3SiCl3] −

1

2
k7 · [SiCl4][·H ] (92)

d[CH4]

dt
= k2 · [·CH3][H2] + k3 · [CH3SiCl3][·CH3] (93)

d[S̈iCl2]

dt
=

1

2
k1 · [CH3SiCl3] +

1

2
k7 · [SiCl4][·H ] (94)

Because the reaction of S̈iCl2 and CH4 to SiC is very fast, the concentrations
of these two components determine the final concentration of SiC. Therefore the
lesser concentration of these two components equals the concentration of the SiC
We applied the trapezoidal rule, see Section 3 to solve the system of odes. The
Figures 8, 9 and 10 show the results for the all concentrations at the temperatures
573K, 773K and 973K.

5 Conclusions and Discussions

We present a model to simulate the kinetic processes of precursor gases on a
CVD plasma reactor. We solve the nonlinear differential equations with iterative
methods and accelerate the solver processes.
Based on the numerical experiments we could obtain the reaction time of the
full reaction kinetic of different precursor gases.
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1989.

14. M. Ohring. Materials Science of Thin Films. Academic Press, San Diego, New
York, Boston, London, Second edition, 2002.

15. P.J. Roache. A flux-based modified method of characteristics. Int. J. Numer.
Methods Fluids, 12:12591275, 1992.

16. T.K. Senega and R.P. Brinkmann. A multi-component transport model for non-

equilibrium low-temperature low-pressure plasmas. J. Phys. D: Appl.Phys., 39,
1606–1618, 2006.

17. S. Vandewalle. Parallel Multigrid Waveform Relaxation for Parabolic Problems.
B.G. Teubner, Stuttgart, 1993.

18. Source for kinetic rate: http://kinetics.nist.gov/kinetics/Detail?id=1994OST/ALL6995-
7003:1

19. Source for kinetic rate: http://kinetics.nist.gov/kinetics/Detail?id=1996KNY/BEN11346-
11354:2

20. Source for kinetic rate: http://kinetics.nist.gov/kinetics/Detail?id=1966KER/SLA104:1

21. Source for kinetic rate: http://kinetics.nist.gov/kinetics/Detail?id=1992CHE1202-
1206:2, http://www.wiley-vch.de/contents/jc 2212/2006/fp6468 s.pdf

22. G. Wedler. Lehrbuch der Physikalischen Chemie. Wiley-VCH, Weinheim, Fourth
edition 1997

23. Source for kinetic rate: http://kinetics.nist.gov/kinetics/Detail?id=2001WAL/DAT2015-
2022:15

24. Source for kinetic rate: http://kinetics.nist.gov/kinetics/Detail?id=1997CAT/WOI469-
472:1



17

25. W.G. Zhang, K. J. Hüttinger. CVD of SiC from Methyltrichlorosilane. Part II:

Composition of the Gas Phase and the Deposit. Chem. Vap. Deposition, 7, No. 4,
2001



18

Fig. 5. Decay of SiH2 at the temperatures 573K (upper left), 773K (upper right) and
973K (lower center)
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Fig. 6. Decay of SiH4 at the temperatures 573K (upper left), 773 (upper right) and
973K (lower center)
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Fig. 7. Decay of Si(CH3)4 (-), ·Si(CH3)3 (··), : Si(CH3)2 (−−), formation of ·S̈i(CH3)
(· − ·) and the summary of all concentrations (- -) at the temperatures 573K (upper
left), 773K (upper right) and 973K (lower center)
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Fig. 8. Concentration of MTS (upper left), ·CH3 (upper right), H2 (center left), ·H
(center right), SiCl4 (lower left), CH4 (lower right) and S̈iCl2 (lower center) at 573K
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Fig. 9. Concentration of MTS (upper left), ·CH3 (upper right), H2 (center left), ·H
(center right), SiCl4 (lower left), CH4 (lower right) and S̈iCl2 (lower center) at 773K
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Fig. 10. Concentration of MTS (upper left), ·CH3 (upper right), H2 (center left), ·H
(center right), SiCl4 (lower left), CH4 (lower right) and S̈iCl2 (lower center) at 973K


