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ABSTRACT

In this paper we present the simulation of a chemical vapor deposition for metallic bipolar

plates.

For chemical vapor deposition, the delicate optimization between temperature, pressure and

plasma power is important to obtain a homogeneous deposition, see (Hlavacek and Orlicki

1995).

The aim is to reduce real-life experiments of a given CVD plasma reactor, based on a large

physical parameter space we have a hugh amount of experiments.

A detail study of the physical experiments on a CVD plasma reactor allows to reduce to an

approximated mathematical model, which is the underlying transport-reaction model.

Significant region of the CVD apparatus are approximated andphysical parameters are trans-

ferred to the mathematical parameters. Such approximationreduced the mathematical parame-

ter space to a realistic amount of numerical experiments.
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Based on interpolation and regression functions we fit to thephysical parameter space and can

give first prediction to deposition rates with the simulation model.

Here numerical experiments help to understand the deposition process and the control the posi-

tions of the sources for the deposition and precursor gases.

For the simulations we apply analytical as well as numericalmethods to obtain results to predict

the growth of thin layers.

The results are discussed with physical experiments to givea valid model for the assumed

growth.

Here an important transfer of engineering research on modelling real-life processes to acchieve

a simulatable mathematical model. Such a model can be solvedby numerical solvers and dis-

cretisation schemes. The resullts can be used to obtain a newunderstanding of the technical

processes in engineering research.

Keywords: Chemical vapor deposition, multi-scale problem, approximation methods, numeri-

cal simulation.

AMS subject classifications.35K25, 35K20, 74S10, 70G65.

1 INTRODUCTION

We motivate our study by simulating a growth of a thin film thatcan be done by PE-CVD

(plasma enhanced chemical vapor deposition) processes, see (Lieberman and Lichtenberg 2005)

and (Ohring 2002). Such technical processes are very complex and real-life experiments enor-

mous extensive and expensive. Based on a large physical parameter space the amount of exper-

iments are al least the variation of all possible parameters. Such large numbers of experiments

can be reduced to with the help of numerical experiments based on a mathematical model.

Such modelling results are based on an interdiciplinary work with engineers, mathematicians

and physicists. We derive a multiphysics model, that includes a simplification of the dominant

physical processes, i.d. transport of the reactive speciesin the gas phase and their deposition

rates at the target layer.
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The approximation between the mathematical parameters andphysical parametes can be done

with regression method, such that we can verify to the physical experiments. Such an approx-

imations help to study the physical experiments with simulation tools which are more cheaper

and can foresee the more appropriate experiments which should be done to understand and

control the physical processes.

In the following we introduce the PE-CVD process and its important modelling directions.

A gas exposed to an electric field in low pressure conditions(< 5 Torr) results in a non-

equilibrium plasma, see (Chapman 1980) and (Morosoff 1990). Such ionized media, known as

”cold” plasma or glow discharges, are powerful surface-modification tools in Material Science

and Technology. Low-pressure plasmas allow to modify the surface chemistry and properties of

materials compatible with low-medium vacuum, through a PE-CVD process, see applications

(Favia and D’Agostino 2002) and (Morosoff 1990).

Here PE-CVD processes are attractive methods, because of their reproduceable chemical pro-

cesses that can be controlled by pressure, by temperature, and by additional precursor gases.

Such methods are developed since recent years and are interested on producing high-temperature

films, see (Ohring 2002).

We consider models that are related to mesoscopic scales, (Gobbert and Ringhofer 1998), with

respect to flows close to the wafer surface, where the wafer isa target material (e.g., metal or

ceramic) for the deposition, shortciteohring02. We assumethat the wafer is a homogene media

and the surface can be modeled as a porous media, (Rouch 2006).

The physical experiments are used to obtain the influence of temperature, pressure and plasma

power to the deposition rates, see (Kadetov 2004). Here the plasma reactor chamber of a NIST

GEC reference cellis used and for the hybrid ICP/CCP-RF plasmasource a double spiral an-

tenna, see (Kadetov 2004), is applied. Such experiments areimportant but under the variation

of all the parameters very extensive.

Mathematically we apply interpolation between the physical and mathematical parameters to

verify a simulation model. Based on the smaller mathematical parameter space, we can allow

much more experiments and obtain via the regression function the resulting parameters to the
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phyical experiments. Such switching between numerical experiments and physical experiments

reduce to a possible amount of experiments and we can optimize the deposition process.

The numerical results are discussed and applied to validation problems and real-life problems.

We discuss an applications to deposit small filmsSiC to a metallic plate.

The paper is organized as follows.

In Section 2, we present our mathematical model and a possible reduced model for further ap-

proximations. In Section 3, we discuss the physical experiments of the CVD process. The

numerical methods of transport-reaction equation and their parameter approximation to the

physical model is described in Section 4 The numerical experiments are given in Section 5.

In Section 6, we briefly summarize our results.

2 MATHEMATICAL MODEL

In the next we discuss the derivation of the model.

We start with developing the multiphase model in the following steps:

• Standard Transport model (one phase)

• Flow model (flow field of the plasma medium)

• Multiphase model with mobile and immobile zones

In each model part we can refine the processes of the transportfor the deposition gaseous species

or reaction gaseous species with regard to the influence of flow field, plasma zones and precursor

gases.

A schematic test geometry of the CVD reactor is given in Figure 1.
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Figure 1: Vertical impinging CVD reactor.

2.1 Standard Transport Model

In the following, the models are discussed in terms of far-field and near-field problems, which

take into account the scales of the models.

Two different types of models can be discussed:

1. Convection-diffusion-reaction equations (Gobbert andRinghofer 1998) (far-field prob-

lem);

2. Boltzmann-Lattice equations (Senega and Brinkmann 2006) (near-field problem).

The modeling is governed by a Knudsen Number, whereby the Knudsen number is a dimen-

sionless number and defines the ratio of the molecular mean free path length to a representative

physical length scale.

Kn =
λ

L
, (1)

whereλ is the mean free path andL is the representative physical length scale. This length scale

could be, for example, the radius of a body in a fluid. Here we deal with small Knudsen Num-

bersKn ≈ 0.01−1.0 for a convection-diffusion-reaction equation and a constant velocity field,

whereas for large Knudsen NumbersKn ≥ 1.0 we deal with a Boltzmann equation (Ohring

2002). From the modeling of the gaseous transport of the deposition species, we consider the

pure far-field model and assume a continuum flow field, see (George 2008).
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Such assumptions leads to transport equations that can be treated with a convection-diffusion-

reaction equation owing to a constant velocity field, see:

∂

∂t
c + ∇F − Rg = q(x, t), in Ω × [0, t] (2)

F = vc − D∇c,

c(x, t) = c0(x), on Ω, (3)

c(x, t) = c1(x, t), on ∂Ω × [0, t], (4)

wherec is the molar concentration of the reaction gases (called species) andF the flux of the

species.v is the flux velocity through the chamber and porous substrate(Rouch 2006).D is

the diffusion matrix andRg is the reaction term. The initial value is given asc0 and we assume

a Dirichlet boundary with the functionc1(x, t) sufficiently smooth.q(x, t) is a source function,

depending on time and space, and represents the inflow of the species.

The parameters of the equation are derived as follows. The diffusion in the modified CVD

process is given by the Knudsen diffusion, (Cao and Burggraaf 1993). We consider the overall

pressure in the reactor is200 Pa and the substrate temperature (or wafer surface temperature) is

about600 − 900 K. The pore size in the homogeneous substrate is assumed to be80 nm. The

homogeneous substrate can be either a porous medium, e.g. a ceramic material, see (Cao and

Burggraaf 1993) or a dense plasma, assumed to be very dense and stationary, see (Lieberman

and Lichtenberg 2005). For such media we can derive the diffusion based on the Knudsen

diffusion.

The diffusion is described as:

D =
2ǫµKνr

3RT
, (5)

whereǫ is the porosity,µK is the shape factor of the Knudsen diffusion,r is the average pore

radius,R andT are the gas constant and temperature, respectively, andν is the mean molecular
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speed, given by:

ν =

√

8RT

πW
, (6)

whereW is the molar mass of the diffusive gas.

For the homogeneous reactions, we consider during the CVD process a constant reaction ofSi,

T i andC species given as:

3T i + Si + 2C → T i3SiC2, (7)

whereSi3T iC2 is a MAX-phase material, see (Barsoum and El-Raghy 1996), which deposits at

the wafer surface. For simplicity, we do not consider the intermediate reaction with the precur-

sor gases, (Lieberman and Lichtenberg 2005) and assume we are dealing with a compound gas

3T i + Si + 2C, see (Dobkin and Zuraw 2003). Therefore we can concentrate on one species

transport.

The reaction rate is then given by:

λ = kr

[3Si]M [T i]N [2C]O

[Si3T iC2]L
, (8)

wherekr is the apparent reaction constant,L, M, N, O are the reaction orders of the reactants.

A schematic overview of the one-phase model is presented in Figure 2. Here the gas chamber

of the CVD apparatus is shown, which is modeled by a homogeneous medium.
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Figure 2: Gas chamber of the CVD apparatus.

2.2 Flow Field

The flow field in which derives the velocity is used for the transport of the species. The velocity

in the homogeneous substrate is modeled by a porous medium (Bear 1972; Johannsen 1999).

We assume stationary or low reactive medium, e.g. non-ionized or low-ionized plasma or less

reactive precursor gas. Further, the pressure can be assumed with the Maxwell distribution as

(Lieberman and Lichtenberg 2005):

p = ρbT, (9)

whereρ is the density,b is the Boltzmann’s constant andT is the temperature.

The model equations are based on mass and momentum conservedequations, where we assume

conserved energy conservation. Because of the low temperature and low pressure environment,

we assume the gaseous flow has a nearly liquid behavior. Therefore derivation of the velocity

can be given by Darcy’s law:

v = −
k

µ
(∇p − ρg) , (10)
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wherev is the velocity of the fluid,k is the permeability tensor,µ is the dynamic viscosity,p is

the pressure,g is the vector of the gravity andρ is the density of the fluid.

We use the continuum equation of the particle density and obtain the equation of the system,

which is given as our flow equation:

∂t(φρ) + ∇ · (ρv) = Q , (11)

whereρ is the unknown particle density,φ is the effective porosity andQ is the source-term of

the fluid. We assume a stationary fluid and consider only divergence-free velocity fields, i.e.

∇ · v(x) = 0 , x ∈ Ω . (12)

The boundary conditions for the flow equation are given as:

p = pr(t, γ), t > 0 , γ ∈ ∂Ω , (13)

n · v = mf (t, γ), t > 0 , γ ∈ ∂Ω , (14)

wheren is the normal unit vector with respect to∂Ω, where we assume that the pressurepr and

flow concentrationmf are prescribed by Dirichlet boundary conditions (Johannsen 1999).

From the nearly stationary fluids, we assume that the conservation of momentum for velocityv

is given (Glowinski 2003; Johannsen 1999). Therefore we canneglect the computation of the

momentum for the velocity.

Remark 1 For the flow through the gas chamber, for which we assume a homogeneous medium

and non-reactive plasma, we have considered a constant flow (Hlavacek and Orlicki 1995). A

further simplification is given by the very small porous substrate, for which we can assume the

underlying velocity in a first approximation as constant (Ohring 2002).

Remark 2 For an instationary medium and reactive or ionized plasma, we have to take into

account the relations of the electrons in the thermal equilibrium. Such spatial variation can be
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considered by modeling the electron drift. Such modeling ofthe ionized plasma is done with the

Boltzmanns relation, (Lieberman and Lichtenberg 2005).

2.3 Multiphase Model: Mobile and Immobile Zones

More complicated processes such as retardation, adsorption and dissipation processes of the

gaseous species are modelled with multiphase equations. Wetake into account that concen-

tration of species can be given in a mobile and immobile version, depending on their different

reactive states, see (?). From these behaviours, we have to model a transport and an adsorbed

state of the species, see also Figure 3. Here the mobile and immobile phases of the gas concen-

tration are shown in the macroscopic scale of the porous medium.

     

immobile phase                

mobile phase                   

(mobile immobile)                             
Exchange                       

Figure 3: Mobile and immobile phase.

The model equations are given as combinations of transport and reaction equations (coupled

partial and ordinary differential equations), given as:

φ∂tc
L
i + ∇ · (vcL

i − De(i)∇cL
i ) = g(−cL

i + cL
i,im) − λi,iφcL

i +
∑

k=k(i)

λi,kφcL
k + Q̃i, (15)

φ∂tc
L
i,im = g(cL

i − cL
i,im) − λi,iφcL

i,im +
∑

k=k(i)

λi,kφcL
k,im + ˜Qi,im,
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φ : effective porosity[−],

cL
i : concentration of theith gaseous species in the plasma chamber

cL
i,im : concentration of theith gaseous species in the immobile zones of the plasma chamber

phase[mol/mm3],

v : velocity in the plasma chamber[mm/nsec]],

De(i) : element-specific diffusions-dispersions tensor[mm2/nsec]],

λi,i : decay constant of theith species[1/nsec]],

Q̃i : source term of theith species[mol/(mm3nsec)],

g : exchange rate between the mobile and immobile concentration [1/nsec],

wherei = 1, . . . , M andM denotes the number of components.

The parameters in Equation (15) are further described, see also (Geiser 2003).

The effective porosity is denoted byφ and describes the portion of the porosities of the aquifer

that is filled with plasma, and we assume a nearly fluid phase. The transport term is indicated

by the Darcy velocityv, that presents the flow-direction and the absolute value of the plasma

flux. The velocity field is divergence-free. The decay constant of theith species is denoted by

λi. k(i) therefore denotes the indices of the other species.

Remark 3 The concentrations in the mobile zones are modeled with convection-diffusion-reaction

equations, see also subsection 2.1, where the concentration in the immobile zones are modeled

with reaction equations. These two phases present mobilityof the gaseous species through the

homogeneous media, where the concentrations in the immobile zones are at least lost amounts

of depositable gases.

2.4 Simplified model: Far-Field Model

We concentrate on a far-field model and assume a continuum flow, and that the transport equa-

tions can be treated with a convection-diffusion-reactionequation, due to a constant velocity
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field, see:

∂

∂t
c + ∇F − Rg = 0, in Ω × [0, t] (16)

F = vc − D∇c,

c(x, t) = c0(x), on Ω, (17)

c(x, t) = c1(x, t), on ∂Ω × [0, t], (18)

wherec is the molar concentration andF the flux of the species.v is the flux velocity through

the chamber and porous substrate (Rouch 2006).D is the diffusion matrix andRg is the reaction

term. The initial value is given asc0 and we assume a Dirichlet boundary with the function

c1(x, t) sufficiently smooth.

Remark 4 The concentration to only dominant far field processes in thegas phase to the reac-

tive species reduces enormously the physical parameter space. Such a realistic reduction with

respect to the experiments can reduce also the underlying mathematical model and concentrate

on a defined number of experiments. Such experiments can validate the switching between the

phyical and mathematical parameter space and allows to foresee the important processes in the

gas phase.

3 PHYSICAL EXPERIMENTS

Base of the experimental setup is the plasma reactor chamberof a NIST GEC reference cell.

The spiral antenna of the hybrid ICP/CCP-RF plasmasource was replaced by a double spiral

antenna (Kadetov 2004). This reduce the asymmetry of the magnetic field due to superposition

of the induced fields of both antennas. Also the power coupling to the plasma increase and

enhance the efficiency of the source. A set of MKS massflowcontrollers allow any defined

mixture of gaseous precursors. Even the flows of liquid precursors with high vapor pressure

is controlled by this system. All other liquid and all solid precursors will direct transported

to the chamber by controlled carrier gas flow. Beside the precursor flow, also the density can

be changed by variation of pressure inside the recipient. Control to the pressure is given due
12



to a valve between the recipient and the vacuum-pumps. Additional a heated and insulated

substratholder was mounted. Hereby a temperature up to800oC and a bias voltage can be

applied to the substrate. While pressure and RF power determine the undirected particle energy

(plasmatemperature) , the bias voltage adds, only to charged particles, energy directed at the

Substrate. Aside the pressure and RF power control the gradeof ionization and the number as

well as the size of molecular fractions.

Altogether this setup provide as free process parameters:

• Pressure (typical10−1 − 10−2 mbar)

• Precursor-composition (TMS, TMS + H2, TMS + O2)

• Precursor flow-rate (range form SCCM up to SLM)

• RF-Power (up to 1100W)

• Substrate temperature (RT -800oC)

• Bias voltage (DC, unipolar and bipolar pulsed, floating)

During all experiments the process was observed with optical emission spectroscopy (OES)

and mass spectroscopy (MS). The stoichiometry of depositedfilms was ex situ analyzed on a

scanning electron microscope (SEM) by energy dispersive X-ray analysis (EDX).

Realisation of the Physical Experiments

The following parameters are used for the physical experiments. Such reduction allows to

concentrate on important flow and transport processes in thegas phase. Further we apply the

underlying mathematical model (fare field model, see Subsection 2.4) such that we can switch

between the physical and mathematical parameters.

Precursor: Tetramethylsilan (TMS)

Substrate: VA-Steel

Film at the substrate :Si Cx
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Test PR [mbar] ϑS [C] PP lasma [W] φ(TMS) [SCCM] φ(H2) [SCCM] Ratio [C:Si] Mass (growth) [g] Zeit [min]

080701-01-VA 9.7E-2 400 900 10.23 0 0.97811 0.00012 120

080718-01-VA 1.1E-1 400 900 10.00 0 1.00174 0.00050 130

080718-02-VA 4.5E-2 400 900 10.00 0 1.24811 0.00070 110

080618-01-VA 4.3E-2 400 500 10.23 0 1.32078 127

080716-01-VA 1.1E-1 400 500 10.00 0 1.42544 0.00250 120

080715-02-VA 1.1E-1 400 100 10.00 0 1.58872 0.00337 122

080804-01-VA 4.5E-2 400 100 10.00 0 2.91545 0.00356 129

080630-01-VA 9.9E-2 800 900 10.23 0 1.09116 0.00102 120

080807-01-VA 4.5E-2 800 900 10.00 0 1.18078 0.00118 120

080625-01-VA 3.9E-2 800 500 10.23 0 1.06373 120

080626-01-VA 9.3E-2 800 500 10.23 0 1.12818 0.00174 130

080806-01-VA 4.8E-2 800 100 10.00 0 1.73913 0.00219 121

080715-01-VA 1.1E-1 800 100 10.00 0 1.62467 0.00234 120

081016-01-VA 1.0E-1 600 300 10.00 0 1.72898 0.00321 123

081020-01-VA 1.1E-1 600 300 10.00 50 1.49075 0.00249 114

081028-01-VA 1.1E-1 600 300 10.00 15 1.53549 0.00273 120

081023-01-VA 1.1E-1 600 300 10.00 10 1.54278 0.00312 127

081027-01-VA 1.1E-1 600 300 10.00 5.5 1.55818 0.00277 126

081024-01-VA 1.1E-1 600 300 10.00 3.5 1.64367 0.00299 120

081022-01-VA 1.0E-1 600 300 10.00 2.5 1.69589 0.00318 127

We apply the following parameters for the interpolation of the substrate temperature we use:

Temperature Ratio(SiC:C)
400 2.4:1
600 1.5:1
700 1.211:1
800 1.1:1

for the substrate temperature and the power of the plasma we use:

Temperature [C] Power [W] Ratio(SiC:C)
400 900 1:0.97
400 500 1.3:1
800 900 1.18:1

Remark 5 For the process the temperature and power of the plasma is important and experi-

ments show these significant parameters. Based on these parameters we initialize the mathe-

matical model and interpolate the flux and reaction parts.

4 NUMERICAL METHODS

In this section we discuss the numerical methods. To accelerate our numerical methods, we

combined numerical and analyical parts in the solver processes.
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4.1 Discretization and Solver Methods

For the space-discretization of the PDE’s we apply finite-volume methods as mass conserved

discretization schemes and for the time-discretization ofresulting ODE’s we apply Runge-Kutta

methods or BDF methods. To accelerate the solver process, wecombine numerical and analyt-

ical parts of the solutions.

4.1.1 Discretization method of the convection equation

We deal with the following convection equation

∂tR c − v · ∇c = 0 , (19)

whereR is the retardation factor, and presents the retention of theconcentration, see also equa-

tion (16). v is the velocity. We have a simple boundary conditionc = 0 for the inflow and

outflow boundary and the initial values are given asc(xj, 0) = c0
j (x). We use piecewise con-

stant discretization method with the upwind discretization done in (Frolkovič and Geiser 2003)

and get

Vj R cn+1
j = Vj R cn

j − τn
∑

k∈out(j)

vjk cn
j + τn

∑

k∈in(j)

cn
k vkj ,

Vj R cn+1
j = cn

j (R Vj − τnνj) + τn
∑

k∈in(j)

cn
k vkj , (20)

The explicit time discretization has to fulfill the discreteminimum-maximum property (Frol-

kovič and Geiser 2003), and we get the following restriction for the time steps

τj =
R Vj

νj

, τn ≤ min
j=1,...,I

τj . (21)
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To obtain improved spatial discretization methods and apply larger time-steps, we introduce a

reconstruction with linear polynomials as a higher test-function in the next subsection.

4.1.2 Discretization method for the convection-reaction equation based on embedded one

dimensional analytical solutions

We apply Godunovs method for the discretization method, cf.(Leveque 2002), and extend the

formulation with analytical solution of convection-reaction equations. We reduce the multi-

dimensional equation to one dimensional equations and solve each equation exactly. The one-

dimensional solution is multiplied with the underlying volume and we get the mass-formulation.

The one-dimensional mass is embedded into the multi-dimensional mass-formulation and we

obtain the discretization of the multi-dimensional equation.

The algorithm is given in the following manner

∂t cl + ∇ · vl cl = −λl cl + λl−1 cl−1,

with l = 1, . . . , m .

The velocity vectorv is divided byRl. The initial conditions are given byc0
1 = c1(x, 0) , else

c0
l = 0 for l = 2, . . . , m and the boundary conditions are trivialcl = 0 for l = 1, . . . , m.

We first calculate the maximal time step for cellj and concentrationi with the use of the total

outflow fluxes

τi,j =
Vj Ri

νj

, νj =
∑

k∈out(j)

vjk .

We get the restricted time step with the local time steps of cells and their components

τn ≤ min
i=1,...,m

j=1,...,I

τi,j .
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The velocity of the discrete equation is given by

vi,j =
1

τi,j

.

We calculate the analytical solution of the mass, cf. (Geiser 2003) and we get

mn
i,jk,out = mi,out(a, b, τn, v1,j , . . . , vi,j, R1, . . . , Ri, λ1, . . . , λi) ,

mn
i,j,rest = mn

i,j f(τn, v1,j , . . . , vi,j, R1, . . . , Ri, λ1, . . . , λi) ,

wherea = VjRi(c
n
i,jk − cn

i,jk′) , b = VjRic
n
i,jk′ andmn

i,j = VjRic
n
i,j. Furthercn

i,jk′ is the concen-

tration at the inflow- andcn
i,jk is the concentration at the outflow-boundary of the cellj.

The discretization with the embedded analytical mass is calculated by

mn+1
i,j − mn

i,rest = −
∑

k∈out(j)

vjk

νj

mi,jk,out +
∑

l∈in(j)

vlj

νl

mi,lj,out ,

where vjk

νj
is the re-transformation for the total massmi,jk,out in the partial massmi,jk . In the

next time-step the mass is given asmn+1
i,j = Vj cn+1

i,j and in the old time-step it is the rest mass

for the concentrationi. The proof is done in (Geiser 2003). In the next section we derive an

analytical solution for the benchmark problem, cf. (Higashi and Pigford 1980), (Jury and Roth

1990).

In the next subsection we introduce the discretization of the diffusion-dispersion-equation.
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4.1.3 Discretization of the diffusion-dispersion-equation

We discretize the diffusion-dispersion-equation with implicit time-discretization and finite-volume

method for the following equation

∂tR c −∇ · (D∇c) = 0 , (22)

wherec = c(x, t) with x ∈ Ω andt ≥ 0 . The diffusions-dispersions-tensorD = D(x,v) is

given by the Scheidegger-approach, cf. (Scheidegger 1961). The velocity is given asv. The

retardation-factor isR > 0.0.

The boundary-values are denoted byn ·D ∇c(x, t) = 0, wherex ∈ Γ is the boundaryΓ = ∂Ω,

cf. (Frolkovič 2002). The initial conditions are given byc(x, 0) = c0(x).

We integrate the equation (22) over space and time and derive

∫

Ωj

∫ tn+1

tn
∂tR(c) dt dx =

∫

Ωj

∫ tn+1

tn
∇ · (D∇c) dt dx . (23)

The time-integration is done by the backward-Euler method and the diffusion-dispersion term

is lumped, cf. (Geiser 2003)

∫

Ωj

(R(cn+1) − R(cn)) dx = τn

∫

Ωj

∇ · (D∇cn+1) dx , (24)

The equation (24) is discretized over the space with respectof using the Green’s formula.

∫

Ωj

(R(cn+1) − R(cn)) dx = τn

∫

Γj

D n · ∇cn+1 dγ , (25)

whereΓj is the boundary of the finite-volume cellΩj . We use the approximation in space,

confer (Geiser 2003).
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The spatial-integration for (25) is done by the mid-point rule over the finite boundaries and

given as

VjR(cn+1
j ) − VjR(cn

j ) = τn
∑

e∈Λj

∑

k∈Λe
j

|Γe
jk|n

e
jk · D

e
jk∇ce,n+1

jk , (26)

where|Γe
jk| is the length of the boundary-elementΓe

jk. The gradients are calculated with the

piecewise finite-element-functionφl, see ((?)) and we obtain

∇ce,n+1
jk =

∑

l∈Λe

cn+1
l ∇φl(x

e
jk) . (27)

We get with the difference-notation for the neighbor-pointj andl, cf. (Frolkovič and De Schep-

per 2001) and get the discretized equation

VjR(cn+1
j ) − VjR(cn

j ) = (28)

= τn
∑

e∈Λj

∑

l∈Λe\{j}

(

∑

k∈Λe
j

|Γe
jk|n

e
jk · D

e
jk∇φl(x

e
jk)

)

(cn+1
j − cn+1

l ) ,

wherej = 1, . . . , m.

4.2 Interpolation and regression of experimental dates

To simulate the physical experiments with the assumed model, we have to approximate the pa-

rameters of the numerical model. We apply interpoation and regression schemes to approximate

between the mathematical and physical parameters.

Here we concentrate on the reaction rates of the speciesSi, C andH.

The physical dates of temperature and pressure are used and validation simulations done to

obtain the ratio of the deposition.

Next we have to interpolate the parameters of the numerical model.
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1.) Lagrangian Interpolation:

We assume an interpolation atΩ = [a1, b1] × . . . × [ad, bd].

T =
∑

ν∈K

f(xt
ν)L

t
ν , (29)

where the Lagrangian function is given as:

Lt
ν(x) = πd

i=1π
m
µ=0,µ6=νi

xi − x
[ai,bi]
µ

x
ν
[ai,bi]
i

− xµ[ai,bi]

, (30)

2.) Linear Regression (Least square Approximation):

Here we have a points with values and we assume to have a best approximation with respect to

minimize:

S =
m

∑

k=1

(yk − Ln(xk))
2, (31)

wherem ≥ n andLn is a function that is constructed with the least square algorithm, see

(Burlisch and Stoer 2002).

Remark 6 To apply larger parameter spaces, we can generalise to multivariate regression

methods, see (Neil 2002). Here we compute approximations between higher dimensional ma-

trices spaces.

5 NUMERICAL EXPERIMENTS

For all the experiments we have the following parameters of the model, the discretization and

solver methods.

We apply interpolation and regression methods to couple thephysical parameters to the mathe-

matical parameters, see Figure 4 and Table 1.
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Physical Experiments

Physical parameters

Interpolation or Regression

Mathematical Experiments

Mathematical parameters

Figure 4: Coupling of physical and mathematical parameter space.

Physical parameter Mathematical parameter
Temperature,pressure,powervelocity, Diffusion,Reaction

T , p , W V , D , λ

Table 1: Physical and mathematical parameters.
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Parameters of the equation:

In the following, we have list the parameters for our simulation tool UG, see (Bastian and Rentz-

Reichert 1997). The software toolbox has a flexible user interface to allow a large number of

numerical experiments and approximate to the known physical parameters.

density ρ = 1.0
mobile porosity φ = 0.333

immobile porosity 0.333
Diffusion D = 0.0

longitudinal Dispersion αL = 0.0
transversal Dispersion αT = 0.00

Retardation factor R = 10.0e − 4 (Henry rate).
Velocity field v = (0.0,−4.0 10−8)t.

Decay rate of the species of 1st EX λAB = 1 10−68.
Decay rate of the species of 2nd EXλAB = 2 10−8, λBNN = 1 10−68.
Decay rate of the species of 3rd EXλAB = 0.25 10−8, λCB = 0.5 10−8.

Geometry (2d domain) Ω = [0, 100] × [0, 100].
Boundary Neumann boundary at

top, left and right boundaries.
Outflow boundary

at the bottom boundary

Table 2: Model-Parameters.

Discretization method:

Finite volume method of 2nd order:

spatial step size ∆xmin = 1.56, ∆xmax = 2.21
refined levels 6

Limiter Slope limiter
Test functions linear test function

reconstructed with neighbor gradients

Table 3: Spatial discretization parameters.

Time discretization methods :

Crank-Nicolson method (2nd order):

Solver method :

In the following, we deal with the test examples which are approximated to the physical exper-

iments.
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Initial time-step ∆tinit = 5 107

controlled time-step ∆tmax = 1.298 107, ∆tmin = 1.158 107

Number of time-steps 100, 80, 30, 25
Time-step control time steps are controlled with

the Courant-Number CFLmax = 1

Table 4: Spatial discretization parameters.

Solver BiCGstab (Bi conjugate gradient method)
Preconditioner geometric Multi-grid method

Smoother Gauss-Seidel method as smoothers for
the Multi-grid method

Basic level 0
Initial grid Uniform grid with2 elements

Maximum Level 6
Finest grid Uniform grid with8192 elements

Table 5: Solver methods and their parameters.

5.1 Test experiment 1: Interpolation with Temperature

In the test example we deal with the following reaction:

2SiC + 4H →λ SiC + CH4 + Si.

Here we have the physical experiments and approximate to thetemperature parameters ofT =

400, 600, 800.

We computed the ratioSiC : C for the given temperatureT = 400, 600, 800 with the UG

program and fit to the parameterλ.

We used Lagrangian formula to computeλ for the new temperaturesT = 500, 700 and ap-

ply the ratio of the simulated new parameters. This values can be given back to the physical

experiments, see Table 6.

One Source

In Figure 5, we present the concentration of the one point source at (50,20).with number of

time-steps equal to 25.
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T λ (fitted) λ (interpolated) Ratio(SiC:C) (computed with UG)
400 1/2 10−8 2.4:1
500 0.35 10−8 1.85:1
600 1/4 10−8 1.5:1
700 0.171 10−8 1.211:1
800 1/8 10−8 1.1:1

Table 6: Computed and experimental fitted parameters with UGsimulations.

Point source at the position (x, y) = (50, 20)
Starting point of the source concentration tstart = 0.0

End point of the source concentration tend = 1108

Amount of the permanent source concentrationcsource = 1.0
Number of time steps 25

Table 7: Parameter of the source concentration.

Figure 5: one point source at (50,20) , with number of time-steps equal to 25.

In Figure 6, we show the deposition rates of the one point source at (50,20), with number of

time-steps equal to 25.
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Figure 6: Deposition rates in case of one point source at (50,20), with number of time-steps

equal to 25.

Point source at the position (x, y) = (50, 20)
Starting point of the source concentration tstart = 0.0

End point of the source concentration tend = 1108

Amount of the permanent source concentrationcsource = 1.0
Number of time steps 25

Table 8: Parameter of the source concentration.

RATE
SiCsource,max : SiCtarget,max

9.106 : 6.5.106 = 1.38

Table 9: Rate of the concentration.

Nine Point Sources

In this experiment, we apply nine point sources.

In Figure 7, we present the concentration of the nine point sources with short time.
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Figure 7: nine point sources, with number of time-steps equal to 25.

In Figure 8, we show the deposition rates of the nine point sources, with number of time-steps

equal to 25.
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Figure 8: Deposition rates in case of nine point sources, with number of time-steps equal to 25.

RATE
SiCsource,max : SiCtarget,max

9.106 : 6.7.106 = 1.34

Table 10: Rate of the concentration.
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81 Point Sources

81 point sources at the position X = 10, 11, 12, 000, 90.Y = 20.
Starting point of the source concentration tstart = 0.0

End point of the source concentration tend = 1108

Amount of the permanent source concentration csource = 1.0
Number of time steps 80

Table 11: Parameter of the source concentration.

In this experiment, we apply 81 point sources.

In Figure 9, we present the concentration of the 81 point sources.

Figure 9: 81 point sources, with number of time-steps equal to 80.

In Figure 10, we show the deposition rates of the 81 point sources, with number of time-steps

equal to 80.
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Figure 10: Deposition rates in case of 81 point sources, withnumber of time-steps equal to 80.

RATE
SiCsource,max : SiCtarget,max

1.5.107 : 1.5.107 = 1

Table 12: Rate of the concentration.

Line source

Line source at the position x ∈ [5, 95], y ∈ [20, 25]
Starting point of the source concentration tstart = 0.0

End point of the source concentration tend = 1108

Amount of the permanent source concentration csource = 1.0
Number of time steps 25

Table 13: Parameter of the source concentration.

In this part we will make an experiments with line source.

In Figure 11, we present the result of the line source,x ∈ [5, 95], y ∈ [20, 25] with number of

time steps equal to 25.
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Figure 11: line source, with number of time-steps equal to 25.

In Figure 12, we see the deposition rates of the line source, xis between 5 to 95, and y is

between 20 to 25.
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Figure 12: Deposition rates in case of line source,x ∈ [5, 95], y ∈ [20, 25].

RATE
SiCsource,max : SiCtarget,max

4.7.107 : 4.107 = 1.17

Table 14: Rate of the concentration.
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5.2 Test experiment 2: Interpolation with Temperature and Power

In the next experiment, we apply fit the mathematical parameters to the temperature and power

of the physical experiments.

We deal with the reaction:

2SiC + 4H →λ SiC + CH4 + Si.

In this case we have a table which has the values of temperature and the power of the plasma

and the ratio between the sources.

We have to interpolate theλ to the physical parameters temperatureT and power of plasmaP .

In Table 15 the interpolated parameters are given.

T P λ Ratio(SiC:C) Computed Ratio
400 900 S.1/10 10−8 F.1:0.97 1.01
400 500 S.1/5 10−8 F.1.3:1 1.33
400 100 1/2 10−8 C.2.4:1
600 300 1/4 10−8 C.1.5:1
800 500 1/8 10−8 C.1:1
800 900 S.1/5.7 10−8 F.1.18:1 1.252

Table 15: Computed (C) and experimental fitted (F) parameters with UG simulations.

One Source

Point source at the position (x, y) = (50, 20)
Starting point of the source concentration tstart = 0.0

End point of the source concentration tend = 1108

Amount of the permanent source concentrationcsource = 1.0
Number of time steps 25

Table 16: Parameter of the source concentration.

In Figure 13, we present the concentration of the one point source at (50,20).with number of

time-steps equal to 25.
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Figure 13: one point source at (50,20) , with number of time-steps equal to 25.

In Figure 14, we show the deposition rates of the one point source at (50,20), with number of

time-steps equal to 25.
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Figure 14: Deposition rates in case of one point source at (50,20), with number of time-steps

equal to 25.
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RATE
SiCsource,max : Ctarget,max

3.106 : 3.106 = 1

Table 17: Rate of the concentration.

Nine Point Sources

Nine point sources at the position (x = 10, 20, 30, 40, 50, 60, 70, 80, 90.y = 20)
Starting point of the source concentration tstart = 0.0

End point of the source concentration tend = 1108

Amount of the permanent source concentration csource = 1.0
Number of time steps 25

Table 18: Parameter of the source concentration.

In this experiment, we apply nine point sources.

In Figure 15, we present the concentration of the nine point sources with short time.

Figure 15: nine point sources, with number of time-steps equal to 25.

In Figure 16, we show the deposition rates of the nine point sources, with number of time-steps
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equal to 25.
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Figure 16: Deposition rates in case of nine point sources, with number of time-steps equal to

25.

RATE
SiCsource,max : Ctarget,max

3.106 : 3.106 = 1

Table 19: Rate of the concentration.

81 Point Sources

81 point sources at the position X = 10, 11, 12, 000, 90.Y = 20.
Starting point of the source concentration tstart = 0.0

End point of the source concentration tend = 1108

Amount of the permanent source concentration csource = 1.0
Number of time steps 100

Table 20: Parameter of the source concentration.

In this experiment, we apply 81 point sources.

In Figure 17, we present the concentration of the 81 point sources.
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Figure 17: 81 point sources, with number of time-steps equalto 100.

In Figure 18, we show the deposition rates of the 81 point sources, with number of time-steps

equal to 100.
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Figure 18: Deposition rates in case of 81 point sources, withnumber of time-steps equal to 100.
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RATE
SiCsource,max : Ctarget,max

7.5.106 : 7.106 = 1.07

Table 21: Rate of the concentration.

Line source

Line source at the position x ∈ [5, 95], y ∈ [20, 25]
Starting point of the source concentration tstart = 0.0

End point of the source concentration tend = 1108

Amount of the permanent source concentration csource = 1.0
Number of time steps 25

Table 22: Parameter of the source concentration.

In this part we will make an experiments with line source,x ∈ [5, 95], y ∈ [20, 25].

In Figure 19, we present the result of the line source,x ∈ [5, 95], y ∈ [20, 25] with number of

time steps equal to 30.

Figure 19: line source, with number of time-steps equal to 25.
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In Figure 20, we see the deposition rates of the line source, xis between 5 to 95, and y is

between 20 to 30.
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Figure 20: Deposition rates in case of line source,x ∈ [5, 95], y ∈ [20, 25].

RATE
SiCsource,max : Ctarget,max

1.8.107 : 2.2.107 = 0.81

Table 23: Rate of the concentration.

5.3 Test experiment 3: Regression with Temperature and Power

In the next experiment we apply a more flexible approximationmethod to obtain the parameters

of the mathematical method. We apply the regression and can fit to all the physical parameters,

because we are not restricted to a given interpolation grid.

The reaction is given as:

A → B andB → C and we apply to2SiC + 4H → SiC + CH4 + Si.

We computed the ratioSiC : C for temperaturesT = 400, 600, 800 and power of the plasma

100, 300, 500, 900 and fit the given experimented ration with UG program to the mathematical

model with the reaction parameterλ.
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We used linear regression, see Section 4, and computeλ for the new temperaturesT = 450, 500, 800

and apply the ratio of the simulated new parameters. This values can be given back to the phys-

ical experiments, see Table 24.

T P Exact Regression Exact Regression
λ λ ratio(SiC:C) ratio(SiC:C)

400 900 1e-09 1.703e-09 1:0.97 0.835
400 500 0.2e-08 2.903e-09 1.3:1 1.616
400 100 0.5e-08 4.103e-09 2.4:1 2.011
600 300 0.25e-08 3.303e-09 1.5:1 1.774
800 500 0.125e-8 2.503e-09 1:1 1.192
800 900 0.175e-8 1.303e-09 1.2:1 1.132
500 500 2.803e-09 1.58
600 600 2.4030e-09 1.433
800 800 1.603-09 1.206
400 400 3.203e-09 1.715
450 450 2.703e-09 1.57
800 100 3.703e-09 1.93

Table 24: Parameter of the source concentration.

One Source

Point source ofSiC at the position (x, y) = (50, 20)
Point source ofH at the position (x, y) = (50, 20)

Starting point of the source concentration tstart = 0.0
End point of the source concentration tend = 1108

Amount of the permanent source concentrationcsource = 1.0
Number of time steps 100

Table 25: Parameter of the source concentration.

We take here a points sources.

In Figure 21, we present the concentration of the one point source experiment.
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Figure 21: one point source experiment.

In Figure 22, we show the deposition rates of the one point source experiment.
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Figure 22: Deposition rates in case of one point source experiment.

RATE
Csource,max : SiCtarget,max

1.8.107 : 1.107 = 1.8

Table 26: Rate of the concentration.

Nine Point Sources
38



Nine point sources ofSiC at the position (x = 10, 20, 30, 40, 50, 60, 70, 80, 90.y = 20)
Nine point sources ofSiC at the position (x = 10, 20, 30, 40, 50, 60, 70, 80, 90.y = 20)
Starting point of the source concentration tstart = 0.0

End point of the source concentration tend = 1108

Amount of the permanent source concentration csource = 1.0
Number of time steps 25

Table 27: Parameter of the source concentration.

We take here a nine point sources of both concentration.

In Figure 23, we present the concentration of the nine point sources experiment.

Figure 23: nine point sources experiment.

In Figure 24, we show the deposition rates of the nine point sources experiment.
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Figure 24: Deposition rates in case of nine point sources experiment.

RATE
Csource,max : SiCtarget,max

5.106 : 4.4.106 = 1.13

Table 28: Rate of the concentration.

81 Point Sources,thalf = 2 108

In this first experiment,the value of temperature is 400 C andλ is 0.5 10−8.

81 point sources ofSiC at the position X = 10, 11, 12, 000, 90.Y = 20.
Line source ofH at the position x ∈ [5, 95], y ∈ [20, 25]

Starting point of the source concentration tstart = 0.0
End point of the source concentration tend = 1108

Amount of the permanent source concentrationSicsource = 1.0, Hsource = 0.20
Number of time steps 100

Table 29: Parameter of the source concentration.

We take here the concentration ofSiC as a point sources, and the concentration ofH is a line

source.

In Figure 25, we present the concentration of the 81 point sources experiment .
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Figure 25: 81 point sources experiment.

In Figure 26, we show the deposition rates of the 81 point sources experiment.
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Figure 26: Deposition rates in case of 81 point sources experiment.

RATE
Csource,max : SiCtarget,max

1.8.107 : 0.75.107 = 2.4

Table 30: Rate of the concentration.
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Remark 7 The regression method is more flexible for approximating to the physical parame-

ters. We obtain numerical results for different parameter studies, that are fitted to the physical

experiments. First test examples with multiple sources andtemperature regions which are in-

terested to the physicists are simulated. Here we have coupled a mathematical model with a

physical experiment and studied a near region of the deposition process.

6 CONCLUSIONS

We present numerical simulation for a CVD process to depositSiC films. Based on the dif-

ferent scales of physical and mathematical experiments, weapply parameter approximation to

fit the physical experiment into the mathematical experiment. Numerical approximations to

the experimental dates included the new parameters of the mathematical model. Such experi-

ments allow to reduce to a acceptable number of physical experiments and gave engineers and

experimentalists a mathematical tool to predict complex physical processes.

First numerical results show predictions of the physical experiments with a transport-reaction

equation of the deposition process.

The temperature of the target and power of the plasma are chosen in such manner, where sim-

ulation results can help to find an optimal deposition. Furthermore multiple source obtain best

results in a homogeneous layer deposition.

Such numerical simulations help to predict the deposition rates of the underlying film, e.g.,

SiC. In future, we will analyze the validity of the models with more complicate precursor

gases. Here the outstanding of multivariate analysis will be important to approximate a large

number of parameters.
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