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ABSTRACT

In this paper we present the simulation of a chemical vapposiéon for metallic bipolar

plates.

For chemical vapor deposition, the delicate optimizatiebween temperature, pressure and
plasma power is important to obtain a homogeneous deposi®e (Hlavacek and Orlicki

1995).

The aim is to reduce real-life experiments of a given CVD iplageactor, based on a large

physical parameter space we have a hugh amount of expesment

A detail study of the physical experiments on a CVD plasmatmaallows to reduce to an

approximated mathematical model, which is the underlyiaggport-reaction model.

Significant region of the CVD apparatus are approximatedmnical parameters are trans-
ferred to the mathematical parameters. Such approximedituced the mathematical parame-

ter space to a realistic amount of numerical experiments.
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Based on interpolation and regression functions we fit tthesical parameter space and can

give first prediction to deposition rates with the simulationodel.

Here numerical experiments help to understand the depogitocess and the control the posi-

tions of the sources for the deposition and precursor gases.

For the simulations we apply analytical as well as numengathods to obtain results to predict

the growth of thin layers.

The results are discussed with physical experiments to givalid model for the assumed

growth.

Here an important transfer of engineering research on riingeéal-life processes to acchieve
a simulatable mathematical model. Such a model can be sbivedmerical solvers and dis-
cretisation schemes. The resullts can be used to obtain ainderstanding of the technical

processes in engineering research.

Keywords: Chemical vapor deposition, multi-scale problem, appr@ation methods, numeri-
cal simulation.

AMS subiject classifications.35K25, 35K20, 74S10, 70G65.

1 INTRODUCTION

We motivate our study by simulating a growth of a thin film ticah be done by PE-CVD
(plasma enhanced chemical vapor deposition) processed,isberman and Lichtenberg 2005)
and (Ohring 2002). Such technical processes are very carapkreal-life experiments enor-
mous extensive and expensive. Based on a large physicahgemaspace the amount of exper-
iments are al least the variation of all possible parameteush large numbers of experiments
can be reduced to with the help of numerical experimentscbasea mathematical model.
Such modelling results are based on an interdiciplinarykwath engineers, mathematicians
and physicists. We derive a multiphysics model, that inetud simplification of the dominant
physical processes, i.d. transport of the reactive spétitge gas phase and their deposition

rates at the target layer.



The approximation between the mathematical parameterplaygical parametes can be done
with regression method, such that we can verify to the playsixperiments. Such an approx-
imations help to study the physical experiments with sirmoatools which are more cheaper
and can foresee the more appropriate experiments whicHcgsbeudone to understand and

control the physical processes.
In the following we introduce the PE-CVD process and its imigat modelling directions.

A gas exposed to an electric field in low pressure conditienss Torr) results in a non-
equilibrium plasma, see (Chapman 1980) and (Morosoff 1990¢h ionized media, known as
"cold” plasma or glow discharges, are powerful surface-ification tools in Material Science
and Technology. Low-pressure plasmas allow to modify timfasa chemistry and properties of
materials compatible with low-medium vacuum, through a@\H> process, see applications

(Favia and D’Agostino 2002) and (Morosoff 1990).

Here PE-CVD processes are attractive methods, becauseiof@produceable chemical pro-
cesses that can be controlled by pressure, by temperahddyyaadditional precursor gases.
Such methods are developed since recent years and arstatkoa producing high-temperature

films, see (Ohring 2002).

We consider models that are related to mesoscopic scalebpg®& and Ringhofer 1998), with
respect to flows close to the wafer surface, where the wafetasget material (e.g., metal or
ceramic) for the deposition, shortciteohring02. We asstiraethe wafer is a homogene media

and the surface can be modeled as a porous media, (Rouch 2006)

The physical experiments are used to obtain the influencenapérature, pressure and plasma
power to the deposition rates, see (Kadetov 2004). Herel#sena reactor chamber of a NIST
GEC reference celis used and for the hybrid ICP/CCP-RF plasmasource a dopbia an-
tenna, see (Kadetov 2004), is applied. Such experimentsng@tant but under the variation

of all the parameters very extensive.

Mathematically we apply interpolation between the phylsicel mathematical parameters to
verify a simulation model. Based on the smaller mathemigpaeameter space, we can allow

much more experiments and obtain via the regression funttie resulting parameters to the
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phyical experiments. Such switching between numericaterpents and physical experiments

reduce to a possible amount of experiments and we can optilmézdeposition process.

The numerical results are discussed and applied to valiatioblems and real-life problems.

We discuss an applications to deposit small filfhi€' to a metallic plate.

The paper is organized as follows.

In Section 2, we present our mathematical model and a pesstilced model for further ap-
proximations. In Section 3, we discuss the physical expemisof the CVD process. The
numerical methods of transport-reaction equation and theiameter approximation to the
physical model is described in Section 4 The numerical exparts are given in Section 5.

In Section 6, we briefly summarize our results.

2 MATHEMATICAL MODEL

In the next we discuss the derivation of the model.

We start with developing the multiphase model in the follogvsteps:

e Standard Transport model (one phase)
e Flow model (flow field of the plasma medium)

e Multiphase model with mobile and immobile zones

In each model part we can refine the processes of the trarisptiré deposition gaseous species
or reaction gaseous species with regard to the influencevofiid, plasma zones and precursor

gases.

A schematic test geometry of the CVD reactor is given in Fegur
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Figure 1: Vertical impinging CVD reactor.

2.1 Standard Transport Model

In the following, the models are discussed in terms of fddfaad near-field problems, which

take into account the scales of the models.

Two different types of models can be discussed:

1. Convection-diffusion-reaction equations (Gobbert &mnaghofer 1998) (far-field prob-

lem);

2. Boltzmann-Lattice equations (Senega and Brinkmann P@@&r-field problem).

The modeling is governed by a Knudsen Number, whereby thel&mu number is a dimen-
sionless number and defines the ratio of the molecular mearpfith length to a representative

physical length scale.
Kn = %, (1)

where) is the mean free path aridis the representative physical length scale. This lengtlesc
could be, for example, the radius of a body in a fluid. Here wad déth small Knudsen Num-
berskKn =~ 0.01 — 1.0 for a convection-diffusion-reaction equation and a camstalocity field,
whereas for large Knudsen Numbéss: > 1.0 we deal with a Boltzmann equation (Ohring
2002). From the modeling of the gaseous transport of thesiiepo species, we consider the
pure far-field model and assume a continuum flow field, seer§@e2008).
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Such assumptions leads to transport equations that caediedrwith a convection-diffusion-

reaction equation owing to a constant velocity field, see:

%c +VF — R, =q(z,t), iIn Q x [0,1] (2)
F=vec— DVe,

c(x,t) = co(x), onQ, (3)
c(x,t) = ci(x,t), onOQ x [0,¢], 4)

wherec is the molar concentration of the reaction gases (calledispeandr’ the flux of the
species.v is the flux velocity through the chamber and porous subs{Raeich 2006).D is
the diffusion matrix and, is the reaction term. The initial value is given@sand we assume
a Dirichlet boundary with the function (x, t) sufficiently smoothg(z, t) is a source function,

depending on time and space, and represents the inflow optuges.

The parameters of the equation are derived as follows. Tifestin in the modified CVD
process is given by the Knudsen diffusion, (Cao and Burddr@@3). We consider the overall
pressure in the reactor280 Pa and the substrate temperature (or wafer surface tempeyaur
about600 — 900 K. The pore size in the homogeneous substrate is assumedtode. The
homogeneous substrate can be either a porous medium, eegamaic material, see (Cao and
Burggraaf 1993) or a dense plasma, assumed to be very dethstationary, see (Lieberman
and Lichtenberg 2005). For such media we can derive thegiiffubased on the Knudsen
diffusion.

The diffusion is described as:

2€lL VT
_ 5
3RT ()

wheree is the porosityu is the shape factor of the Knudsen diffusiens the average pore

radius,R andT are the gas constant and temperature, respectively; enthe mean molecular
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speed, given by:

V=4 —— (6)

wherelV is the molar mass of the diffusive gas.

For the homogeneous reactions, we consider during the C@Eeps a constant reaction. ¥,

Ti andC species given as:

whereSisTiC5 is a MAX-phase material, see (Barsoum and El-Raghy 1996gwdeposits at
the wafer surface. For simplicity, we do not consider thernimiediate reaction with the precur-
sor gases, (Lieberman and Lichtenberg 2005) and assumesvdealing with a compound gas
3Ti + Si + 2C, see (Dobkin and Zuraw 2003). Therefore we can concentratme species
transport.

The reaction rate is then given by:

353 M TN [20]°

A= kr ; ; y
[S’LgTZCQ]L

(8)

wherek, is the apparent reaction constabt, M, N, O are the reaction orders of the reactants.
A schematic overview of the one-phase model is presentedyuré-2. Here the gas chamber

of the CVD apparatus is shown, which is modeled by a homogene®dium.
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Figure 2: Gas chamber of the CVD apparatus.

2.2 Flow Field

The flow field in which derives the velocity is used for the spart of the species. The velocity
in the homogeneous substrate is modeled by a porous mediean (®72; Johannsen 1999).
We assume stationary or low reactive medium, e.g. non-eah@ low-ionized plasma or less
reactive precursor gas. Further, the pressure can be agdsuithethe Maxwell distribution as

(Lieberman and Lichtenberg 2005):

p = pbT, ©)

wherep is the densityb is the Boltzmann’s constant arfdis the temperature.

The model equations are based on mass and momentum consgquans, where we assume
conserved energy conservation. Because of the low temyperand low pressure environment,
we assume the gaseous flow has a nearly liquid behavior. fbinerderivation of the velocity

can be given by Darcy’s law:

v = —E(Vp - pg), (10)
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wherew is the velocity of the fluidk is the permeability tensoy, is the dynamic viscosity, is
the pressure; is the vector of the gravity andis the density of the fluid.
We use the continuum equation of the particle density andiolthe equation of the system,

which is given as our flow equation:

d(¢p) +V - (pv) = Q, (11)

wherep is the unknown patrticle density, is the effective porosity an@ is the source-term of

the fluid. We assume a stationary fluid and consider only demee-free velocity fields, i.e.

V-v(z)=0, xe€. (12)

The boundary conditions for the flow equation are given as:

p=np(t,y), t>0, ~e€0Q, (13)

n-v=mys(t,y), t>0, ~eiQ, (24)

wheren is the normal unit vector with respect 2, where we assume that the pressyrand
flow concentrationn ; are prescribed by Dirichlet boundary conditions (Johanii$909).

From the nearly stationary fluids, we assume that the coasenvof momentum for velocity

is given (Glowinski 2003; Johannsen 1999). Therefore weneggtect the computation of the

momentum for the velocity.

Remark 1 For the flow through the gas chamber, for which we assume a gensmus medium
and non-reactive plasma, we have considered a constant Htavdcek and Orlicki 1995). A
further simplification is given by the very small porous gtdie, for which we can assume the

underlying velocity in a first approximation as constant (@g 2002).

Remark 2 For an instationary medium and reactive or ionized plasma,have to take into

account the relations of the electrons in the thermal eftilim. Such spatial variation can be
9



considered by modeling the electron drift. Such modelintg@fonized plasma is done with the

Boltzmanns relation, (Lieberman and Lichtenberg 2005).

2.3 Multiphase Model: Mobile and Immobile Zones

More complicated processes such as retardation, adsorgtiod dissipation processes of the
gaseous species are modelled with multiphase equationstak®einto account that concen-
tration of species can be given in a mobile and immobile wersiiepending on their different
reactive states, se&)( From these behaviours, we have to model a transport andsamized
state of the species, see also Figure 3. Here the mobile andhite phases of the gas concen-

tration are shown in the macroscopic scale of the porousumedi

» mobile phase
O

$.950

OC©y® -immobile phase
0B B2

oo ) © -~ Exchange

00RO (mobile immobile)

Figure 3: Mobile and immobile phase.

The model equations are given as combinations of transpdrreaction equations (coupled

partial and ordinary differential equations), given as:

Oy +V - (vel — DOV = g(—cF + Cim) — Nigc + Z Nikdck + Qs (15)
ke=k (i)

¢atCiL,im = Q(CiL - Cil:im) - )\i,iﬁbciL,im + Z Ai,k¢0£,im + Q;zma
k=k(i)
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¢:  effective porosity|—|,
¢; :  concentration of théth gaseous species in the plasma chamber
concentration of théth gaseous species in the immobile zones of the plasma clhambe
phase(mol /mm?,
v :  velocity in the plasma chambénm /nsec|],

DO . element-specific diffusions-dispersions tensom? /nsec]],

Xi; @ decay constant of thith speciegl/nsec|],
Q;:  source term of théth speciegmol /(mm?>nsec)],

g: exchange rate between the mobile and immobile concemrgtiasec],

wherei = 1,..., M andM denotes the number of components.

The parameters in Equation (15) are further described,Ised@eiser 2003).

The effective porosity is denoted lgyand describes the portion of the porosities of the aquifer
that is filled with plasma, and we assume a nearly fluid phake.tfansport term is indicated
by the Darcy velocity, that presents the flow-direction and the absolute valubeptasma
flux. The velocity field is divergence-free. The decay comistd theith species is denoted by

\i. k(i) therefore denotes the indices of the other species.

Remark 3 The concentrations in the mobile zones are modeled withemion-diffusion-reaction
eguations, see also subsection 2.1, where the concentratibe immobile zones are modeled
with reaction equations. These two phases present mobilitye gaseous species through the
homogeneous media, where the concentrations in the imenodiles are at least lost amounts

of depositable gases.

2.4 Simplified model: Far-Field Model

We concentrate on a far-field model and assume a continuumdimihat the transport equa-

tions can be treated with a convection-diffusion-reactgnation, due to a constant velocity
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field, see:

%HVF—RQ:O, in Q x [0,¢] (16)
F=vec— DVe,

c(x,t) = co(x), onQ, (17)
c(x,t) = ci(x,t), on O x [0,¢], (18)

wherec is the molar concentration arfd the flux of the speciesv is the flux velocity through
the chamber and porous substrate (Rouch 20063.the diffusion matrix and?, is the reaction
term. The initial value is given ag and we assume a Dirichlet boundary with the function

c1(z, t) sufficiently smooth.

Remark 4 The concentration to only dominant far field processes irgteephase to the reac-
tive species reduces enormously the physical parameteesi@uch a realistic reduction with
respect to the experiments can reduce also the underlyitigamaatical model and concentrate
on a defined number of experiments. Such experiments calateathe switching between the
phyical and mathematical parameter space and allows tcsfehe important processes in the

gas phase.

3 PHYSICAL EXPERIMENTS

Base of the experimental setup is the plasma reactor chaoilzeNIST GEC reference cell

The spiral antenna of the hybrid ICP/CCP-RF plasmasourcergjaaced by a double spiral
antenna (Kadetov 2004). This reduce the asymmetry of thenaetegield due to superposition
of the induced fields of both antennas. Also the power cogdiinthe plasma increase and
enhance the efficiency of the source. A set of MKS massflowobets allow any defined

mixture of gaseous precursors. Even the flows of liquid preamg with high vapor pressure
is controlled by this system. All other liquid and all solidepursors will direct transported
to the chamber by controlled carrier gas flow. Beside theyssee flow, also the density can

be changed by variation of pressure inside the recipienttr@bto the pressure is given due
12



to a valve between the recipient and the vacuum-pumps. idddita heated and insulated
substratholder was mounted. Hereby a temperature WO and a bias voltage can be
applied to the substrate. While pressure and RF power digtertine undirected particle energy
(plasmatemperature) , the bias voltage adds, only to ctigrgdicles, energy directed at the
Substrate. Aside the pressure and RF power control the gfadaization and the number as

well as the size of molecular fractions.

Altogether this setup provide as free process parameters:

e Pressure (typical0—! — 10=2 mbar)

Precursor-compositiod (M .S, TMS + Hy, TMS + Os)

Precursor flow-rate (range form SCCM up to SLM)

RF-Power (up to 1100W)

Substrate temperature (RB00°C")

Bias voltage (DC, unipolar and bipolar pulsed, floating)

During all experiments the process was observed with dpgicassion spectroscopy (OES)
and mass spectroscopy (MS). The stoichiometry of depo8lited was ex situ analyzed on a

scanning electron microscope (SEM) by energy dispersivayxanalysis (EDX).
Realisation of the Physical Experiments

The following parameters are used for the physical exparime Such reduction allows to
concentrate on important flow and transport processes igabghase. Further we apply the
underlying mathematical model (fare field model, see Sulwse’.4) such that we can switch

between the physical and mathematical parameters.

Precursor: Tetramethylsilan (TMS)

Substrate: VA-Steel
Film at the substrateS: C,
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Test Ppr, [mbar] | Y95 [C] | Ppiasma W] »(TMS) [SCCM] @(Hz) [SCCM] Ratio [C:Si] Mass (growth) [g] | Zeit [min]
080701-01-VA 9.7E-2 400 900 10.23 0 0.97811 0.00012 120
080718-01-VA 1.1E-1 400 900 10.00 0 1.00174 0.00050 130
080718-02-VA 4.5E-2 400 900 10.00 0 1.24811 0.00070 110
080618-01-VA 4.3E-2 400 500 10.23 0 1.32078 127
080716-01-VA 1.1E-1 400 500 10.00 0 1.42544 0.00250 120
080715-02-VA 1.1E-1 400 100 10.00 0 1.58872 0.00337 122
080804-01-VA 4.5E-2 400 100 10.00 0 2.91545 0.00356 129
080630-01-VA 9.9E-2 800 900 10.23 0 1.09116 0.00102 120
080807-01-VA 4.5E-2 800 900 10.00 0 1.18078 0.00118 120
080625-01-VA 3.9E-2 800 500 10.23 0 1.06373 120
080626-01-VA 9.3E-2 800 500 10.23 0 1.12818 0.00174 130
080806-01-VA 4.8E-2 800 100 10.00 0 1.73913 0.00219 121
080715-01-VA 1.1E-1 800 100 10.00 0 1.62467 0.00234 120
081016-01-VA 1.0E-1 600 300 10.00 0 1.72898 0.00321 123
081020-01-VA 1.1E-1 600 300 10.00 50 1.49075 0.00249 114
081028-01-VA 1.1E-1 600 300 10.00 15 1.53549 0.00273 120
081023-01-VA 1.1E-1 600 300 10.00 10 1.54278 0.00312 127
081027-01-VA 1.1E-1 600 300 10.00 5.5 1.55818 0.00277 126
081024-01-VA 1.1E-1 600 300 10.00 3.5 1.64367 0.00299 120
081022-01-VA 1.0E-1 600 300 10.00 25 1.69589 0.00318 127

We apply the following parameters for the interpolationhad substrate temperature we use:

Temperaturg Ratio(SiC:C)
400 2.4:1
600 1.5:1
700 1.211:1
800 1.1:1

for the substrate temperature and the power of the plasma&e u

Remark 5 For the process the temperature and power of the plasma ieritapt and experi-

ments show these significant parameters. Based on thesmptaas we initialize the mathe-

Temperature [C] Power [W] | Ratio(SiC:C)
400 900 1:0.97
400 500 1.3:1
800 900 1.18:1

matical model and interpolate the flux and reaction parts.

4 NUMERICAL METHODS

In this section we discuss the numerical methods. To aatel@eur numerical methods, we

combined numerical and analyical parts in the solver pseEes
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4.1 Discretization and Solver Methods

For the space-discretization of the PDE’s we apply finite#we methods as mass conserved
discretization schemes and for the time-discretizatioesidlting ODE’s we apply Runge-Kutta
methods or BDF methods. To accelerate the solver processprvbine numerical and analyt-

ical parts of the solutions.

4.1.1 Discretization method of the convection equation

We deal with the following convection equation

ORc—v-Ve=0, (19)

whereR is the retardation factor, and presents the retention afdheentration, see also equa-
tion (16). v is the velocity. We have a simple boundary conditios- 0 for the inflow and
outflow boundary and the initial values are givenc@s;,0) = c)(z). We use piecewise con-
stant discretization method with the upwind discretizatione in (Frolkovi€ and Geiser 2003)

and get

ViRt = VR —1" E v ¢ +T" E Cp Vkj

J
keout(y) kein(j)

ViR = G(RV;=m"v) +7" > rug (20)

kein(j)

The explicit time discretization has to fulfill the discretenimum-maximum property (Frol-

kovic and Geiser 2003), and we get the following restricfior the time steps

n< ] P
, TS min 7 (21)
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To obtain improved spatial discretization methods andyalgwber time-steps, we introduce a

reconstruction with linear polynomials as a higher testetion in the next subsection.

4.1.2 Discretization method for the convection-reactionguation based on embedded one

dimensional analytical solutions

We apply Godunovs method for the discretization method(Lafveque 2002), and extend the
formulation with analytical solution of convection-re@met equations. We reduce the multi-
dimensional equation to one dimensional equations ane s@eh equation exactly. The one-
dimensional solution is multiplied with the underlying uate and we get the mass-formulation.
The one-dimensional mass is embedded into the multi-dimeasmass-formulation and we

obtain the discretization of the multi-dimensional eqoati

The algorithm is given in the following manner

&g )+ V- V| C = _)\l ¢+ )\1_1 Cl—1,

withl=1,...,m.

The velocity vectow is divided by R;. The initial conditions are given by} = ¢,(z,0) , else

& =0forl=2,...,mand the boundary conditions are trivigl= 0 for [ = 1,..., m.

We first calculate the maximal time step for cgbind concentrationwith the use of the total

outflow fluxes

_Viku _
Ti,j = -, l/j = 'Ujk: .

Vi
keout(j)

We get the restricted time step with the local time steps li$ ead their components
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The velocity of the discrete equation is given by

We calculate the analytical solution of the mass, cf. (G26€3) and we get

n _ n
mi,jk,out — mi,out<a7 b7 T 7vl,j7 cee 7Ui,j7 R17 tety Ri7 )\17 cety )\Z) )

n o n n
mi,j,rest — 7’7’?%7‘7 (T ,/Ul’j7 e 7/Ui’j,R1, . .7Ri,)\17 . '7)\i) 3

wherea = VjR,-(c;“fjk — cj.jjk,) , b= ViRl andm]; = Vi Rc}l ;. Furtherc} ;,, is the concen-

tration at the inflow- and, is the concentration at the outflow-boundary of the gell

The discretization with the embedded analytical mass mutated by

U; V5

n+1 n _ jk lj

My = Moy = — E o M jk,out + E —, Miljout »
j l

keout(j) 7 l€in(j)

Where”;—f is the re-transformation for the total mass ;. ... in the partial massn; j; . In the
next time-step the mass is givema%%’;H =V c?jl and in the old time-step it is the rest mass
for the concentration. The proof is done in (Geiser 2003). In the next section wévdem
analytical solution for the benchmark problem, cf. (Higaatd Pigford 1980), (Jury and Roth

1990).

In the next subsection we introduce the discretization efdiffusion-dispersion-equation.
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4.1.3 Discretization of the diffusion-dispersion-equatin

We discretize the diffusion-dispersion-equation with liciptime-discretization and finite-volume

method for the following equation
ORc—V-(DVe)=0, (22)

wherec = ¢(z,t) with x € Q andt > 0. The diffusions-dispersions-tensbr = D(z,v) is
given by the Scheidegger-approach, cf. (Scheidegger 1961¢ velocity is given as. The

retardation-factor ig2 > 0.0.

The boundary-values are denotedibyD Ve¢(x,t) = 0, wherex € I is the boundary’ = 09,
cf. (Frolkovi€ 2002). The initial conditions are given b, 0) = ¢y (z).

We integrate the equation (22) over space and time and derive

tn+1 tn+1

/Q ,‘ /t O R(c) dt dx = /Q ,. /t V - (DVe) dt dx . 23)

The time-integration is done by the backward-Euler methutithe diffusion-dispersion term

is lumped, cf. (Geiser 2003)

J,

J

(R(c™™) — R(c™)) dw = " /Q V- (DVY) da (24)

The equation (24) is discretized over the space with resgacing the Green’s formula.

J,

J

(R(c"t) — R(c")) dx = 7" / Dn -Vt dy, (25)
Ly

wherel’; is the boundary of the finite-volume céll;. We use the approximation in space,

confer (Geiser 2003).

18



The spatial-integration for (25) is done by the mid-poineraver the finite boundaries and

given as

ViR(T) = ViR(S)) =7 Y 0 Y [T, - D5, Ve (26)
eEA kGAe

where|I', | is the length of the boundary-elemdrit,. The gradients are calculated with the

piecewise finite-element-functiaf), see (?)) and we obtain

chkn—l-l _ Z n+1v¢l( ) (27)

leAe

We get with the difference-notation for the neighbor-pgiand!, cf. (Frolkovi¢ and De Schep-

per 2001) and get the discretized equation

ViR(]™) = ViR(c)) = (28)

=SS (I DV ) (e = )

e€h; leAe\{j}  keA§
wherej =1,...,m.

4.2 Interpolation and regression of experimental dates

To simulate the physical experiments with the assumed muaagehave to approximate the pa-
rameters of the numerical model. We apply interpoation agdassion schemes to approximate

between the mathematical and physical parameters.
Here we concentrate on the reaction rates of the sp&¢jes andH.

The physical dates of temperature and pressure are usedafddtion simulations done to

obtain the ratio of the deposition.

Next we have to interpolate the parameters of the numeriodien
19



1.) Lagrangian Interpolation:

We assume an interpolation@t= [a;, b1] X ... X [ag, ba).

T=> f(z})L}, (29)

veK

where the Lagrangian function is given as:

[ai,bi]
r, — T
t _ . d m ? I
sz (.T) - Tri:lﬂ-,u:O,u;éyi ’ (30)
xl/[ai,bi] - xu[ai,bi]

7

2.) Linear Regression (Least square Approximation):

Here we have a points with values and we assume to have a Ipeekapation with respect to
minimize:

S=) (ye— Lulax)), (31)

k=1
wherem > n and L, is a function that is constructed with the least square dlyor see

(Burlisch and Stoer 2002).

Remark 6 To apply larger parameter spaces, we can generalise to waultite regression
methods, see (Neil 2002). Here we compute approximatiomseba higher dimensional ma-

trices spaces.

5 NUMERICAL EXPERIMENTS

For all the experiments we have the following parametersiefmhodel, the discretization and

solver methods.

We apply interpolation and regression methods to couplelysical parameters to the mathe-

matical parameters, see Figure 4 and Table 1.
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Physical Experiments
Physical parameters

Interpolation or Regression

Mathematical Experiments
Mathematical parameters

Figure 4: Coupling of physical and mathematical paramegiacs.

Physical parameter Mathematical parameter
Temperature,pressure,powevelocity, Diffusion,Reaction
T,p, W V,D, A\

Table 1: Physical and mathematical parameters.
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Parameters of the equation:

In the following, we have list the parameters for our simolatool UG, see (Bastian and Rentz-
Reichert 1997). The software toolbox has a flexible userfaate to allow a large humber of

numerical experiments and approximate to the known phlysarameters.

density p=10
mobile porosity ¢ =0.333
immobile porosity 0.333
Diffusion D =0.0
longitudinal Dispersion ar =0.0
transversal Dispersion ar = 0.00
Retardation factor R = 10.0e — 4 (Henry rate).
Velocity field v =(0.0,—-4.0 1078)",
Decay rate of the species of 1st EX Aap = 110768,

Decay rate of the species of 2nd EX 45 = 2 1078, Agyn = 1 107%,
Decay rate of the species of 3rd EX\ 45 = 0.25 1078, A\cp = 0.5 1078,
Geometry (2d domain) 2 = [0,100] x [0, 100].

Boundary Neumann boundary at
top, left and right boundaries.
Outflow boundary
at the bottom boundary

Table 2: Model-Parameters.

Discretization method:

Finite volume method of 2nd order:

spatial step size AZpin = 1.56, AZpee = 2.21

refined levels 6
Limiter Slope limiter
Test functions linear test function

reconstructed with neighbor gradients

Table 3: Spatial discretization parameters.

Time discretization methods :
Crank-Nicolson method (2nd order):
Solver method :

In the following, we deal with the test examples which areragimnated to the physical exper-

iments.
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Initial time-step Aty = 5 107
controlled time-step| At = 1.298 107, At,in = 1.158 107
Number of time-steps 100, 80, 30, 25
Time-step control time steps are controlled with
the Courant-Number CEl,, = 1

Table 4: Spatial discretization parameters.

Solver BiCGstab (Bi conjugate gradient methof)
Preconditioner geometric Multi-grid method
Smoother Gauss-Seidel method as smoothers for
the Multi-grid method
Basic level 0
Initial grid Uniform grid with 2 elements
Maximum Level 6
Finest grid Uniform grid with8192 elements

Table 5: Solver methods and their parameters.

5.1 Test experiment 1: Interpolation with Temperature

In the test example we deal with the following reaction:

28iC + 4H —s, SiC + CH4 + Si.

Here we have the physical experiments and approximate tiethgerature parameters’tf=

400, 600, 800.

We computed the rati®iC : C for the given temperaturé = 400, 600, 800 with the UG

program and fit to the parametir

We used Lagrangian formula to computdor the new temperaturée = 500, 700 and ap-
ply the ratio of the simulated new parameters. This valuesbeagiven back to the physical

experiments, see Table 6.
One Source

In Figure 5, we present the concentration of the one pointcgoat (50,20).with humber of

time-steps equal to 25.
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T | X (fitted) | X (interpolated)| Ratio(SiC:C) (computed with UG
400 1/2 1078 2.4:1

500 0.35 1078 1.85:1

600 1/4 1078 1.5:1

700 0.171 1078 1.211:1
800|1/810°® 1.1:1

Table 6: Computed and experimental fitted parameters wittsidlations.

Point source at the position (z,y) = (50, 20)
Starting point of the source concentration totart = 0.0
End point of the source concentration tengd = 1108
Amount of the permanent source concentrationc,,,,.. = 1.0
Number of time steps 25

Table 7: Parameter of the source concentration.

Figure 5: one point source at (50,20) , with number of tinepstequal to 25.

In Figure 6, we show the deposition rates of the one pointcgoat (50,20), with number of

time-steps equal to 25.
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Figure 6: Deposition rates in case of one point source a2(B0with number of time-steps

equal to 25.

Point source at the position

(x,y) = (50, 20)

Starting point of the source concentration

tstart = 0.0

End point of the source concentration

tena = 110°

Amount of the permanent source concentrationc,,, .. = 1.0

Number of time steps

25

Table 8: Parameter of the source concentration.

RATE

S'L.Csource,maa: : Sictarget,max

9.10°: 6.5.10% = 1.38

Table 9: Rate of the concentration.

Nine Point Sources

In this experiment, we apply nine point sources.

In Figure 7, we present the concentration of the nine poiatcas with short time.
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Figure 7: nine point sources, with number of time-steps equ25.

equal to 25.
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In Figure 8, we show the deposition rates of the nine pointees) with number of time-steps
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Figure 8: Deposition rates in case of nine point sources mimber of time-steps equal to 25.

RATE

SZCsource,mam : SiCtarget,mam
9.10° : 6.7.10° = 1.34

Table 10: Rate of the concentration.
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81 Point Sources

81 point sources at the position X =10,11,12,000,90.Y = 20.
Starting point of the source concentration totart = 0.0
End point of the source concentration teng = 1108
Amount of the permanent source concentration Csource = 1.0
Number of time steps 80

Table 11: Parameter of the source concentration.

In this experiment, we apply 81 point sources.

In Figure 9, we present the concentration of the 81 pointcsmsur

Figure 9: 81 point sources, with number of time-steps equa0t

In Figure 10, we show the deposition rates of the 81 pointeasjrwith number of time-steps

equal to 80.
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Figure 10: Deposition rates in case of 81 point sources, mithber of time-steps equal to 80.

RATE
SiCsom‘ce,mam : SiCtarget,maz
1.5.107: 1.5.10" = 1

Table 12: Rate of the concentration.

Line source
Line source at the position x € [5,95],y € 20, 25]
Starting point of the source concentration tstart = 0.0
End point of the source concentration tend = 1108
Amount of the permanent source concentration  cs,uree = 1.0
Number of time steps 25

Table 13: Parameter of the source concentration.

In this part we will make an experiments with line source.

In Figure 11, we present the result of the line source, [5,95],y € [20, 25] with number of

time steps equal to 25.
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Figure 11: line source, with number of time-steps equal to 25
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In Figure 12, we see the deposition rates of the line sourds,between 5 to 95, and y is

between 20 to 25.
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Figure 12: Deposition rates in case of line source, [5, 95], y € [20, 25].

RATE

S'éCsource,ma:(; : S'éCtarget,max

4.7.107 : 4107 = 1.17

Table 14: Rate of the concentration.
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5.2 Test experiment 2: Interpolation with Temperature and Power

In the next experiment, we apply fit the mathematical paramsdb the temperature and power
of the physical experiments.

We deal with the reaction:

25i1C' +4H —) SiC + CH4 + Si.

In this case we have a table which has the values of temperahd the power of the plasma

and the ratio between the sources.

We have to interpolate theto the physical parameters temperatiirand power of plasm#.

In Table 15 the interpolated parameters are given.

T P A Ratio(SiC:C)| Computed Ratiq
400|900 S.1/10 1078 F.1:0.97 1.01
400|500| S.1/510°8 F.1.3:1 1.33
400|100 1/210°%® C.24:1

600| 300| 1/410°8 C.151

800|500 1/81073 C.11

800|900 | S.1/5.710°% F.1.18:1 1.252

Table 15: Computed (C) and experimental fitted (F) pararaet@éh UG simulations.

One Source

Point source at the position (x,y) = (50,20)
Starting point of the source concentration totart = 0.0
End point of the source concentration teng = 1108
Amount of the permanent source concentrationc,,y .. = 1.0
Number of time steps 25

Table 16: Parameter of the source concentration.

In Figure 13, we present the concentration of the one poimtcgoat (50,20).with number of

time-steps equal to 25.
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Figure 13: one point source at (50,20) , with number of tineps equal to 25.

In Figure 14, we show the deposition rates of the one pointcsoat (50,20), with number of

time-steps equal to 25.
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Figure 14: Deposition rates in case of one point source a2(®0with number of time-steps

equal to 25.
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RATE

SiCsource,mam : Ctarget,mam

3.109:3.10° =1

Table 17: Rate of the concentration.

Nine Point Sources

Nine point sources at the position (x = 10, 20, 30, 40, 50, 60, 70, 80, 90.y = 20)
Starting point of the source concentration tstart = 0.0
End point of the source concentration tend = 1108
Amount of the permanent source concentration Csource = 1.0
Number of time steps 25

Table 18: Parameter of the source concentration.

In this experiment, we apply nine point sources.

In Figure 15, we present the concentration of the nine paatces with short time.

LB B E BR B BB

Figure 15: nine point sources, with number of time-stepsaetpu25.

In Figure 16, we show the deposition rates of the nine poiataas, with number of time-steps
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equal to 25.
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Figure 16: Deposition rates in case of nine point sourcety mamber of time-steps equal to

25.

RATE
SiCsom‘ce,mam : Ctarget,mam
3.109:3.10 =1

Table 19: Rate of the concentration.

81 Point Sources

81 point sources at the position X =10,11,12,000,90.Y = 20.
Starting point of the source concentration totart = 0.0
End point of the source concentration teng = 1108
Amount of the permanent source concentration Csource = 1.0
Number of time steps 100

Table 20: Parameter of the source concentration.

In this experiment, we apply 81 point sources.

In Figure 17, we present the concentration of the 81 pointcssu
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Figure 17: 81 point sources, with number of time-steps etqua0O.

In Figure 18, we show the deposition rates of the 81 pointcasjwith number of time-steps

equal to 100.
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Figure 18: Deposition rates in case of 81 point sources, mithber of time-steps equal to 100.
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RATE

SiCsourae,mam : Ctarget,mam

7.5.10%:7.10 = 1.07

Table 21: Rate of the concentration.

Line source
Line source at the position x € [5,95],y € [20, 25]
Starting point of the source concentration totart = 0.0
End point of the source concentration teng = 1108
Amount of the permanent source concentration  c,ouree = 1.0
Number of time steps 25

Table 22: Parameter of the source concentration.

In this part we will make an experiments with line sourees [5,95], y € [20, 25].

In Figure 19, we present the result of the line source, [5,95],y € [20, 25] with number of

time steps equal to 30.

Figure 19: line source, with number of time-steps equal to 25
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In Figure 20, we see the deposition rates of the line sourds,between 5 to 95, and y is

between 20 to 30.
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SiC at point 50 18 ——
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Figure 20: Deposition rates in case of line source, [5, 95], y € [20, 25].

RATE

S'L.Csource,max : Ctarget,max

1.8.107:2.2.10" = 0.81

Table 23: Rate of the concentration.

5.3 Test experiment 3: Regression with Temperature and Powe

In the next experiment we apply a more flexible approximatm@thod to obtain the parameters
of the mathematical method. We apply the regression and tctandil the physical parameters,

because we are not restricted to a given interpolation grid.
The reaction is given as:
A — BandB — C and we apply t@SiC + 4H — SiC + CH4 + Si.

We computed the rati6iC : C for temperature§” = 400, 600, 800 and power of the plasma
100, 300, 500, 900 and fit the given experimented ration with UG program to théheimatical

model with the reaction parametir

36



We used linear regression, see Section 4, and comydotehe new temperaturds = 450, 500, 800
and apply the ratio of the simulated new parameters. Thigegatan be given back to the phys-

ical experiments, see Table 24.

T P Exact | Regression Exact Regression
A A ratio(SiC:C)| ratio(SiC:C)
400| 900| 1e-09 | 1.703e-09 1:0.97 0.835
400 | 500| 0.2e-08 | 2.903e-09 1.3:1 1.616
400| 100| 0.5e-08 | 4.103e-09 2.4:1 2.011
600 | 300 | 0.25e-08| 3.303e-09 1.5:1 1.774
800 | 500 | 0.125e-8| 2.503e-09 1:1 1.192
800 | 900 | 0.175e-8| 1.303e-09 1.2:1 1.132
500 | 500 2.803e-09 1.58
600 | 600 2.4030e-09 1.433
800 | 800 1.603-09 1.206
400 | 400 3.203e-09 1.715
450 | 450 2.703e-09 1.57
800 | 100 3.703e-09 1.93

Table 24: Parameter of the source concentration.

One Source
Point source ofiC' at the position (z,y) = (50, 20)
Point source of{ at the position (z,y) = (50, 20)
Starting point of the source concentration totart = 0.0
End point of the source concentration tend = 1108
Amount of the permanent source concentrationc,,,,.. = 1.0
Number of time steps 100

Table 25: Parameter of the source concentration.

We take here a points sources.

In Figure 21, we present the concentration of the one pountcgoexperiment.
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Figure 21: one point source experiment.

In Figure 22, we show the deposition rates of the one pointcgoexperiment.

3e+07 T
SIC at point 50 18 ——
CH4 at point 50 18 -~
H at point 50 18 --------
SiC atpoint 502+
CH4 at point 50 2
H at point 50 2
2.5e+07
2e+07 |
1.5e+07

1e+07

5e+06

-5e+06
0

L L L L L L
2e+08 4e+08 6e+08 8e+08 1le+09 1.2e+09 1.4e+09

Figure 22: Deposition rates in case of one point source @xpet.

RATE

Csource,max . Sictarget,maz

1.8.107: 1.10" = 1.8

Table 26: Rate of the concentration.

Nine Point Sources
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Nine point sources a$iC' at the position

(x = 10, 20, 30, 40, 50, 60, 70, 80, 90.y = 20)

Nine point sources a$iC' at the position

(x = 10,20, 30, 40, 50, 60, 70, 80, 90.y = 20)

Starting point of the source concentration totart = 0.0

End point of the source concentration tend = 1108

Amount of the permanent source concentration Csource = 1.0
Number of time steps 25

Table 27: Parameter of the source concentration.

We take here a nine point sources of both concentration.

In Figure 23, we present the concentration of the nine paintces experiment.

bk Bl e B

L8 I I

Figure 23: nine point sources experiment.

In Figure 24, we show the deposition rates of the nine pointcas experiment.
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Figure 24: Deposition rates in case of nine point sourcesm@xgnt.

RATE

Csource,max . SiCtarget,maz

5.10°:4.4.105 =1.13

Table 28: Rate of the concentration.

81 Point Sourcest . = 2 108

In this first experiment,the value of temperature is 400 Caisd).5 1078,

81 point sources o$iC' at the position X =10,11,12,000,90.Y = 20.
Line source offf at the position x € [5,95],y € [20,25]
Starting point of the source concentration totart = 0.0
End point of the source concentration tend = 1108
Amount of the permanent source concentratiofic,,urce = 1.0, H puree = 0.20
Number of time steps 100

Table 29: Parameter of the source concentration.

We take here the concentration®fC' as a point sources, and the concentratioi/as a line

source.

In Figure 25, we present the concentration of the 81 pointcesuexperiment .
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Figure 25: 81 point sources experiment.

In Figure 26, we show the deposition rates of the 81 pointcasuexperiment.
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Figure 26: Deposition rates in case of 81 point sources @xpet.

RATE

Osource,max : SiCtarget,max

1.8.107 : 0.75.10" = 2.4

Table 30: Rate of the concentration.
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Remark 7 The regression method is more flexible for approximatindneoghysical parame-
ters. We obtain numerical results for different parametedges, that are fitted to the physical
experiments. First test examples with multiple sourcestamgperature regions which are in-
terested to the physicists are simulated. Here we have edupimathematical model with a

physical experiment and studied a near region of the dejpositrocess.

6 CONCLUSIONS

We present numerical simulation for a CVD process to desit films. Based on the dif-
ferent scales of physical and mathematical experimentsppéy parameter approximation to
fit the physical experiment into the mathematical experimédumerical approximations to
the experimental dates included the new parameters of ttieematical model. Such experi-
ments allow to reduce to a acceptable number of physicalrempets and gave engineers and

experimentalists a mathematical tool to predict compleyspial processes.

First numerical results show predictions of the physicgeziments with a transport-reaction

equation of the deposition process.

The temperature of the target and power of the plasma areshosuch manner, where sim-
ulation results can help to find an optimal deposition. Femtiore multiple source obtain best

results in a homogeneous layer deposition.

Such numerical simulations help to predict the depositeteg of the underlying film, e.g.,
SiC. In future, we will analyze the validity of the models with neocomplicate precursor
gases. Here the outstanding of multivariate analysis weilifoportant to approximate a large

number of parameters.
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