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Abstract In this paper, we discuss higher-order operator-splitting methods done by disentanglement methods.

The idea is based on computing best fitted exponents to an exponential splitting scheme with more than two

operators. We introduce the underlying splitting methods and the special scheme to compute the disentanglement

method. First applications are done to consider finite difference methods to the spatial operators and derive their

underlying Lie algebras. Based on the Lie algebra it is simple to compute the corresponding Lie group with exp

functions. Such results help to derive the disentanglement of the operator splitting method. The verification of our

improved splitting methods are done with first numerical examples.
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1 Introduction

Our motivation to study the splitting methods are coming from model equations which simulate bio-remediation

[1] or radioactive contaminants [8], [7]. The efficiency of decoupling different physical processes, e.g. convection,

reactions, help to accelerate the solver process, see [23].

In this paper we study the following model equations:

∂t ci + ∇ · (vci − D∇ci) = fi(c1, . . . , cn) , for i = 1, . . . , n. (1)

The unknown c(x, t) = (ci(x, t), . . . , cn(x, t))t is considered in Ω × (0, T ) ⊂ IRd × IR, the space-dimension is given

by d . The velocity v is constant and D is the diffusion-dispersion tensor. The reaction fi(c1, . . . , cn) is a function

of all unknowns ci and couple the equations.

The aim of this paper is to study a novel splitting method which can improve standard operator splitting

methods. First ideas are done with weighting methods which embed the so called is Zassenhaus product, see [24],

we improve the initial and starting conditions of the splitting process. Here the ideas are to discuss the underlying

Lie algebra, which are considered with the operators. Based on this information a more accurate approximation

can be developed to derive the exponents of the splitting method.

The advantage is to apply standard spatial discretization methods to each operator and apply the resulting

ordinary differential equation with the splitting method based on the disentanglement schemes.
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Further the novel method can be applied to iterative operator-splitting methods, which have some drawbacks

in low convergence (see [28]), This can be improved by starting with sufficient accurate initial conditions, which is

satisfied by weighting or disentanglement methods.

The outline of the paper is as follows. The operator-splitting-methods are introduced in the Section 2. Im-

provements of standard splitting methods to higher order splitting methods are discussed in Section 3. In Section

??, we discuss extension with to Zassenhaus product and the disentanglement methods. In Section 5, we present

the numerical experiments and the benefits of the higher order splitting methods. Finally, we discuss future works

in the area of iterative and non-iterative methods.

2 Operator splitting methods

We focus our attention on the case of two linear operators (i.e we consider the Cauchy problem):

∂c(t)

∂t
= Ac(t) + Bc(t), with t ∈ [0, T ], c(0) = c0, (2)

whereby the initial function c0 is given and A and B are assumed to be bounded linear operators in the Banach-

space X with A,B : X → X. In realistic applications the operators corresponds to physical operators such as

convection and diffusion operators. We consider the following operators splitting schemes:

1. Sequential operator-splitting: A-B splitting

∂c∗(t)

∂t
= Ac∗(t) with t ∈ [tn, tn+1] and c∗(tn) = cn

sp (3)

∂c∗∗(t)

∂t
= Bc∗∗(t) with t ∈ [tn, tn+1] and c∗∗(tn) = c∗(tn+1), (4)

for n = 0, 1, ..., N − 1 whereby cn
sp = c0 is given from (2). The approximated split solution at the point t = tn+1

is defined as cn+1
sp = c∗∗(tn+1).

2. Strang-Marchuk operator-splitting : A-B-A splitting

∂c∗(t)

∂t
= Ac∗(t) with t ∈ [tn, tn+1/2] and c∗(tn) = cn

sp (5)

∂c∗∗(t)

∂t
= Bc∗∗(t) with t ∈ [tn, tn+1/2] and c∗∗(tn) = c∗(tn+1/2) , (6)

∂c∗∗∗(t)

∂t
= Ac∗(t) with t ∈ [tn+1/2, tn+1] and c∗∗∗(tn+1/2) = c∗∗tn+1, (7)

where tn+1/2 = tn + 0.5τn, and the approximated split solution at the point t = tn+1 is defined as cn+1
sp =

c∗∗∗(tn+1).

3. Iterative splitting with respect to one operator

∂ci(t)

∂t
= Aci(t) + Bci−1(t), with ci(t

n) = cn, i = 1, 2, . . . , m (8)

4. Iterative splitting with respect to alternating operators

∂ci(t)

∂t
= Aci(t) + Bci−1(t), with ci(t

n) = cn (9)

i = 1, 2, . . . , j ,

∂ci(t)

∂t
= Aci−1(t) + Bci(t), with ci+1(tn) = cn , (10)

i = j + 1, j + 2, . . . , m ,

In addition, c0(tn) = cn , c−1 = 0 and cn is the known split approximation at the time level t = tn. The split

approximation at the time-level t = tn+1 is defined as cn+1 = c2m+1(tn+1). (Clearly, the function ci+1(t) depends

on the interval [tn, tn+1], too, but, for the sake of simplicity, in our notation we omit the dependence on n.)
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3 Zassenhaus Method and Disentanglement Method

Often standard splitting methods have the problem to be less effective in the rate of the convergence and CPU

times.

To overcome this problem, we can enrich the approximation with higher order terms.

An improvement is done in the following way:

c1(t) = exp(At) exp(Bt)Πi
k=2 exp(ĉktk)c0, (11)

where ci, i = 2, ....∞ are Zassenhaus exponents as follows:

c2 = −1/2[A, B], (12)

c3 = (1/3[B, [B, A]] − 1/6[A, [A, B]]),

c4 = (−1/24[[[A, B], A], A] − 1/8[[[A, B], A], B] − 1/8[[[A, B], B], B]).

Remark 1 The Zassenhaus method (see [25] and [16]) is derived as a composition of exp-functions and can be seen

as an inverse to the BCH-Formula (Baker-Campbell-Hausdorff). Nevertheless, there exists not a closed derivation

of the exponents. So numerical schemes are derived to compute the exponents in the Zassenhaus product.

Extended splitting method based on Zassenhaus-formula

In the next we enrich the standard splitting methods with the Zassenhaus method.

The standard exponential splitting methods are based on the following decomposition idea:

exp((A + B)t) = πj
i=1

exp(aiAt) exp(biBt) + O(tj+1). (13)

The extension to the exponential splitting schemes are given as:

exp((A + B)t) = πj
i=1

exp(aiAt) exp(biBt)πm
k=j exp(Cktk) + O(tm+1). (14)

where Cj is a function of Lie brackets of A and B.

Theorem 1 The initial value problem (8) is solved by classical exponential splitting schemes. We assume bounded

and constant operators A, B.

Then we can find extensions based on the Zassenhaus formula given as

exp((A + B)t) = πj
i=1

exp(aiAt) exp(biBt)πm
k=j exp(Cktk) + O(tm+1). (15)

where Cj is a function of Lie brackets of A and B.

Proof 1.) Lie-Trotter splitting:

For the Lie-Trotter splitting there exists coefficients with respect to the extension:

exp((A + B)t) = exp(At) exp(Bt)Π∞

k=2 exp(Cktk), (16)

where the coefficients Ck are given in [25].

Based on an existing BCH formula of the Lie-Trotter splitting one can apply the Zassenhaus formula.

2.) Strang Splitting:

A existing BCH formula is given as:

exp(At/2) exp(Bt) exp(At/2) = exp(tS1 + t3S3 + t5S5 + . . .), (17)

where the coefficients Si are given as in [16].

There exists an Zassenhaus formula based on the BCH formula.

See:

exp((A/2 + B/2)t) = Π∞

k=2 exp(C̃ktk) exp(A/2t) exp(B/2t), (18)

and

exp((B/2 + A/2)t) = exp(B/2t) exp(A/2t)Π∞

k=2 exp(Cktk), (19)

then there exists a new product:

Π∞

k=3 exp(Dktk) = Π∞

k=2 exp(C̃ktk)Π∞

k=2 exp(Cktk), (20)

with one order higher, see also [32].

3.) General exponential splitting:

Same can be done with the general exponential splitting schemes.
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Disentanglement of Exponential Operators

The disentanglement methods are used to approximate the exponential operators with respect to the underlying

Lie algebra, see [26].

The disentangling problem is to solve the determination of the σ1, . . . , σm ∈ C for a given Lie-Algebra

{A1, . . . , Am}

The motivation is to find the smallest approximation, for example with 2 operators ({A, B} are the generators

of the finite dimensional Lie Algebra)

exp(A + B) = exp(σ1A1) . . . exp(σmAm). (21)

The idea is based on the Baker-Campbell-Hausdorff formula to extend the multiplication of

exp(σ1A1) . . . exp(σmAm)

with the basis of the Lie-algebra generators:

means:

exp(σ1A1) . . . exp(σmAm) ≈ exp(fp
1
(σ1, . . . , σm)A1 + . . . + fp

m(σ1, . . . , σm)Am), (22)

where fp
1
, . . . , fp

m : C
m → C are functions developed on the order p of the BCH approximation.

Finally we have to solve a nonlinear equation system:

0

B

@

fp
1
(τ1, . . . , τm)

...

fp
m(τ1, . . . , τm)

1

C

A
=

0

B

@

ξ1
...

ξm

1

C

A
, and σk ≈ τk. (23)

The computations can be done with Newton’s iteration. To derive polynomials one have to apply algebraic

coding e.g. in Mathematica see [26].

Simple Example: {A, B} are generator of the Lie-Algebra {A, B} where we assume [A, B] = 0.

Then we can derive the BCH-Formula with respect to:

exp(σ1A) exp(σ2B) = exp(σ1A + σ2B + σ1σ2[A, B] + . . .),

where [A, B] = 0 and all other commutators.

Therefore we have the know exact solution for a commutator group: σ1 = σ2 = 1.

We apply such methods for semi-discretized equation, especially Convection-Diffusion.

More applications are done in the following areas:

– Decoupling the equation to 2 or more operators, e.g. Kinetic and Potential operator, or Diffusion and Convection

operator.

– Defining the Lie-algebra with the generators {A, B}

– Computing the disentanglement exponential operators on a sparse matrix structure and small matrix (less

computational time).

– Computing with the disentanglement exponents, large sparse matrices.

Remark 2 The problem of the disentanglement methods are based on the underlying commutators, which have to

be bounded in a numerical schemes, see [16]. If we consider bounded operators, we did not restrict the application of

the method. By the way the more appropriate approximation is given to consider all commutators in the underlying

algebra. Such schemes allows to minimize the computational time and obtain more accurate schemes.

4 Balancing of time and spatial discretization

Splitting methods are important for partial differential equations, because of reducing computational time to solve

the equations and accelerating the solver process, see [12].

Here additional balancing is taken into account, because of the spatial step.

The following theorem, addresses the delicate situation of time and spatial steps and the fact of reducing the

theoretical promised order of the scheme:
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Theorem 2 We solve the initial value problem by applying iterative operator splitting schemes (9) and (10). We

assume bounded and constant operators A, B. While iterating i-time with A and j-time with B the theoretical order

is given as O(ti+j) The initial step is given as c1(t) = exp(At) exp(Bt)c0.

Then we reduce order of the iterative scheme to O(ti), while norm of B is larger or equal than O( 1
t ) same is

also with the operator A.

So the balancing below the so called CFL condition is important to preserve the order of the splitting method.

Proof The theoretical order of the iterative splitting scheme is given as:

||ci+j − c|| ≤ ||A|| ||B||, ti+j + O(ti+j+1) where ||A|| = ρ(A) is the spectral or the maximum eigenvalue of

operator A and ||B|| = ρ(B) is the spectral or the maximum eigenvalue of operator B.

Based on the spatial discretization we have the following eigenvalues:

ρ(A) = a1

∆xp , ρ(B) = a2

∆xq where we have a p-th order spatial discretization of A and a q-th order spatial

discretization of B, a1, a2 are the diagonal entries of the finite difference stencil, see [13].

If we assume to have a CFL-condition ≥ 1 for the operator B we obtain:

a1

∆xp t ≥ 1 (24)

and therefore:

||A2||
j tj = O(1). (25)

We lost the order for operator B and reduce to the order of the operator A.

Same can be done for operator A.

Therefore we have a necessary restriction to preserve the order of the splitting method given as:

O(1) ≥ ρ(A) ≥ O( 1
t ).

We preserve the order:

||B||j tj = O(tj). (26)

Remark 3 By using implicit method for the discretization scheme, we did not couple the time-scale and the spatial

scale by a CFL condition and are so fare independent of the reduction but taken into account less accurate results.

5 Numerical Examples

We consider the following test problems in order to verify our theoretical findings in the previous sections.

We discuss the application of the Zassenhaus product to iterative methods (e.g. iterative operator splitting

methods) and non-iterative methods (e.g. Lie-Trotter, Strang splitting).

5.1 First Test- Example : Finite Difference Operators

We first deal with the following differential equation

∂c(x, t)

∂t
= −

∂

∂x
c(x, t) +

∂2

∂x2
c(x, t), (27)

c(x, t) = 0 t ∈ [0, T ], x = 0, x = L, (28)

c(x, 0) = 1 x ∈ [0, 1], (29)

where L = 10, T = 10.

We apply finite difference and divide into 2 operators

A = =
1

∆x
[−1 1 0]. (30)

B = =
1

∆x2
[−1 2 − 1]. (31)

We have the following Lie-Algebra:

I,A, B, [A, B], [A, [A, B]], [B, [B, A]]. (32)
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Our Lie group is given as:

exp(I), exp(A), exp(B), exp([A, B]), exp([A, [A, B]]), exp([B, [B, A]]). (33)

Therefore the splitting method is given in the Zassenhaus formulation as:

exp((A + B)t) = exp(At) exp(Bt) exp(1/2[B, A]t2) exp((−1/6[A, [A, B]] + 1/3[B, [B, A]])t3), (34)

while the higher order terms are nearly zero and we can skip them.

See the computations of the operators:

A =

0

@

1 0 0

−1 1 0

0 −1 1

1

A .

B =

0

@

2 −1 0

−1 2 −1

0 −1 2

1

A .

exp((A + B)t) =

0

@

1.0305 −0.0103 0.00005

−0.0206 1.0306 −0.0103

0.0002 −0.0206 1.0305

1

A .

The commutators are given as: f1 = [B, A],

f2 = [A, [A, B]],

f3 = [B, [B, A].

We compute the exp-functions:

Z1 = exp(At) exp(Bt) =

0

@

1.03051 −0.0103049 0.0000515236

−0.0206099 1.03066 −0.0103054

0.000206098 −0.020611 1.03061

1

A .

Z2 = exp(At) exp(Bt) exp(1/2f1t2) =

0

@

1.03051 −0.0103049 0.0000515233

−0.0206101 1.03066 −0.0103054

0.000206099 −0.020611 1.0306

1

A .

Z3 = exp(At) exp(Bt) exp(1/2f1t2) exp((−1/6f2 + 1/3f3)t3) =

0

@

1.0305 −0.0103 0.00005

−0.0206 1.0306 −0.0103

0.0002 −0.0206 1.0305

1

A .

Numerical errors in the L2-norm are computed with time steps t = 0.01 in the next steps:

‖exp((A + B)t) − Z1‖2 = 0.0000515287, (35)

‖exp((A + B)t) − Z2‖2 = 0.0000463758, (36)

‖exp((A + B)t) − Z3‖2 = 0.0000463752. (37)

Zi L2 error

Zassenhaus exponent

Z1 0.0000515287

Z2 0.0000463758

Z3 0.0000463752

For the disentanglement method we can achieve more accurate results.

The following Lie algebra {A, B, D, I, F} is considered with the commutator relations:

[A, B] = −D, [B, D] = −I, [A, D] = −F, [A, I ] = [B, I ] = [D, I ] = 0. (38)

Our goal is to approximate the coefficients σ1, σ2, σ3, σ4, σ5 ∈ C such that

exp((A + B)t) ≈ exp(σ1At) exp(σ2Bt) exp(σ3Dt2) exp(σ4It3) exp(σ5Ft3), (39)

where D5 = exp(σ1A) exp(σ2B) exp(σ3D) exp(σ4I)) exp(σ5F ).
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The assumed exact solutions are e.g. given in Ref [26]:

σ1 = 1, σ2 = 1, σ3 = Sinh(1), σ4 = Cosh(1) − 1, σ5 = 1/4Sinh(2) − 2 . (40)

We use the Mathematica implementation of the BCH approximation method given in [26] to find the approx-

imation solution the coefficients σ1, σ2, σ3, σ4, σ5 has the following results:

{1.0, 1.0, 1.1752011936438014569, 0.54308063481524377848, 0.4067151}. (41)

And the Numerical comparison between the assumed exact solution and the BCH approximation can be found as

the following:

{0., 0., 0.0663187, 1.14881, 1.13379}. (42)

The computations are given as:

‖exp((A + B)t)A − D3‖2 = 0.0000394184. (43)

Remark 4 The results show, that the first and second exponent of the Zassenhaus product is enough for accurate

results. Larger series with more Zassenhaus products did not improve substantially the accuracy. by the way with

the disentanglement method we could further improve the splitting error.

5.2 Second Test- Example : Multidimensional Finite Difference Operators

In the next example, we deal with multidimensional formulation of the convection-diffusion equation:

∂c(x1, . . . , xd, t)

∂t
= −

d
X

i=1

∂

∂xi
c(x1, . . . , xd, t) +

d
X

i=1

∂2

∂x2
i

c(x1, . . . , xd, t), (44)

c(x1, . . . , xd, t) = 0 t ∈ [0, T ], x ∈ ∂[0, 1]d, (45)

c(x1, . . . , xd, 0) = 1 x ∈ [0, 1]d, (46)

where we consider our results at T = 10.

We apply finite difference and apply a 2-dim operator

A = =
1

∆x
[−1 1 0] +

1

∆y
[−1 1 0]t, (47)

B = =
1

∆x2
[−1 2 − 1] +

1

∆y
[−1 2 − 1]t. (48)

We derive the following Lie-Algebra:

I,A, B, [A, B], [A, [A, B]], [B, [B, A]], [A, [A, [A, B]]], [B, [B, [B, A]]]. (49)

Our Lie group is given as:

exp(I), exp(A), exp(B), exp([A, B]), exp([A, [A, B]]), exp([B, [B, A]]), exp([A, [A, [A, B]]]), exp([B, [B, [B, A]]]).(50)

A =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

2 0 0 0 0 0 0 0 0

−1 2 0 0 0 0 0 0 0

0 −1 2 0 0 0 0 0 0

−1 0 0 2 0 0 0 0 0

0 −1 0 −1 2 0 0 0 0

0 0 −1 0 −1 2 0 0 0

0 0 0 −1 0 0 2 0 0

0 0 0 0 −1 0 −1 2 0

0 0 0 0 0 −1 0 −1 2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

, B =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

4 −1 0 −1 0 0 0 0 0

−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0

0 0 −1 0 −1 4 0 0 −1

0 0 0 −1 0 0 4 −1 0

0 0 0 0 −1 0 −1 4 −1

0 0 0 0 0 −1 0 −1 4

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

, I =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,(51)
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Some computations of the exp-functions are given as:

exp(A) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

7.38906 0 0 0 0 0 0 0 0

−7.38906 7.38906 0 0 0 0 0 0 0

3.69453 −7.38906 7.38906 0 0 0 0 0 0

−7.38906 0 0 7.38906 0 0 0 0 0

7.38906 −7.38906 0 −7.38906 7.38906 0 0 0 0

−3.69453 7.38906 −7.38906 3.69453 −7.38906 7.38906 0 0 0

3.69453 0 0 −7.38906 0 0 7.38906 0 0

−3.69453 3.69453 0 7.38906 −7.38906 0 −7.38906 7.38906 0

1.84726 −3.69453 3.69453 −3.69453 7.38906 −7.38906 3.69453 −7.38906 7.38906

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

exp(B) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

137.872 −118.716 51.1105 −118.716 102.221 −44.009 51.11050 −44.009 18.94710

−118.716 188.982 −118.71 102.221 −162.725 102.221 −44.009 70.0576 −44.009

51.1105 −118.716 137.872 −44.009 102.221 −118.716 18.9471 −44.009 51.1105

−118.716 102.221 −44.009 188.982 −162.725 70.0576 −118.716 102.221 −44.009

102.221 −162.725 102.221 −162.725 259.04 −162.725 102.221 −162.725 102.22

−44.009 102.221 −118.716 70.0576 −162.725 188.982 −44.009 102.221 −118.716

51.1105 −44.009 18.9471 −118.716 102.221 −44.009 137.872 −118.716 51.1105

−44.009 70.0576 −44.009 102.221 −162.725 102.221 −118.716 188.982 −118.716

18.9471 −44.009 51.1105 −44.009 102.221 −118.716 51.1105 −118.716 137.872

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

f1 = [A, B],

exp(f1) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0.13533 0 0 0 0 0 0 0 0

0 0.36787 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0.36787 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 2.718280 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 2.71828 0

0 0 0 0 0 0 0 0 7.38906

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

f2 = [A, [A, B]],

exp(f2) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

0.5 1 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0

1 1 0 1 1 0 0 0 0

0.5 1 1 0.5 1 1 0 0 0

0.5 0 0 1 0 0 1 0 0

0.5 0.5 0 1 1 0 1 1 0

0.25 0.5 0.5 0.5 1 1 0.5 1 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

f3 = [B, [B, A]],

exp(f3) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0.3340 0.4036 0.2439 0.4036 0.4878 0.2947 0.2439 0.2947 0.1781

−0.4036 0.0901 0.4036 −0.4878 0.1089 0.4878 −0.2947 0.0658 0.2947

0.2439 −0.4036 0.3340 0.2947 −0.4878 0.4036 0.1781 −0.2947 0.2439

−0.4036 −0.4878 −0.2947 0.0901 0.1089 0.0658 0.4036 0.4878 0.2947

0.4878 −0.1089 −0.4878 −0.1089 0.0243 0.1089 −0.4878 0.1089 0.4878

−0.2947 0.4878 −0.4036 0.0658 −0.1089 0.0901 0.2947 −0.4878 0.4036

0.2439 0.2947 0.1781 −0.4036 −0.4878 −0.2947 0.3340 0.4036 0.2439

−0.2947 0.06585 0.2947 0.4878 −0.1089 −0.4878 −0.4036 0.0901 0.4036

0.1781 −0.29475 0.2439 −0.2947 0.4878 −0.4036 0.24395 −0.4036 0.3340

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

f4 = [A, [A, [A, B]]],
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exp(f4) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0.1353 0 0 0 0 0 0 0 0

0 0.3678 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0.3678 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 2, 7182 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 2, 7182 0

0 0 0 0 0 0 0 0 7.3890

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

, f5 = [B, [B, [B, A]]],

exp(f5) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

0.5 1 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0

1 1 0 1 1 0 0 0 0

0.5 1 1 0.5 1 1 0 0 0

0.5 0 0 1 0 0 1 0 0

0.5 0.5 0 1 1 0 1 1 0

0.25 0.5 0.5 0.5 1 1 0.5 1 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

We derive the exponents and achieve the same as for the Zassenhaus formula, given as:

Z1 = exp(At) exp(Bt), (52)

Z2 = exp(At) exp(Bt) exp(−1/2f1), (53)

Z3 = exp(At) exp(Bt) exp(−1/2f1t2) exp((−1/6f2 + 1/3f3)t3), (54)

where we apply t = 0.01.

The numerical errors with the L2 norm are given as:

Zi L2 error

Z1 0.00010625

Z2 0.000116874

Z3 0.000116825

Remark 5 The same results can be obtained with larger matrices. Based on this results, the parameters can be

computed with small matrices and less computational time.

6 Conclusion

In the paper we presented the benefits of improving standard splitting methods with Zassenhaus product and

disentanglement methods. Such methods are extended splitting methods in weighting schemes. In first examples

we could see benefits in more accuracy. By the way a next paper will discuss the convergence of such a scheme

considering unbounded operators. Here we restrict us to bounded operators and nonstiff problems and discuss a

novel method to derive exponential splitting schemes.

7 Appendix

Remark 6 To apply the exponential functions exp(At), etc. we apply the Pade approximations:

m / n 0 1 2 3

0 1
1

1
1−z

1

1−z+ 1

2
z2

1

1−z+ 1

2
z2

−
1

6
z3

1 1+z
1

1+ 1

2
z

1− 1

2
z

1+ 1

3
z

1− 2

3
z+ 1

6
z2

1+ 1

4
z

1− 3

4
z+ 1

4
z2

−
1

24
z3

2
1+z+ 1

2
z2

1

1+ 2

3
z+ 1

6
z2

1− 1

3
z

1+ 1

2
z+ 1

12
z2

1− 1

2
z+ 1

12
z2

1+ 2

5
z+ 1

20
z2

1− 3

5
z+ 3

20
z2

−
1

60
z3

3
1+z+ 1

2
z2

+ 1

6
z3

1

1+ 3

4
z+ 1

4
z2

+ 1

24
z3

1− 1

4
z

1+ 3

5
z+ 3

20
z2

+ 1

60
z3

1− 2

5
z+ 1

20
z2

1+ 1

2
z+ 1

10
z2

+ 1

120
z3

1− 1

2
z+ 1

10
z2

−
1

120
z3

4
1+z+ 1

2
z2

+ 1

6
z3

+ 1

24
z4

1

1+ 4

5
z+ 3

10
z2

+ 1

15
z3

+ 1

120
z4

1− 1

5
z

1+ 2

3
z+ 1

5
z2

+ 1

30
z3

+ 1

360
z4

1− 1

3
z+ 1

30
z2

1+ 4

7
z+ 1

7
z2

+ 2

105
z3

+ 1

840
z4

1− 3

7
z+ 1

14
z2

−
1

210
z3

where we apply m = n = 1, m = n = 2 and m = n = 3.
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Generalized Pade approximation

Remark 7 To apply the exponential functions exp(At), we apply the Pade approximations, that can be computed

with a general scheme.

Here the idea of the Gauss continued fractions are considered, see [31]. The Pade approximants can be formu-

lated in such a framework.

We define a first approximate 1F1(1; b; z) is given as

1F1(1; b; z) =
1

1 +
− z

b +
z

(b + 1) +
− bz

(b + 2) +
2z

(b + 3) +
− (b + 1)z

(b + 4) +
.. .

, (55)

and the application to exp(z) = 1F11(1; 1; z)

ez =
1

1 +
− z

1 +
z

2 +
− z

3 +
2z

4 +
− 2z

5 +
...

. (56)

Then the Pade approximant is given as

Rm,n = 1F1(−m;−m − n; z)

1F1(−n;−m − n;−z)
, (57)

where the standard notation for this series is given as

pFq(a1, . . . , ap; b1, . . . , bq; z), (58)

although variations are sometimes used see [30].

Using the rising factorial or Pochhammer symbol:

(a)n = a(a + 1)(a + 2)...(a + n − 1), (a)0 = 1, (59)

this can be written

pFq(a1, . . . , ap; b1, . . . , bq ; z) =
∞

X

n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

zn

n!
. (60)
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