HUMBOLDT-UNIVERSITÄT ZU BERLIN

Mathematisch-Naturwissenschaftliche Fakultät II Institut für Mathematik

Preprint Nr. 2010 - 12

Joachim Naumann, Jörg Wolf

On the existence of weak solutions to a coupled system of two turbulent flows

On the existence of weak solutions to a coupled system of two turbulent flows

Joachim Naumann Jörg Wolf

Contents

1.	. Introduction		4
2.	Weak formulation of (1.1) - (1.5)		6
3.	. Existence of a weak solution		10
4.	Regularity properties of weak solutions		18
	Appendix 1	Extension of a function $g \in W^{s,q}(\Gamma)$ by zero onto $\partial \Omega \smallsetminus \Gamma$	18
	Appendix 2	The inhomogeneous Dirichlet problem for the Poisson equation with right hand side in L^1	34
	References		38

Abstract In this paper, we study a model problem for the stationary turbulent motion of two fluids in disjoint bounded domains Ω_1 and Ω_2 such that $\Gamma := \bar{\Omega}_1 \cap \bar{\Omega}_2 \neq \emptyset$. The specific difficulty of this problem arises from the boundary condition which characterizes the interaction of the fluid motions along Γ .

We prove the existence of a weak solution to the problem under consideration which is more regular than the solution obtained in [3]. Moreover, we establish some regularity results for any weak solution. Our discussion is heavily based on the results in appendices 1 and 2 which seem to be of independent interest.

1. Introduction

Let Ω_1 and Ω_2 be bounded domains in \mathbb{R}^d (d=2 or d=3) such that

$$\Omega_1 \cap \Omega_2 = \varnothing, \qquad \Gamma := \bar{\Omega}_1 \cap \bar{\Omega}_2 \neq \varnothing,$$

$$\partial \Omega_i \text{ Lipschitz}, \qquad \Gamma \subset \partial \Omega_i \text{ relatively open } (i = 1, 2).$$

We consider the following system of PDEs in Ω_i (i=1,2)

$$(1.1) -\operatorname{div}(\nu_i(k_i)\boldsymbol{D}(\boldsymbol{u}_i)) + \nabla p_i = \boldsymbol{f}_i \text{ in } \Omega_i,$$

(1.2)
$$\operatorname{div} \mathbf{u}_i = 0 \quad \text{in } \Omega_i,$$

$$(1.3) -\Delta k_i = \mu_i(k_i)|\boldsymbol{D}(\boldsymbol{u}_i)|^2 \text{ in } \Omega_i$$

where

 $\mathbf{u}_i = (u_{i1}, \dots, u_{id}) = \text{mean velocity}, p_i = \text{mean pressure},$ $k_i = \text{mean turbulent kinetic energy}$

are the unknown functions. For a vector field $\mathbf{u} = (u_1, \dots, u_d)$ we use the notations

$$oldsymbol{D}(oldsymbol{u}) = rac{1}{2}(
abla oldsymbol{u} + (
abla oldsymbol{u})^{ op}), \qquad |oldsymbol{D}(oldsymbol{u})|^2 = oldsymbol{D}(oldsymbol{u}): oldsymbol{D}(oldsymbol{u}).$$

The coefficients ν_i and μ_i are assumed to be uniformly bounded. We notice that the special case $\nu_i(k_i) = \nu_{i0} + \nu_{iT}(k_i)$ where

 $\nu_{i0} = \text{const} > 0$ dynamic viscosity of the fluid,

$$0 \le \nu_{iT}(k_i) \le \text{const}$$
 eddy viscosity,

as well as the two cases

$$\mu_i(k_i) = \nu_i(k_i)$$
 or $\mu_i(k_i) = \nu_{iT}(k_i)^{-1}$

are included in our discussion.

Finally, \mathbf{f}_i represents an external force in Ω_i .

The system (1.1) - (1.3) belongs to the class of one-equation RANS (Reynolds Averaged Navier-Stokes) models. The triple $(\boldsymbol{u}_i, k_i, p_i)$ (i = 1, 2) characterizes the stationary turbulent motion of a viscous fluid in Ω_i , where the convection term in the fluid equations as well as in the turbulent kinetic energy equations is neglected.

A discussion of RANS models can be found in [2; pp. 304-316], [12; pp. 182-196, 216-252], [18; 319-337] (with $\mu(k) = \nu_T(k)$), and in [14] within the context of oceanography. Related problems (but without turbulence effects) are studied in [17]. The stationary turbulent motion of a fluid with unbounded eddy viscosities of the type $\nu_T(k) = c_0 \sqrt{k}$ (Kolmogorov 1942, Prandtl 1945) has been studied in [7] and [13].

We complete (1.1) - (1.3) by the following boundary conditions which link both systems of PDEs in Ω_1 and Ω_2 through the interface Γ :

(1.4)
$$\begin{cases} \mathbf{u}_i = \mathbf{0} & \text{on } \partial \Omega_i \setminus \Gamma, \\ \mathbf{u}_i \cdot \mathbf{n}_i = 0 & \text{on } \Gamma, \\ \nu_i(k_i)(\mathbf{D}(\mathbf{u}_i)\mathbf{n}_i)_{\tau} + |\mathbf{u}_i - \mathbf{u}_j|(\mathbf{u}_i - \mathbf{u}_j)_{\tau} = 0 & \text{on } \Gamma \ (i \neq j), \end{cases}$$

¹⁾If $\mu_i = \nu_i$, system (1.1), (1.3) has some common features with the thermistor equations (see, e. g., Howison, S. D.; Rodrigues, J. F.; Shillor, M., Stationary solutions to the thermistor problem. J. Math. Analysis Appl. 174 (1993), 573-588; Cimatti, G., The stationary thermistor problem with a current limiting device. Proc. Royal Soc. Edinb. 116A (1990), 79-84). We notice that the assumption $\mu_i = \nu_i$ significantly simplifies the arguments of the passage to the limit in (1.3) with approximate solutions (cf. [7] and Gallouët, T.; Lederer, J.; Lewandowski, R.; Murat, F.; Tartar, L., On a turbulent system with unbounded eddy viscosities. Nonlin. Analysis 52 (2003), 1051-1068).

(1.5)
$$k_i = 0$$
 on $\partial \Omega_i \setminus \Gamma$, $k_i = G_i(|\boldsymbol{u}_1 - \boldsymbol{u}_2|^2)$ on Γ

where

$$\mathbf{n}_i = (n_{i1}, \dots, n_{id}) = \text{unit outward normal on } \partial \Omega_i,$$

$$oldsymbol{\xi}_{oldsymbol{ au}} = oldsymbol{\xi} - (oldsymbol{\xi} \cdot oldsymbol{n}_i) oldsymbol{n}_i \qquad (oldsymbol{\xi} \in \mathbb{R}^d),$$

$$(1.6) 0 \le G_i(t) \le c_0 t, |G_i(t) - G_i(\bar{t})| \le c_0 |t - \bar{t}| \forall t, \bar{t} \in [0, +\infty) (c_0 = \text{const} > 0)$$

(i = 1, 2). In (1.4), the boundary conditions on the (fixed) interface Γ model the situation when the interface is nonpermeable for both fluids which, however, do not completely adhere to the interface. Along this interface the fluids exhibit a partial slip which produces kinetic energy (cf. [3; pp. 69-73] for more details).

The boundary value problem (1.1) - (1.5) (with ∇u_i in place of $D(u_i)$ in (1.1), (1.3) and (1.4)) has been investigated in [3]. In this paper, the authors prove the existence of a solution $\{u_1, k_1, p_1; u_2, k_2, p_2\}$ to (1.1)-(1.5) where (1.1) is satisfied in the usual weak sense (cf. our definition in Section 2), while (1.4) is satisfied in the sense of transposition of the Laplacean $-\Delta$ under zero boundary conditions. The aim of the present paper is to give an existence proof for a weak solution to (1.1)-(1.5) (in the sense of the definition of Section 2). Our proof is shorter and more transparent than the one in [3]. Moreover, we establish some regularity results on (u_i, k_i) .

Our paper is organized as follows. In Section 2, we introduce the notion of weak solution $\{u_1, k_1; u_2, k_2\}$ to (1.1)-(1.5). By appealing to standard references, we show the existence of a pressure p_i associated with the pair (u_i, k_i) (i = 1, 2). Section 3 contains our main existence result. It's proof is based on a straightforward application of the Schauder ²⁾ fixed point theorem. A higher integrability result on ∇u_i is established in Section 4. From this result we deduce the local existence of the second order derivatives of k_i . In Appendix 1 we study in great detail the problem of whether a function which belongs to a Sobolev-Slobodeckij space over Γ and equals zero on $\partial \Omega \setminus \Gamma$, is a trace of a Sobolev function defined in Ω . The solution of this problem is fundamental to the homogenization of the boundary condition (1.5). Finally, Appendix 2 is concerned with the inhomogeneous Dirichlet problem for the Poisson equation with right hand side in L^1 .

2. Weak formulation of (1.1)-(1.5)

Let $W^{1,q}(\Omega)$ $(1 \le q < +\infty)$ denote the usual Sobolev space. We define

$$W^{1,q}_0(\Omega):=\{\varphi\in W^{1,q}(\Omega):\varphi=0\quad \text{a. e. on}\quad \partial\Omega\}.$$

²⁾We notice that the Schauder fixed point theorem has been also used in: Bernardi, C.; Chacon, T.; Lewandowski, R.; Murat, F., Existence d'une solution pour un modèle de deux fluides turbulentes couplés. C. R. Acad. Sci. Paris, Ser. I, 328 (1999), 993-998. In comparison with this paper, our existence theorem for a weak solution $\{u_1, k_1, p_1; u_2, k_2, p_2\}$ to (1.1)-(1.5) (see Section 3) involves more regularity of k_1, k_2 (see Remark 2.2 for details).

Spaces of vector-valued function will be denoted by bold letters, e. g., $\boldsymbol{L}^q(\Omega) := [L^q(\Omega)]^d$, $\boldsymbol{W}^{1,q}(\Omega) := [W^{1,q}(\Omega)]^d$ etc. Next, define

$$V_i := \{ \boldsymbol{v} \in \boldsymbol{W}^{1,2}(\Omega_i) : \text{div } \boldsymbol{v} = 0 \quad a. \ e. \ in \quad \Omega_i,$$

$$\boldsymbol{v} = \boldsymbol{0} \quad a. \ e. \ on \quad \partial \Omega_i \setminus \Gamma, \quad \boldsymbol{v} \cdot \boldsymbol{n}_i = 0 \quad a. \ e. \ on \quad \Gamma \}$$

(i = 1, 2).

Without any further reference, throughout the paper we suppose

$$\begin{bmatrix} \text{there exist constants } \nu_*, \nu^* & \text{and } \mu^* & \text{such that} \\ 0 < \nu_* \le \nu_i(t) \le \nu^* < +\infty, & 0 \le \mu_i(t) \le \mu^* < +\infty & \forall \ t \in \mathbb{R} \\ \end{cases}$$
 $(i = 1, 2).$

Definition Let $\mathbf{f}_i \in \mathbf{L}^{2^*}(\Omega_i)^{(3)}$ (i = 1, 2). The functions $\{\mathbf{u}_1, k_1; \mathbf{u}_2, k_2\}$ are called weak solution to (1.1)-(1.5) if

$$(2.1) (\boldsymbol{u}_i, k_i) \in \boldsymbol{V}_i \times \bigcap_{1 \le q < \frac{d}{d-1}} W^{1,q}(\Omega_i) \quad (i = 1, 2),$$

$$(2.2) \begin{cases} \int_{\Omega_1} \nu_1(k_1) \boldsymbol{D}(\boldsymbol{u}_1) : \boldsymbol{D}(\boldsymbol{v}_1) + \int_{\Omega_2} \nu_2(k_2) \boldsymbol{D}(\boldsymbol{u}_2) : \boldsymbol{D}(\boldsymbol{v}_2) + \\ + \int_{\Gamma} |\boldsymbol{u}_1 - \boldsymbol{u}_2| (\boldsymbol{u}_1 - \boldsymbol{u}_2) \cdot (\boldsymbol{v}_1 - \boldsymbol{v}_2) dS = \\ = \int_{\Omega_1} \boldsymbol{f}_1 \cdot \boldsymbol{v}_1 + \int_{\Omega_2} \boldsymbol{f}_2 \cdot \boldsymbol{v}_2 \quad \forall \ (\boldsymbol{v}_1, \boldsymbol{v}_2) \in \boldsymbol{V}_1 \times \boldsymbol{V}_2, \end{cases}$$

(2.3)
$$\begin{cases} \text{for some } r > d, \\ \int\limits_{\Omega_i} \nabla k_i \cdot \nabla \varphi = \int\limits_{\Omega_i} \mu_i(k_i) |\boldsymbol{D}(\boldsymbol{u}_i)|^2 \varphi \quad \forall \ \varphi \in W_0^{1,r}(\Omega_i)^{4}, \end{cases}$$

(2.4)
$$k_i = 0$$
 a. e. on $\partial \Omega_i \setminus \Gamma$, $k_i = G_i(|\boldsymbol{u}_1 - \boldsymbol{u}_2|^2)$ a. e. on Γ .

Remark 2.1 (existence of a pressure) Define

 $^{^{3)}}$ By q^* we denote Sobolev embedding exponent for $W^{1,q}(\Omega)$ ($\Omega \subset \mathbb{R}^{\mathbb{N}}$ bounded, Lipschitzian; $N \geq 2),$ i. e. $q^* = \frac{Nq}{N-q}$ if $1 \leq q < N,$ and $1 \leq q^* < +\infty$ if q = N. If q > N, then $W^{1,q}(\Omega) \subset C(\bar{\Omega})$ continuously. $^{4)}$ Notice that r > N iff $1 < r < \frac{N}{N-1}.$

$$\boldsymbol{W}_{0,\Gamma}^{1,2}(\Omega_i) := \{ \boldsymbol{w} \in \boldsymbol{W}^{1,2}(\Omega_i) : \boldsymbol{w} = \boldsymbol{0} \quad a. \ e. \ on \quad \partial \Omega_i \setminus \Gamma, \\ \boldsymbol{w} \cdot \boldsymbol{n}_i = 0 \quad a. \ e. \ on \quad \Gamma \}$$

(i=1,2). Clearly, \boldsymbol{V}_i is a closed subspace of $\boldsymbol{W}_{0,\Gamma}^{1,2}(\Omega_i)$. We have:

Let $\{u_1, k_1; u_2, k_2\}$ be a weak solution to (1.1)-(1.5). Then there exists $p_i \in L^2(\Omega_i)$ with $\int_{\Omega_i} p_i = 0$ such that

(2.2')
$$\begin{cases} \int_{\Omega_{i}} \nu_{i}(k_{i}) \boldsymbol{D}(\boldsymbol{u}_{i}) : \boldsymbol{D}(\boldsymbol{w}) + (-1)^{i+1} \int_{\Gamma} |\boldsymbol{u}_{1} - \boldsymbol{u}_{2}| (\boldsymbol{u}_{1} - \boldsymbol{u}_{2}) \cdot \boldsymbol{w} dS = \\ = \int_{\Omega_{i}} \boldsymbol{f}_{i} \cdot \boldsymbol{w} + \int_{\Omega_{i}} p_{i} \operatorname{div} \boldsymbol{w} \quad \forall \boldsymbol{w} \in \boldsymbol{W}_{0,\Gamma}^{1,2}(\Omega_{i}). \end{cases}$$

In addition, there holds

$$(2.2") ||p_i||_{L^2} \le c \Big(||\nabla \boldsymbol{u}_i||_{\boldsymbol{L}^2} + ||\boldsymbol{f}_i||_{\boldsymbol{L}^{2^*}} \Big).$$

To prove this, we first note the following

Proposition Let $\Omega \subset \mathbb{R}^N$ $(N \geq 2)$ be a bounded Lipschitz domain and let $1 < r < +\infty$. Then, for every $f \in L^r(\Omega)$ with $\int_{\Omega} f = 0$, there exists $\mathbf{v} \in \mathbf{W}_0^{1,r}(\Omega)$ such that

$$\operatorname{div} \boldsymbol{v} = f \quad a. \ e. \ in \quad \Omega,$$
$$\|\nabla \boldsymbol{v}\|_{\boldsymbol{L}^r} \leq c\|f\|_{L^r}.$$

For a proof, see, e. g. [9; Chap. III, Thm. 3.2], [22; Chap. II, Lemma 2.1.1, a)].

We now proceed as follows. For $\boldsymbol{w} \in \boldsymbol{W}_{0,\Gamma}^{1,2}(\Omega_i)$, define

$$\mathcal{F}_i(\boldsymbol{w}) := \int\limits_{\Omega_i} \nu_i(k_i) \boldsymbol{D}(\boldsymbol{u}_i) : \boldsymbol{D}(\boldsymbol{w}) + (-1)^{i+1} \int\limits_{\Gamma} |\boldsymbol{u}_1 - \boldsymbol{u}_2| (\boldsymbol{u}_1 - \boldsymbol{u}_2) \cdot \boldsymbol{w} dS - \int\limits_{\Omega_i} \boldsymbol{f}_i \cdot \boldsymbol{w}$$

(i=1,2). It is easy to check that \mathcal{F}_i is a linear continuous functional on $\mathbf{W}_{0,\Gamma}^{1,2}(\Omega_i)$. By (2.2), $\mathcal{F}_i(\mathbf{v}) = 0$ for all $\mathbf{v} \in \mathbf{V}_i$.

Next, the above Proposition implies that the mapping

$$A: \boldsymbol{v} \mapsto A\boldsymbol{v} = \operatorname{div} \boldsymbol{v}$$

is surjective from $\boldsymbol{W}_{0,\Gamma}^{1,2}(\Omega_i)$ onto the space

$$\left\{ f \in L^2(\Omega_i) : \int_{\Omega_i} f = 0 \right\}.$$

Now, following word by word the arguments of the proof in [9; Chap. III, Thm. 5.2] or [22; Chap. II, Lemma 2.11, b)] we obtain the existence of a $p_i \in L^2(\Omega_i)$ with $\int_{\Omega_i} p_i = 0$ such that

$$\mathcal{F}_i(\boldsymbol{w}) = \int_{\Omega_i} p_i \operatorname{div} \, \boldsymbol{w} \quad \forall \, \boldsymbol{w} \in \boldsymbol{W}_{0,\Gamma}^{1,2}(\Omega_i),$$

i. e., (2.2') holds.

Estimate (2.2") is readily seen.

Remark 2.2 In [3; Thm. 5.2, pp. 88-89] the notion of (weak) solution to (1.1)-(1.5) means that k_i belongs to the Sobolev-Slobodeckij space $W^{s,2}(\Omega_i)$ (0 < $s < \frac{1}{2}$), and that (1.3) is satisfied in the sense of transposition of $-\Delta$ (cf. [3; p. 78]). In contrast to that paper, our definition of weak solution to (1.1)-(1.5) involves more regularity of k_i ⁵⁾.

Indeed, for any $0 < s < \frac{1}{2}$ we have $\frac{2d}{2+d-2s} < \frac{d}{d-1}$. Thus, if

$$\frac{2d}{2d-2s} < q < \frac{d}{d-1},$$

then

$$1 - \frac{d}{q} > s - \frac{d}{2},$$

and therefore

$$W^{1,q}(\Omega_i) \subset W^{s,2}(\Omega_i)$$

(see, e. g., [24; p. 328]). Hence, $k_i \in \bigcap_{1 \le q < \frac{d}{d-1}} W^{1,q}(\Omega_i)$ implies $k_i \in W^{s,2}(\Omega_i)$ for all

$$0 < s < \frac{1}{2}.$$

 $^{^{5)}}$ See also Appendix 2.

Finally, let $k_i \in W^{1,q}(\Omega_i)$ $(1 \le q < \frac{d}{d-1})$ satisfy (2.3) and (2.4). Integration by parts on the left hand side of (2.3) gives, for any $\varphi \in W^{2,2}(\Omega_i) \cap W_0^{1,2}(\Omega_i)$,

$$-\int_{\Omega_i} k_i \Delta \varphi + \int_{\Gamma} G_i(|\boldsymbol{u}_1 - \boldsymbol{u}_2|^2) \boldsymbol{n}_i \cdot \nabla \varphi dS = \int_{\Omega_i} \mu_i(k_i) |\boldsymbol{D}(\boldsymbol{u}_i)|^2 \varphi,$$

i. e., k_i satisfies (1.3) in the sense of transposition of $-\Delta$ under zero boundary conditions on φ (cf. [3; p. 78]).

3. Existence of a weak solution

The following theorem is the main result of our paper.

Theorem Let $\Omega_i \subset \mathbb{R}^d$ (i = 1, 2; d = 2 or d = 3) be bounded domains of class C^{1-6} . Suppose that assumption $(A)^{(7)}$ is satisfied.

Then, for every $\mathbf{f}_i \in \mathbf{L}^{2^*}(\Omega_i)$ (i=1,2) there exists a weak solution $\{\mathbf{u}_1, k_1; \mathbf{u}_2, k_2\}$ to (1.1)-(1.5). In addition,

$$(3.1) k_i \geq 0 a. e. in \Omega_i,$$

(3.2)
$$\sum_{i=1}^{2} \|\boldsymbol{u}_{i}\|_{\boldsymbol{W}^{1,2}(\Omega_{i})}^{2} + \int_{\Gamma} |\boldsymbol{u}_{1} - \boldsymbol{u}_{2}|^{3} dS \leq c \sum_{j=1}^{2} \|\boldsymbol{f}_{j}\|_{\boldsymbol{L}^{2^{*}}(\Omega_{j})}^{2},$$

(3.3)
$$\begin{cases} for \ every \quad 1 \leq q < \frac{d}{d-1} \quad there \ exists \quad c = \text{const} \quad such \ that \\ \|k_i\|_{\boldsymbol{W}^{1,q}(\Omega_i)} \leq c \sum_{j=1}^2 \|\boldsymbol{f}_j\|_{\boldsymbol{L}^{2^*}(\Omega_j)}^2 \\ where \quad c = c(q) \to +\infty \quad as \quad q \to \frac{d}{d-1}, \end{cases}$$

(3.4)
$$\begin{cases} for \ every \quad \Omega_i' \in \Omega_i \quad and \ every \quad \delta > 0, \\ \int_{\Omega_i'} \frac{|\nabla k_i|^2}{(1+k_i)^{1+\delta}} \le \frac{c}{\delta} \sum_{j=1}^2 \|\boldsymbol{f}_j\|_{\boldsymbol{L}^{2^*}(\Omega_j)}^2, \\ where \quad c \to +\infty \quad as \quad \text{dist } (\Omega_i', \partial \Omega_i) \to 0. \end{cases}$$

⁶⁾The condition $\Omega_i \in \mathcal{C}^1$ we need in order to apply Theorem A2.1.

 $^{^{7)}}$ See p. 22

Proof We consider the space $L^1(\Omega_1) \times L^1(\Omega_2)$ equipped with the norm

$$\|(k_1, k_2)\| := \sum_{i=1}^{2} \|k_i\|_{L^1(\Omega_i)}.$$

For appropriate R > 0 which will be fixed below, we set

$$\mathcal{K}_R := \{ (k_1, k_2) \in L^1(\Omega_1) \times L^1(\Omega_2) : ||(k_1, k_2)|| \le R \}.$$

Then, for any $(k_1, k_2) \in \mathcal{K}_R$ we show that there exists exactly one $(\boldsymbol{u}_1, \boldsymbol{u}_2) \in \boldsymbol{V}_1 \times \boldsymbol{V}_2$ which satisfies (2.2). With $(\boldsymbol{u}_1, k_1; \boldsymbol{u}_2, k_2)$ at hand, we deduce from Theorem A2.1 the existence and uniqueness of a pair $(\hat{k}_1, \hat{k}_2) \in W^{1,q}(\Omega_1) \times W^{1,q}(\Omega_2)$ $(1 < q < \frac{d}{d-1}$ arbitrary) which solves (2.3) with the given L^1 -function $\mu_i(k_i)|D(\boldsymbol{u}_i)|^2$ on the right hand side, and with given $G_i((|\boldsymbol{u}_1-\boldsymbol{u}_2|^2))$ on $\Gamma(i=1,2)$. This gives rise to introduce a mapping $\mathcal{T}: \mathcal{K}_R \to \mathcal{K}_R$ by

$$\mathcal{T}(k_1, k_2) := (\hat{k}_1, \hat{k}_2).$$

We then prove:

- (i) T is continuous;
- (ii) $\mathcal{T}(\mathcal{K}_R)$ is precompact.

From Schauder's fixed it follows that there exists $(k_1^*, k_2^*) \in \mathcal{K}_R$ such that $\mathcal{T}(k_1^*, k_2^*) = (k_1^*, k_2^*)$.

Now, with the fixed point $(\boldsymbol{k}_1^*, \boldsymbol{k}_2^*)$ at hand, we obtain the existence and uniqueness of a pair $(\boldsymbol{u}_1^*, \boldsymbol{u}_2^*) \in \boldsymbol{V}_1 \times \boldsymbol{V}_2$ which satisfies (2.2) (with $(\boldsymbol{k}_1^*, \boldsymbol{k}_2^*)$ in place of (k_1, k_2) therein). By the definition of \mathcal{T} , the functions $\{\boldsymbol{u}_1^*, k_1^*; \boldsymbol{u}_2^*, k_2^*\}$ are a weak solution to (1.1)-(1.5).

We turn to the details of the proof.

Definition of $\mathcal{T}: \mathcal{K}_R \to \mathcal{K}_R$. The space $\mathbf{V}_1 \times \mathbf{V}_2$ is a Hilbert space with respect to the scalar product

$$\langle (oldsymbol{u}_1,oldsymbol{u}_2), (oldsymbol{v}_1,oldsymbol{v}_2)
angle := \sum_{i=1}^2 \int\limits_{\Omega}
abla oldsymbol{u}_i \cdot
abla oldsymbol{v}_i.$$

By $\|\cdot\| := \langle \cdot, \cdot \rangle^{\frac{1}{2}}$ we denote the associated norm.

1) The mapping $(k_1, k_2) \mapsto (\boldsymbol{u}_1, \boldsymbol{u}_2)$. Given any $(k_1, k_2) \in L^1(\Omega_1) \times L^1(\Omega_2)$, we prove the existence and uniqueness of a pair $(\boldsymbol{u}_1, \boldsymbol{u}_2) \in \boldsymbol{V}_1 \times \boldsymbol{V}_2$ which satisfies (2.2). To do this, we replace (2.2) by an operator equation in $\boldsymbol{V}_1 \times \boldsymbol{V}_2$ to which an abstract existence and uniqueness theorem applies.

Firstly, for any (fixed) $(k_1, k_2) \in L^1(\Omega_1) \times L^1(\Omega_2)$ we introduce a linear bounded mapping $\mathcal{A}_{(k_1, k_2)} : \mathbf{V}_1 \times \mathbf{V}_2 \to \mathbf{V}_1 \times \mathbf{V}_2$ by

$$\langle \mathcal{A}_{(k_1,k_2)}(oldsymbol{u}_1,oldsymbol{u}_2), (oldsymbol{v}_1,oldsymbol{v}_2)
angle := \sum_{i=1}^2\int\limits_{\Omega_i}
u_i(k_i)oldsymbol{D}(oldsymbol{u}_i) : oldsymbol{D}(oldsymbol{v}_i).$$

By Korn's equality,

$$\langle \mathcal{A}_{(k_1,k_2)}(\boldsymbol{u}_1,\boldsymbol{u}_2),(\boldsymbol{u}_1,\boldsymbol{u}_2)\rangle \geq c_0 \|(\boldsymbol{u}_1,\boldsymbol{u}_2)\|^2 \quad (c_0 = \text{const} > 0)$$

for all $(\boldsymbol{u}_1, \boldsymbol{u}_2) \in \boldsymbol{V}_1 \times \boldsymbol{V}_2$ (c_0 independent of (k_1, k_2)).

Secondly, observing the continuity of the trace mapping $\gamma:W^{1,2}(\Omega)\to L^4(\partial\Omega)$ $(d=2\text{ and }d=3;\text{ see, e. g., [8], [11], [24;\text{ pp. 281-282, 329-330]})}$ we obtain, for every $(\boldsymbol{u}_1,\boldsymbol{u}_2),(\boldsymbol{v}_1,\boldsymbol{v}_2)\in\boldsymbol{V}_1\times\boldsymbol{V}_2^{\ 8)},$

$$\left| \int_{\Gamma} |\boldsymbol{u}_{1} - \boldsymbol{u}_{2}| (\boldsymbol{u}_{1} - \boldsymbol{u}_{2}) \cdot (\boldsymbol{v}_{1} - \boldsymbol{v}_{2}) dS \right| \leq$$

$$\leq \left(\int_{\Gamma} |\boldsymbol{u}_{1} - \boldsymbol{u}_{2}|^{\frac{8}{3}} dS \right)^{\frac{3}{4}} \left(\int_{\Gamma} |\boldsymbol{v}_{1} - \boldsymbol{v}_{2}|^{4} dS \right)^{\frac{1}{4}}$$

$$\leq c \left(\sum_{i=1}^{2} \|\boldsymbol{u}_{i}\|_{\boldsymbol{L}^{\frac{8}{3}}(\partial\Omega_{i})}^{2} \right) \sum_{j=1}^{2} \|\boldsymbol{v}_{j}\|_{\boldsymbol{L}^{4}(\partial\Omega_{j})}^{9}$$

$$\leq c \|(\boldsymbol{u}_{1}, \boldsymbol{u}_{2})\|^{2} \|(\boldsymbol{v}_{1}, \boldsymbol{v}_{2})\|.$$

We now introduce a (nonlinear) mapping $\mathcal{B}: \mathbf{V}_1 \times \mathbf{V}_2 \to \mathbf{V}_1 \times \mathbf{V}_2$ by

$$\langle \mathcal{B}(u_1, u_2), (v_1, v_2) \rangle := \int_{\Gamma} |u_1 - u_2| (u_1 - u_2) \cdot (v_1 - v_2) dS.$$

By elementary calculus,

$$\langle \mathcal{B}(\boldsymbol{u}_1, \boldsymbol{u}_2) - \mathcal{B}(\bar{\boldsymbol{u}}_1, \bar{\boldsymbol{u}}_2), (\boldsymbol{u}_1, \boldsymbol{u}_2) - (\bar{\boldsymbol{u}}_1, \bar{\boldsymbol{u}}_2) \rangle \ge$$

$$\ge \int_{\Gamma} (|\boldsymbol{u}_1 - \boldsymbol{u}_2|^2 - |\bar{\boldsymbol{u}}_1 - \bar{\boldsymbol{u}}_2|^2)(|\boldsymbol{u}_1 - \boldsymbol{u}_2| - |\bar{\boldsymbol{u}}_1 - \bar{\boldsymbol{u}}_2|)dS \ge 0$$

⁸⁾ For notational simplicity, in this section we use the same notation for a function in $W^{1,q}(\Omega)$ and its trace.

 $^{^{9)}}$ Throughout the paper, we denote by c positive constants which may change their numerical value but do not depend on the functions under consideration.

and

$$|\!|\!|\!|\!|\!|\!|\!|\!|\mathcal{B}(\boldsymbol{u}_1,\boldsymbol{u}_2) - \mathcal{B}(\bar{\boldsymbol{u}}_1,\bar{\boldsymbol{u}}_2)|\!|\!|\!|\!|\!| \leq c(|\!|\!|\!|(\boldsymbol{u}_1,\boldsymbol{u}_2)|\!|\!|\!| + |\!|\!|\!|\!|(\bar{\boldsymbol{u}}_1,\bar{\boldsymbol{u}}_2)|\!|\!|\!|) \sum_{i=1}^2 |\!|\!|\!|\boldsymbol{u}_i - \bar{\boldsymbol{u}}_i|\!|\!|_{\boldsymbol{W}^{1,2}(\Omega_i)}$$

for all $(\boldsymbol{u}_1, \boldsymbol{u}_2)$, $(\bar{\boldsymbol{u}}_1, \bar{\boldsymbol{u}}_2) \in \boldsymbol{V}_1 \times \boldsymbol{V}_2$ Thus,

 $\left\{ \begin{array}{ll} \mathcal{A}_{(k_1,k_2)} + \mathcal{B} & \textit{is continuous on the whole of} \quad \boldsymbol{V}_1 \times \boldsymbol{V}_2 \\ \textit{and maps bounded sets into bounded sets}, \end{array} \right.$

$$\left\{ \begin{array}{l} \langle (\mathcal{A}_{(k_1,k_2)} + \mathcal{B})(\boldsymbol{u}_1,\boldsymbol{u}_2) - (\mathcal{A}_{(k_1,k_2)} + \mathcal{B})(\bar{\boldsymbol{u}}_1,\bar{\boldsymbol{u}}_2), (\boldsymbol{u}_1,\boldsymbol{u}_2) - (\bar{\boldsymbol{u}}_1,\bar{\boldsymbol{u}}_2) \rangle \geq \\ \\ \geq c_0 \| (\boldsymbol{u}_1,\boldsymbol{u}_2) - (\bar{\boldsymbol{u}}_1,\bar{\boldsymbol{u}}_2) \|^2 \qquad \forall \ (\boldsymbol{u}_1,\boldsymbol{u}_2), (\bar{\boldsymbol{u}}_1,\bar{\boldsymbol{u}}_2) \in \boldsymbol{V}_1 \times \boldsymbol{V}_2. \end{array} \right.$$

From [27; Thm. 26.A, p. 557] it follows that for every $\boldsymbol{f}_i \in \boldsymbol{L}^{2^*}(\Omega_i)$ (i=1,2) there exists exactly one $(\boldsymbol{u}_1, \boldsymbol{u}_2) \in \boldsymbol{V}_1 \times \boldsymbol{V}_2$ such that

$$(3.5) \qquad \langle (\mathcal{A}_{(k_1,k_2)} + \mathcal{B})(\boldsymbol{u}_1,\boldsymbol{u}_2),(\boldsymbol{v}_1,\boldsymbol{v}_2) \rangle = \sum_{i=1}^{2} \int_{\Omega_i} \boldsymbol{f}_i \cdot \boldsymbol{v}_i \quad \forall \ (\boldsymbol{v}_1,\boldsymbol{v}_2) \in \boldsymbol{V}_1 \times \boldsymbol{V}_2,$$

i. e., (2.2) holds with the given $(k_1, k_2) \in L^1(\Omega_1) \times L^1(\Omega_2)$. In addition, we have

(3.6)
$$\sum_{i=1}^{2} \|\boldsymbol{u}_{i}\|_{\boldsymbol{W}^{1,2}(\Omega_{i})}^{2} + \int_{\Gamma} |\boldsymbol{u}_{1} - \boldsymbol{u}_{2}|^{3} dS \leq c \sum_{j=1}^{2} \|\boldsymbol{f}_{j}\|_{\boldsymbol{L}^{2^{*}}(\Omega_{i})}^{2},$$

where the constant c does not depend on (k_1, k_2) .

2) The mapping $(\boldsymbol{u}_1, \boldsymbol{u}_2) \mapsto (\hat{k}_1, \hat{k}_2)$. Let $1 < q < \frac{d}{d-1}$. Let $(\boldsymbol{u}_1, \boldsymbol{u}_2) \in \boldsymbol{V}_1 \times \boldsymbol{V}_2$ denote the solution to (3.5) (uniquely determined by $(k_1, k_2) \in L^1(\Omega_1) \times L^1(\Omega_2)$) which has been obtained by the preceding step 1). Define

$$\tilde{h}_i := \begin{cases} G_i(|\boldsymbol{u}_1 - \boldsymbol{u}_2|^2) & a. \ e. \ on \quad \Gamma, \\ 0 & a. \ e. \ on \quad \partial \Omega_i \setminus \Gamma \end{cases}$$

 $(G_i \text{ as in } (1.6); i = 1, 2)$. By Corollary A1.1,

(3.7)
$$\tilde{h}_i \in W^{1-\frac{1}{q},q}(\partial \Omega_i), \quad \|\tilde{h}_i\|_{W^{1-\frac{1}{q},q}(\partial \Omega_i)} \le c \sum_{j=1}^2 \|\boldsymbol{u}_j\|_{\boldsymbol{W}^{1,2}(\Omega_j)}^2.$$

Now, from Theorem A2.1 and Theorem A2.2, 1° we obtain the existence and uniqueness of a pair $(\hat{k}_1, \hat{k}_2) \in W^{1,q}(\Omega_1) \times W^{1,q}(\Omega_2)$ such that

$$\hat{k}_i \ge 0 \quad a. \ e. \ in \quad \Omega_i,$$

(3.9)
$$\int_{\Omega_i} \nabla \hat{k}_i \cdot \nabla \varphi_i = \int_{\Omega_i} \mu_i(k_i) |\boldsymbol{D}(\boldsymbol{u}_i)|^2 \varphi_i \quad \forall \ \varphi_i \in W^{1,q'}(\Omega_i),$$

$$\hat{k}_i = \tilde{h}_i \quad a. \ e. \ on \quad \partial \Omega_i,$$

(3.11)
$$\|\hat{k}_i\|_{W^{1,q}(\Omega_i)} \le c \Big(\| |\boldsymbol{D}(\boldsymbol{u}_i)|^2 \|_{L^1(\Omega_i)} + \|\tilde{h}_i\|_{W^{1-\frac{1}{q},q}(\partial\Omega_i)} \Big),$$

(3.12)
$$\begin{cases} for \ every \quad \Omega_i' \in \Omega_i \quad and \ every \quad \delta > 0, \\ \frac{\nabla \hat{k}_i}{(1+\hat{k}_i)^{\frac{1+\delta}{2}}} \in \boldsymbol{L}^2(\Omega_i'), \\ \int_{\Omega_i} \frac{\nabla \hat{k}_i}{(1+\hat{k}_i)^{1+\delta}} \leq \frac{c}{\delta} \Big(\| \ |\boldsymbol{D}(\boldsymbol{u}_i)|^2 \|_{L^1(\Omega_i)} + \| \tilde{h}_i \|_{W^{1-\frac{1}{q},q}(\partial\Omega_i)} \Big), \\ where \quad c \to +\infty \quad as \quad \operatorname{dist}(\Omega_i', \partial\Omega_i) \to 0. \end{cases}$$

We notice that the constants c in (3.7), (3.11) and (3.12) do not depend on (k_1, k_2) . By combining (3.7) and (3.11) we find

(3.13)
$$\|(\hat{k}_1, \hat{k}_2)\| \le c \sum_{i=1}^2 \|\boldsymbol{f}_i\|_{\boldsymbol{L}^{2^*}(\Omega_i)}^2 = : R.$$

3) Let us consider \mathcal{K}_R 10) with R as in (3.13). For $(k_1, k_2) \in \mathcal{K}_R$, define

$$\mathcal{T}: (k_1, k_2) \mapsto (\boldsymbol{u}_1, \boldsymbol{u}_2) \mapsto \mathcal{T}(k_1, k_2) := (\hat{k}_1, \hat{k}_2),$$

where $(\boldsymbol{u}_1, \boldsymbol{u}_2)$ is as in step 1), (\hat{k}_1, \hat{k}_2) as in step 2). Then \mathcal{T} is a well-defined (single valued) mapping of \mathcal{K}_R into itself. ¹¹⁾

(i) \mathcal{T} is continuous. Let be $(k_{1m}, k_{2m}) \in \mathcal{K}_R \ (m \in \mathbb{N})$ such that

$$k_{im} \to k_i$$
 strongly in $L^1(\Omega_i)$ as $m \to \infty$ $(i = 1, 2)$.

¹⁰⁾Recall $\mathcal{K}_R := \{(k_1, k_2) \in L^1(\Omega_1) \times L^1(\Omega_2) : ||(k_1, k_2)|| \le R\}.$

¹¹⁾In fact, \mathcal{T} maps the whole of $L^1(\Omega_1) \times L^1(\Omega_2)$ into \mathcal{K}_R .

Clearly, $(k_1, k_2) \in \mathcal{K}_R$. Without loss of generality, we may assume that

(3.14)
$$k_{im} \to k_i$$
 a. e. in Ω_i as $m \to \infty$ $(i = 1, 2)$.

We prove that

$$\mathcal{T}(k_{1m}, k_{2m}) \to \mathcal{T}(k_1, k_2)$$
 strongly in $L^1(\Omega_1) \times L^1(\Omega_2)$ as $m \to \infty$.

To begin with, we introduce the following notation. For (k_{1m}, k_{2m}) , let $(\boldsymbol{u}_{1m}, \boldsymbol{u}_{2m}) \in \boldsymbol{V}_1 \times \boldsymbol{V}_2$ denote the uniquely determined solution of

$$(3.5_m) \quad \langle (\mathcal{A}_{(k_{1m},k_{2m})} + \mathcal{B})(\boldsymbol{u}_{1m},\boldsymbol{u}_{2m}), (\boldsymbol{v}_1,\boldsymbol{v}_2) \rangle = \sum_{i=1}^2 \int\limits_{\Omega_i} \boldsymbol{f}_i \cdot \boldsymbol{v}_i \quad \forall \ (\boldsymbol{v}_i,\boldsymbol{v}_2) \in \boldsymbol{V}_1 \times \boldsymbol{V}_2.$$

Clearly,

(3.6_m)
$$\sum_{i=1}^{2} \|\boldsymbol{u}_{im}\|_{\boldsymbol{W}^{1,2}(\Omega_{i})}^{2} + \int_{\Gamma} |\boldsymbol{u}_{1m} - \boldsymbol{u}_{2m}|^{3} dS \leq c \sum_{i=1}^{2} \|\boldsymbol{f}_{i}\|_{\boldsymbol{L}^{2*}(\Omega_{i})}^{2}.$$

Analogously, for the limit element (k_1, k_2) , let $(\boldsymbol{u}_1, \boldsymbol{u}_2) \in \boldsymbol{V}_1 \times \boldsymbol{V}_2$ denote the uniquely determined solution to (3.5). This solution satisfies (3.6).

We claim

$$(3.15) (\boldsymbol{u}_{1m}, \boldsymbol{u}_{2m}) \to (\boldsymbol{u}_1, \boldsymbol{u}_2) \text{strongly in} \boldsymbol{W}^{1,2}(\Omega_1) \times \boldsymbol{W}^{1,2}(\Omega_2) \text{as} m \to \infty.$$

To prove this, we first note that from (3.6_m) it follows that there exists a subsequence $\{(\boldsymbol{u}_{1m_s}, \boldsymbol{u}_{2m_s})\}\ (s \in \mathbb{N})$ such that

$$(\boldsymbol{u}_{1m_s}, \boldsymbol{u}_{2m_s}) \to (\bar{\boldsymbol{u}}_1, \bar{\boldsymbol{u}}_2)$$
 weakly in $\boldsymbol{W}^{1,2}(\Omega_1) \times \boldsymbol{W}^{1,2}(\Omega_2)$ as $s \to \infty$.

Using the compactness of the embedding $W^{1,2}(\Omega) \subset L^r(\partial\Omega)$ $(1 \leq r < 4; d = 2 \text{ resp.} d = 3)$, we obtain

$$\langle \mathcal{B}(oldsymbol{u}_{1m_s},oldsymbol{u}_{2m_s}), (oldsymbol{v}_1,oldsymbol{v}_2)
angle
ightarrow \mathcal{B}(ar{oldsymbol{u}}_1,ar{oldsymbol{u}}_2), (oldsymbol{v}_1,oldsymbol{v}_2)
angle \hspace{0.2cm} orall \hspace{0.2cm} (oldsymbol{v}_1,oldsymbol{v}_2) \in oldsymbol{V}_1 imes oldsymbol{V}_2$$

as $m \to \infty$. With the help of (3.14) the passage to the limit $s \to \infty$ in (3.5_m) gives

$$\langle (\mathcal{A}_{(k_1,k_2)}+\mathcal{B})(ar{oldsymbol{u}}_1,ar{oldsymbol{u}}_2
angle = \sum_{i=1}^2\int\limits_{\Omega}oldsymbol{f}_i\cdotoldsymbol{v}_i\quadorall\ (oldsymbol{v}_1,oldsymbol{v}_2)\inoldsymbol{V}_1 imesoldsymbol{V}_2.$$

Comparing this and (3.5) we find $\bar{\boldsymbol{u}}_i = \boldsymbol{u}_i$ (i = 1, 2). Therefore the whole sequence $\{(\boldsymbol{u}_{1m}, \boldsymbol{u}_{2m})\}$ converges weakly in $\boldsymbol{W}^{1,2}(\Omega_1) \times \boldsymbol{W}^{1,2}(\Omega_2)$ to $(\boldsymbol{u}_1, \boldsymbol{u}_2)$.

We now form the difference between (3.5_m) and (3.5), and use the test function $\mathbf{v}_i = \mathbf{u}_{im} - \mathbf{u}_i$ (i = 1, 2). Observing the monotonicity of \mathcal{B} , we find

$$\nu_* \sum_{i=1}^2 \int_{\Omega_i} |\boldsymbol{D}(\boldsymbol{u}_{im} - \boldsymbol{u}_i)|^2 \leq \sum_{i=1}^2 \int_{\Omega_i} \nu_i(k_{im}) (\boldsymbol{D}(\boldsymbol{u}_{im}) - D(\boldsymbol{u}_i)) : \boldsymbol{D}(\boldsymbol{u}_{im} - \boldsymbol{u}_i) \\
\leq \sum_{i=1}^2 \int_{\Omega_i} (-\nu_i(k_{im}) + \nu_i(k_i)) \boldsymbol{D}(\boldsymbol{u}_i) : \boldsymbol{D}(\boldsymbol{u}_{im} - \boldsymbol{u}_i) \\
\to 0 \quad \text{as} \quad m \to \infty.$$

Whence (3.15).

Next, set $(\hat{k}_{1m}, \hat{k}_{2m}) := \mathcal{T}(k_{1m}, k_{2m})$ $(m \in \mathbb{N})$ and $(\hat{k}_1, \hat{k}_2) := \mathcal{T}(k_1, k_2)$. Let $1 < q < \frac{d}{d-1}$. By the definition of \mathcal{T} , the pair $(\hat{k}_{1m}, \hat{k}_{2m}) \in W^{1,q}(\Omega_1) \times W^{1,q}(\Omega_2)$ is uniquely determined by (k_{1m}, k_{2m}) and $(\mathbf{u}_{1m}, \mathbf{u}_{2m})$ through

$$(3.9_m) \int_{\Omega_i} \nabla \hat{k}_{im} \cdot \nabla \varphi_i = \int_{\Omega_i} \mu_i(k_{im}) |\boldsymbol{D}(\boldsymbol{u}_{im})|^2 \varphi_i \quad \forall \ \varphi_i \in W_0^{1,q'}(\Omega_i),$$

$$(3.10_m) \hat{k}_{im} = \tilde{h}_{im} \quad a. \ e. \ on \quad \partial \Omega_i,$$

where $\tilde{h}_{im} \in W^{1-\frac{1}{q},q}(\partial \Omega_i)$ is defined by

$$\tilde{h}_{im} := \begin{cases} G_i(|\boldsymbol{u}_{1m} - \boldsymbol{u}_{2m}|^2) & a. \ e. \ on \quad \Gamma, \\ 0 & a. \ e. \ on \quad \partial \Omega_i \setminus \Gamma \end{cases}$$

(see Theorem A2.1). From (3.7) (with u_{im} in place of u_i) it follows that

$$\|\tilde{h}_{im}\|_{W^{1-\frac{1}{q},q}(\partial\Omega_i)} \le c \sum_{j=1}^2 \|\boldsymbol{u}_{jm}\|_{\boldsymbol{W}^{1,2}(\Omega_j)}^2 \le \text{const.}$$

We obtain

(3.16)
$$\tilde{h}_{im} \to \tilde{h}_i$$
 weakly in $W^{1-\frac{1}{q},q}(\partial \Omega_i)$ as $m \to \infty$,

where \tilde{h}_i is defined as above, i. e.

$$\tilde{h}_i := \begin{cases} G_i(|\boldsymbol{u}_1 - \boldsymbol{u}_2|^2) & a. \ e. \ on \quad \Gamma, \\ 0 & a. \ e. \ on \quad \partial \Omega_i \setminus \Gamma \end{cases}$$

(i = 1, 2). To see (3.16), we first note that (3.15) implies $\mathbf{u}_{im} \to \mathbf{u}_i$ strongly in $\mathbf{L}^4(\partial \Omega_i)$ as $m \to \infty$ (d = 2 resp. d = 3). Therefore

$$G_i(|\boldsymbol{u}_{1m}-\boldsymbol{u}_{2m}|^2) \to G_i(|\boldsymbol{u}_1-\boldsymbol{u}_2|^2)$$
 strongly in $L^2(\Gamma)$ as $m \to \infty$.

Since $W^{1-\frac{1}{q},q}(\partial\Omega_i)$ is reflexive, (3.16) is now readily seen by routine arguments. To proceed, we note that \hat{k}_{im} satisfies the estimate

$$\|\hat{k}_{im}\|_{W^{1,q}(\Omega_{i})} \leq c \left(\||\boldsymbol{D}(\boldsymbol{u}_{im})|^{2}\|_{L^{1}(\Omega_{i})} + \|\tilde{h}_{im}\|_{W^{1-\frac{1}{q},q}(\partial\Omega_{i})} \right) \quad \text{[cf. (3.11)]}$$

$$\leq c \sum_{j=1}^{2} \|\boldsymbol{u}_{jm}\|_{\boldsymbol{W}^{1,2}(\Omega_{j})}^{2}$$

$$\leq c \sum_{j=1}^{2} \|\boldsymbol{f}_{j}\|_{\boldsymbol{L}^{2^{*}}(\Omega_{j})}^{2} \quad \text{[by (3.6_{m})]}$$

 $(i=1,2;\ m\in\mathbb{N})$. Hence there exists a subsequence $\{\hat{k}_{im_t}\}\ (t\in\mathbb{N})$ such that

$$\hat{k}_{im_t} \to \bar{k}_i$$
 weakly in $W^{1,q}(\Omega_i)$ as $t \to \infty$.

Using (3.14), (3.15) and (3.16) the passage to the limit $t \to \infty$ in (3.9_{mt}) and (3.10_{mt}) gives

$$\int_{\Omega_i} \nabla \bar{k}_i \cdot \nabla \varphi_i = \int_{\Omega_i} \mu_i(k_i) |\boldsymbol{D}(\boldsymbol{u}_i)|^2 \varphi_i \quad \forall \ \varphi_i \in W_0^{1,q'}(\Omega_i),$$

$$\bar{k}_i = \tilde{h}_i \quad a. \ e. \ on \quad \partial \Omega_i.$$

Combining this and (3.9), (3.10) we get

$$\int_{\Omega_i} \nabla(\bar{k}_i - \hat{k}_i) \cdot \nabla \varphi_i = 0 \quad \forall \ \varphi_i \in W_0^{1,q'}(\Omega_i),$$

$$\bar{k}_i - \hat{k}_i = 0 \quad a. \ e. \ on \quad \partial \Omega_i.$$

By theorem A2.1, $\bar{k_i} = \hat{k_i}$ a. e. in Ω_i (i = 1, 2). It follows that the whole sequence $\{\hat{k}_{im}\}$ converges weakly in $W^{1,q}(\Omega_i)$ to $\hat{k_i}$ as $m \to \infty$. Therefore, by the compactness of the embedding $W^{1,q}(\Omega) \subset L^1(\Omega)$,

$$\hat{k}_{im} \to \hat{k}_i$$
 strongly in $L^1(\Omega_i)$ as $m \to \infty$,

i. e., \mathcal{T} is continuous.

(ii) $\mathcal{T}(\mathcal{K}_R)$ is precompact. Let $(\hat{k}_{1m}, \hat{k}_{2m}) \in \mathcal{T}(\mathcal{K}_R)$ $(m \in \mathbb{N})$. Then $(\hat{k}_{1m}, \hat{k}_{2m}) = \mathcal{T}(k_{1m}, k_{2m})$, where $(k_{1m}, k_{2m}) \in \mathcal{K}_R$. As above, let $(\mathbf{u}_{1m}, \mathbf{u}_{2m}) \in \mathbf{V}_1 \times \mathbf{V}_2$ denote the uniquely determined solutions to (3.5_m) . The existence and uniqueness argument used at the end of the proof of the continuity of \mathcal{T} (cf. Theorem A2.1), implies that $(\hat{k}_{1m}, \hat{k}_{2m}) \in \mathbf{W}^{1,q}(\Omega_1) \times \mathbf{W}^{1,q}(\Omega_2)$ and $1 < q < \frac{d}{d-1}$) and (3.9_m) and (3.10_m) hold. It follows that

$$\|\hat{k}_{im}\|_{W^{1,q}(\Omega_i)} \le c \sum_{j=1}^2 \|\boldsymbol{f}_j\|_{\boldsymbol{L}^{2^*}(\Omega_j)}^2 \quad (i=1,2; m \in \mathbb{N})$$

(cf. above). By the compactness of the embedding $W^{1,q}(\Omega) \subset L^1(\Omega)$, there exists a subsequence $\{\hat{k}_{im_s}\}\ (s \in \mathbb{N})$ and an element $(l_1, l_2) \in L^1(\Omega_1) \times L^1(\Omega_2)$ such that

$$\hat{k}_{im_s} \to l_i$$
 strongly in $L^1(\Omega_i)$ as $s \to \infty$,

i.e. $\mathcal{T}(\mathcal{K}_R)$ is precompact.

By Schauder's fixed point theorem, there exists $(k_1^*, k_2^*) \in \mathcal{K}_R$ such that $\mathcal{T}(k_1^*, k_2^*) = (k_1^*, k_2^*)$. The proof of the theorem is complete.

4. Regularity properties of weak solutions

In this section, we establish regularity properties for any weak solution $\{u_1, k_1; u_2, k_2\}$ to (1.1)–(1.5) (see Sect. 2 for the definition).

Theorem 4.1 (Local regularity) Let $f_i \in L^2(\Omega_i)$ (i = 1, 2). Then there exists $\sigma > 2$ such that for every weak solution $\{u_1, k_1; u_2, k_2\}$ to (1.1)–(1.5) there holds

$$\nabla \boldsymbol{u}_i \in \boldsymbol{L}_{loc}^{\sigma}(\Omega_i), \quad k_i \in W_{loc}^{2,\frac{\sigma}{2}}(\Omega_i).$$

Indeed, the local higher integrability of $\nabla \boldsymbol{u}_i$ follows from [6; Prop. 4.1]. It follows $|\boldsymbol{D}(\boldsymbol{u}_i)|^2 \in \boldsymbol{L}_{loc}^{\frac{\sigma}{2}}(\Omega_i)$. Then $k_i \in W_{loc}^{2,\frac{\sigma}{2}}(\Omega_i)$ is a consequence of Theorem A 2.1, (A2.7).

Theorem 4.2 (global higher integrability of ∇u_i) Assume that

$$\overline{\Gamma} \cap (\partial \Omega_i \setminus \Gamma)$$
 is Lipschitz $(i = 1, 2)^{12}$

Let $\mathbf{f}_i \in \mathbf{L}^2(\Omega_i)$. Then there exists $\rho > 2$ such that for every weak solution $\{\mathbf{u}_1, k_1; \mathbf{u}_2, k_2\}$ to (1.1)–(1.5) there holds

$$\nabla \boldsymbol{u}_i \in \boldsymbol{L}^{\rho}(\Omega_i).$$

This result is a special case of [26; Thm. 2.1].

We notice that the higher integrability of the gradient has been used in [3] for the uniqueness of the weak solution to (1.1)–(1.5) in the case d=2. It has been also used in [4].

Appendix 1. Extension of a function $g \in W^{s,q}(\Gamma)$ by zero onto $\partial \Omega \setminus \Gamma$

 $^{^{12)}\,\}mathrm{See}\,\left[26;\,(1.24\mathrm{a}),\,(1.24\mathrm{b})\right]$ for details.

1 Let $\Omega \subset \mathbb{R}^N$ $(N \geq 2)$ be a bounded domain with Lipschitz boundary $\partial\Omega$. For 0 < s < 1 and $1 < q < +\infty$ we consider the Sobolev-Slobodeckij space

$$W^{s,q}(\partial\Omega) := \left\{ w \in L^q(\partial\Omega) : \int_{\partial\Omega} \int_{\partial\Omega} \frac{|w(x) - w(y)|^q}{|x - y|^{N - 1 + sq}} dS_x dS_y < + \infty \right\}$$

with the norm

$$||w||_{W^{s,q}(\partial\Omega)} := \left(||w||_{L^q(\partial\Omega)}^q + \int\limits_{\partial\Omega} \int\limits_{\partial\Omega} \frac{|w(x) - w(y)|^q}{|x - y|^{N-1+sq}} dS_x dS_y \right)^{\frac{1}{q}}$$

(see, e. g., [8], [19] for details).

Let $\Gamma \subset \partial \Omega$ be **relatively open**. We have

1.1 Let $w \in W^{s,q}(\partial\Omega)$. If w = 0 a. e. on $\partial\Omega \setminus \Gamma$, then

$$\int\limits_{\partial\Omega}\int\limits_{\partial\Omega}\frac{|w(x)-w(y)|^q}{|x-y|^{N-1+sq}}dS_xdS_y =$$

$$(A1.1) = \int_{\Gamma} \int_{\Gamma} \frac{|w(x) - w(y)|^q}{|x - y|^{N-1+sq}} dS_x dS_y +$$

$$+ \int_{\Gamma} |w(y)|^q \left(\int_{\partial \Omega \setminus \Gamma} \frac{1}{|x - y|^{N-1+sq}} dS_x \right) dS_y$$

$$+ \int_{\partial \Omega \setminus \Gamma} \left(\int_{\Gamma} \frac{|w(x)|^q}{|x - y|^{N-1+sq}} dS_x \right) dS_y$$

This follows from the additivity of the integral.

We notice that the second and third integral on the right hand side of (A1.1) are equal. Indeed, we have

$$\int_{\Gamma} \left(\int_{\partial \Omega \setminus \Gamma} \frac{|w(y)|^q}{|x - y|^{N - 1 + sq}} dS_x \right) dS_y =$$

$$= \int_{\partial \Omega \setminus \Gamma} \left(\int_{\Gamma} \frac{|w(y)|^q}{|x-y|^{N-1+sq}} dS_y \right) dS_x \quad \text{[by Fubini-Tonelli]}$$

(A1.2)
$$= \int_{\partial\Omega \setminus \Gamma} \left(\int_{\Gamma} \frac{|w(x)|^q}{|x - y|^{N-1+sq}} dS_x \right) dS_y$$

[change of notation of the variables x and y].

1.2 Let $g \in L^q(\Gamma)$ $(1 < q < +\infty)$, let 0 < s < 1 and assume that

(A1.3)
$$\int_{\Gamma} \int_{\Gamma} \frac{|g(x) - g(y)|^q}{|x - y|^{N-1+sq}} dS_x dSy < +\infty,$$

(A1.4)
$$\int_{\Gamma} |g(y)|^q \left(\int_{\partial \Omega \setminus \Gamma} \frac{1}{|x-y|^{N-1+sq}} dS_x \right) dS_y < +\infty.$$

Define

$$\tilde{g} := \left\{ \begin{array}{ll} g & \text{a. e.} & \text{on } \Gamma, \\ \\ 0 & \text{a. e.} & \text{on } \partial \Omega \smallsetminus \Gamma. \end{array} \right.$$

Then $\tilde{g} \in W^{s,q}(\partial\Omega)$.

Indeed, firstly $\tilde{g} \in L^q(\partial\Omega)$. Secondly, from (A1.3) and (A1.4) it follows

$$+\infty > \int_{\Gamma} \left(\int_{\Gamma} \frac{|g(x) - g(y)|^q}{|x - y|^{N - 1 + sq}} dS_x + \int_{\partial \Omega \setminus \Gamma} \underbrace{\frac{|\tilde{g}(x) - g(y)|^q}{|x - y|^{N - 1 + sq}}}_{\tilde{g}(x) = 0} dS_x \right) dS_y$$

$$+ \int_{\partial \Omega \smallsetminus \Gamma} \left(\int_{\Gamma} \underbrace{\frac{|g(x) - \tilde{g}(y)|^q}{|x - y|^{N-1+sq}}}_{\tilde{g}(y) = 0} dS_x + \underbrace{0}_{g(\tilde{x}) = \tilde{g}(y) = 0} \right) dS_y \text{ [observe(A1.2) with } g \text{ in place of } w]$$

$$= \int_{\partial\Omega} \left(\int_{\partial\Omega} \frac{|\tilde{g}(x) - \tilde{g}(y)|^q}{|x - y|^{N - 1 + sq}} dS_x \right) dS_y.$$

Remark A1.1 Under the above assumptions, for $y \in \Gamma$ define

$$\omega(y) = \omega_{s,q}(y) := \int_{\partial \Omega \setminus \Gamma} \frac{1}{|x - y|^{N - 1 + sq}} dS_x.$$

We have

1) ω is continuous on Γ ,

2)
$$\omega(y) \le \frac{\operatorname{mes}(\partial \Omega \setminus \Gamma)}{(\operatorname{dist}(y, \partial \Omega \setminus \Gamma))^{N-1+sq}} < +\infty,$$

3) let $x_0 \in \partial\Omega \setminus \Gamma$, $\operatorname{dist}(x_0, \Gamma) = 0$; if there exists $a_0 > 0$, $\rho_0 > 0$ such that $\operatorname{mes}((\partial\Omega \setminus \Gamma) \cap B_{\rho}(x_0)) \geq a_0 \rho^{N-1}$ for all $0 < \rho \leq \rho_0^{-13}$ then

$$\lim_{y \in \Gamma, y \to x_0} \omega(y) = +\infty.$$

Condition (A1.4) reads

(A1.4')
$$\int_{\Gamma} \omega(y)|g(y)|^q dS_y < +\infty.$$

Thus, condition (A1.4) (resp. (A1.4')) expresses a decay property of g near the boundary $\partial\Gamma$.

 $[\]overline{\ ^{13)}B_{\rho}(x_0) = \{\xi \in \mathbb{R}^N : |\xi - x_0| < \rho\}}$ We notice that the condition on mes $((\partial \Omega \setminus \Gamma) \cap B_{\rho}(x_0))$ occurs in the discussion of Campanato spaces; (see [8; pp. 209-245], [10; p. 32]) for more details.

The above discussion gives rise to introduce the following

Definition Let 0 < s < 1, let $1 < q < +\infty$ and let be ω as in Remark A1.1. Then

$$W_{00}^{s,q}(\Gamma) := \left\{ g \in W^{s,q}(\Gamma) : \int_{\Gamma} \omega(y) |g(y)|^q dS_y < +\infty \right\}$$

(cf. the definition of $H_{00}^{\frac{1}{2}}(\Omega)$ in [16; Chap. 1, Thm. 11.7 (with $\mu=0$ therein)] and the notation $H_{00}^{\frac{1}{2}}(\Gamma)$ in [3; pp. 73, 80 etc.]).

Let $\gamma: W^{1,q}(\Omega) \to W^{1-\frac{1}{q},q}(\partial\Omega)$ (1 < $q < +\infty$) denote the trace mapping (see, e. g., [8], [11], [19], [24; pp. 281-282, 329-330]). To make things clearer, we also write γ_{Ω} in place of γ .

Summarizing our preceding discussion, we have:

1° Let $h \in W^{1,q}(\Omega)$ satisfy $\gamma(h) = 0$ a. e. on $\partial \Omega \setminus \Gamma$. Then

$$\gamma(h)|_{\Gamma} \in W_{00}^{1-\frac{1}{q},q}(\Gamma).$$

2° Let $g \in W_{00}^{1-\frac{1}{q},q}(\Gamma)$. Define

$$\tilde{g} := \left\{ \begin{array}{ll} g & a. \ e. \ on & \Gamma, \\ \\ 0 & a. \ e. \ on & \partial \Omega \smallsetminus \Gamma. \end{array} \right.$$

Then there exists $h \in W^{1,q}(\Omega)$ such that

$$\gamma(h) = \tilde{g}$$
 a. e. on Γ .

Indeed, 1° follows immediately from $\boxed{1.1}$. To verify 2°, we notice that our above discussion gives $\tilde{g} \in W^{1-\frac{1}{q},q}(\partial\Omega)$. The claim then follows from the inverse trace theorem (see [8], [19], [24; p. 332]).

1.3 We now study the extension of **any** function $g \in W^{s,q}(\Gamma)$ by zero onto $\partial \Omega \setminus \Gamma$ (i. e. without the decay property (A1.4)).

Let $\{e_1, \ldots, e_n\}$ denote the standard basis in \mathbb{R}^N . We introduce

Assumption (A) For every $x \in \bar{\Gamma} \cap (\partial \Omega \setminus \Gamma)$ there exists

- (i) a Euclidean basis $\{f_1, \ldots, f_N\}$ in \mathbb{R}^{N-14} ,
- (ii) an open cube $\Delta = \{ \tau \in \mathbb{R}^{N-1} : \max\{|\tau_1|, \dots, |\tau_{N-1}| < \delta \}, \}$

 $⁽f_1, \ldots, f_N)$ originates from $\{e_1, \ldots, e_N\}$ by shift and rotation.

(iii) a Lipschitz function $a: \Delta \to \mathbb{R}$

such that in terms of local coordinates $\xi \in \text{span}\{f_1, \dots, f_N\}^{15}$ there holds

1)
$$x = (0, \dots, 0, a(0)),$$

2.1)
$$\{\xi \in \mathbb{R}^d : \xi' \in \Delta, \ a(\xi') < \xi_N < a(\xi') + \delta\} \subset \Omega,$$

2.2)
$$\{\xi \in \mathbb{R}^d : \xi' \in \Delta, \ \xi_N = a(\xi')\} \subset \partial\Omega,$$

2.3)
$$\{\xi \in \mathbb{R}^d : \xi' \in \Delta, -\delta < \xi_{N-1} < 0, \ \xi_N = a(\xi')\} \subset \Gamma$$

(cf. figure 2).

For what follows we need some more notations.

$$\Delta^- := \{ \xi' \in \Delta : -\delta < \xi_{N-1} < 0 \},$$

$$\Delta^+ := \{ \xi' \in \Delta : 0 < \xi_{N-1} < \delta \}$$

and

$$\phi(\xi) := \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_{N-1} \\ a(\xi') + \xi_N \end{pmatrix}, \quad \xi = (\xi', \xi_N) \in \Delta \times (-\delta, \delta),$$

$$U := \phi(\Delta \times (-\delta, \delta)).$$

 $[\]overline{}^{(15)}$ For $\xi = \text{span}\{f_1, \dots, f_N\}$ we write $\xi = (\xi', \xi_N), \quad \xi' = (\xi_1, \dots, \xi_{N-1}).$

Figure 2

We obtain

$$\Delta = \Delta^- \cup \{ \xi' \in \Delta : \xi_N = 0 \} \cup \Delta^+,$$

$$|\xi' - \hat{\xi}'|_{\mathbb{R}^{N-1}} \le |\phi(\xi) - \phi(\hat{\xi}')|_{\mathbb{R}^N} \le c_0 |\xi' - \hat{\xi}'|_{\mathbb{R}^{N-1}} \quad \forall \ \xi, \hat{\xi} \in \Delta \times (-\delta, \delta),$$

$$\phi^{-1}(\eta) := \begin{pmatrix} \eta_1 \\ \vdots \\ \eta_{N-1} \\ \eta_N - a(\eta') \end{pmatrix}, \quad \eta = (\eta', \eta_N) \in U.$$

Then conditions 1) and 2.1)- 2.3) can be equivalently stated as follows:

1')
$$\phi(0) = (0, \dots, 0, a(0))^{\top},$$

2.1')
$$\phi(\Delta \times (0, \delta)) = \Omega \cap U$$
,

2.2')
$$\phi(\Delta \times \{0\}) = \partial \Omega \cap U$$
,

2.3')
$$\phi(\Delta^- \times \{0\}) = \Gamma \cap U$$
.

Theorem A1.1 Let assumption (A) be satisfied and let $1 < q < +\infty$. For $g \in W^{s,q}(\Gamma)$, define

$$\tilde{g} := \left\{ \begin{array}{ll} g & a.\ e.\ on & \Gamma, \\ \\ 0 & a.\ e.\ on & \partial \Omega \smallsetminus \Gamma. \end{array} \right.$$

If
$$s < \frac{1}{q}$$
, then $\tilde{g} \in W^{s,q}(\partial\Omega)$ and

Proof The definition of the Lipschitz continuity of $\partial\Omega$ implies the existence of Euclidean coordinate systems $\{f_{\alpha 1}, \ldots, f_{\alpha N}\}$ in \mathbb{R}^N , open cubes $\Delta_{\alpha} \subset \mathbb{R}^{N-1}$ and Lipschitz functions $a_{\alpha}: \Delta_{\alpha} \to \mathbb{R} \ (\alpha = 1, \ldots, m)$ such that 2.1) and 2.2) hold with Δ_{α} and a_{α} in place of Δ and a, respectively (see, e. g. [8; pp. 304-306], [10; pp. 21-25], [11; pp. 5-7]). It follows $\partial\Omega \subset \bigcup_{\alpha=1}^m U_{\alpha}$, where

$$U_{\alpha} := \phi_{\alpha}(\Delta_{\alpha} \times (-\delta_{\alpha}, \delta_{\alpha}))$$

(recall $\phi_{\alpha}(\xi) = (\xi', a_{\alpha}(\xi') + \xi_N)^{\top}$, $\xi = (\xi', \xi_N) \in \Delta \times (-\delta, \delta)$). By 2.2), $x_{\alpha} = (0, \dots, 0, a_{\alpha}(0)) \in \partial\Omega$.

If $\Gamma \cap U_{\alpha} \subset \Gamma$ or $(\partial \Omega \setminus \Gamma) \cap U_{\alpha} \subset \partial \Omega \setminus \Gamma$ there is nothing to prove. Therefore, it suffices to consider a local representation $\{\{f_{\alpha 1}, \ldots, f_{\alpha N}\}, \Delta_{\alpha}, a_{\alpha}\}$ of $\partial \Omega$ such that $x_{\alpha} \in \bar{\Gamma} \cap (\partial \Omega \setminus \Gamma)$. Then 2.3) of assumption (A) implies

$$\{\xi \in \mathbb{R}^d : \xi' \in \Delta, -\delta_\alpha < \xi_{N-1} < 0, \quad \xi_N = a_\alpha(\xi')\} = \Gamma \cap U_\alpha.$$

For notational simplicity, in what follows we omit the index α .

Let $g \in W^{s,q}(\Gamma)$. By 2.3),

$$\int_{\Gamma \cap U} \int_{\Gamma \cap U} \frac{|g(x) - g(y)|^q}{|x - y|^{N - 1 + sq}} dS_x dS_y =$$

$$= \int_{\Delta^-} \int_{\Delta^-} \frac{|g \circ \phi(\xi', a(\xi')) - g \circ \phi(\eta', a(\eta'))|^q}{|\phi(\xi', a(\xi')) - \phi(\eta', a(\eta'))|^{N - 1 + sq}} \sqrt{1 + |\nabla a(\xi')|^2} \sqrt{1 + |\nabla a(\eta')|^2} d\xi' d\eta'$$

$$\geq c \int_{\Delta^-} \int_{\Delta^-} \frac{|g \circ \phi(\xi', a(\xi')) - g \circ \phi(\eta', a(\eta'))|^q}{|\xi' - \eta'|^{N - 1 + sq}} d\xi' d\eta'.$$

Next, define $z(\xi') := g \circ \phi(\xi', a(\xi'))$ for a. e. $\xi' \in \Delta^-$, and

$$\tilde{z} := \left\{ \begin{array}{ll} z & \text{a. e. in} \quad \Delta^-, \\ 0 & \text{a. e. in} \quad \Delta^+. \end{array} \right.$$

Then $z \in W^{s,q}(\Delta^-)$, and

$$\tilde{z} = \tilde{g} \circ \phi$$
 a. e. in Δ , $\tilde{g} = \tilde{z} \circ \phi^{-1}$ a. e. in $\partial \Omega \cap U$.

Now from [25; Thm. 3.5] (see also [16; Chap. 1, Thm. 11.4] for q = 2) it follows that

(A1.6)
$$\tilde{z} \in W^{s,q}(\Delta), \qquad \|\tilde{z}\|_{W^{s,q}(\Delta)} \le c\|z\|_{W^{s,q}(\Delta^{-})}.$$

We obtain

$$\int_{\partial\Omega\cap U} \int_{\partial\Omega\cap U} \frac{|\tilde{g}(x) - \tilde{g}(y)|^q}{|x - y|^{N-1+sq}} dS_x dS_y =$$

$$= \int_{\Delta} \int_{\Delta} \frac{|\tilde{g} \circ \phi(\xi', a(\xi')) - \tilde{g} \circ \phi(\eta', a(\eta'))|^q}{|\phi(\xi', a(\xi')) - \phi(\eta', a(\eta'))|^{N-1+sq}} \times$$

$$\times \sqrt{1 + |\nabla a(\xi')|^2} \sqrt{1 + |\nabla a(\eta')|^2} d\xi' d\eta' \quad [by (2.1)]$$

$$\leq c_1 \int_{\Delta} \int_{\Delta} \frac{|\tilde{g} \circ \phi(\xi', a(\xi')) - \tilde{g} \circ \phi(\eta', a(\eta'))|^q}{|\xi' - \eta'|^{N-1+sq}} d\xi' d\eta' \quad [by (iii)]$$

$$\leq c_2 \int_{\Delta^-} \int_{\Delta^-} \frac{|g \circ \phi(\xi', a(\xi')) - g \circ \phi(\eta', a(\eta'))|^q}{|\xi' - \eta'|^{N-1+sq}} d\xi' d\eta' \quad [by (A1.6)]$$

$$\leq c_3 \int_{\Gamma\cap U} \int_{\Gamma\cap U} \frac{|w(x) - w(y)|^q}{|x - y|^{N-1+sq}} dS_x dS_y \quad [by (ii) and 2.3)]$$

The proof of the theorem is now easily completed by standard arguments.

Remark A1.2 If $s = \frac{1}{q}$, then the statement of Theorem A1.1 fails.

2 Let $\Omega_1, \Omega_2 \subset \mathbb{R}^d$ (d=2 or d=3) be bounded domains such that

$$\Omega_1 \cap \Omega_2 = \varnothing, \qquad \Gamma := \bar{\Omega}_1 \cap \bar{\Omega}_2 \neq \varnothing,$$

 $\partial\Omega_i$ Lipschitz, Γ relatively open in $\partial\Omega_i$ (i=1,2)

(cf. Section 1). Let $\gamma_{\Omega_i}: W^{1,q}(\Omega_i) \to W^{1-\frac{1}{q},q}$ $(\partial \Omega_i)$ $(1 < q < +\infty)$ denote the trace mapping (cf. above). In what follows, we write $\gamma_i = \gamma_{\Omega_i}$. For $\boldsymbol{u}_i \in \boldsymbol{W}^{1,2}(\Omega_i)$ the trace $\gamma_i(\boldsymbol{u}_i)$ is understood componentwise. By Sobolev's embedding theorem,

(A1.7)
$$\begin{cases} |\boldsymbol{u}_i|^2 \in W^{1,q}(\Omega_i) & \text{where} \\ 1 \le q < 2 & \text{arbitrary if} \quad d = 2, \quad q = \frac{3}{2} & \text{if} \quad d = 3. \end{cases}$$

Then $\gamma_i(|\boldsymbol{u}_i|^2) \in W^{1-\frac{1}{q},q}(\partial\Omega_i)$. Let us consider

$$\boldsymbol{u}_i \in \boldsymbol{W}^{1,2}(\Omega_i), \quad \gamma_i(\boldsymbol{u}_i) = \boldsymbol{0} \quad \text{a. e. on} \quad \partial \Omega_i \setminus \Gamma.$$

For notational simplicity, set $\boldsymbol{v}_i := \gamma_i(\boldsymbol{u}_i)$ a. e. on Γ . Then $\boldsymbol{v}_i \in \boldsymbol{W}^{\frac{1}{2},2}(\Gamma)$, $|\boldsymbol{v}_i|^2 \in W^{1-\frac{1}{q},q}(\Gamma)^{16}$ and

(A1.8)
$$\int_{\Gamma} |\boldsymbol{v}_i(y)|^{2q} \left(\int_{\partial \Omega_i \setminus \Gamma} \frac{1}{|x-y|^{d-2+q}} dS_x \right) dS_y < +\infty$$

(cf. (A1.1). To homogenize boundary condition (2.3), we have to consider the following

Problem (\mathcal{P}) Define $g := |\mathbf{v}_1 - \mathbf{v}_2|^2$ a. e. on Γ , and

$$\tilde{g}_i := \left\{ egin{array}{ll} g & a. \ e. \ on & \Gamma, \\ 0 & a. \ e. \ on & \partial \Omega_i \smallsetminus \Gamma. \end{array}
ight.$$

Does there exist $\tilde{h}_i \in W^{1,q}(\Omega_i)$ such that $\gamma_i(\tilde{h}_i) = \tilde{g}_i$ a. e. on $\partial \Omega_i$?

An answer to this problem can be given by imposing the following condition on the geometry of Ω_1 and Ω_2 "near to the interface $\Gamma = \overline{\Omega}_1 \cap \overline{\Omega}_2$ ":

Assumption (B) For every $y \in \Gamma$, there holds

$$\int_{\partial\Omega_1 \smallsetminus \Gamma} \frac{1}{|x-y|^{d-2+q}} dS_x = \int_{\partial\Omega_2 \smallsetminus \Gamma} \frac{1}{|x-y|^{d-2+q}} dS_x \quad for \ all \quad y \in \Gamma$$

 $(q \ as \ in \ (A1.7))$

We obtain the following result.

Let assumption (B) be satisfied. Let be $\mathbf{u}_i \in \mathbf{W}^{1,2}(\Omega_i)$, $\gamma_i(\mathbf{u}_i) = \mathbf{0}$ a. e. on $\Omega_i \setminus \Gamma$ (i = 1, 2). Set $\mathbf{v}_i := \gamma_i(\mathbf{u}_i)$ a. e. on Γ . If

(A1.9)
$$|\mathbf{v}_1 - \mathbf{v}_2|^2 \in W^{1 - \frac{1}{q}, q}(\Gamma)$$
 (q as in (A1.7)),

then there exists $\widetilde{h}_i \in W^{1,q}(\Omega_i)$ such that

$$\gamma_i(\widetilde{h}_i) = \widetilde{g}_i$$
 a.e. on $\partial \Omega_i$.

$$(\gamma(\varphi))^2 = (\varphi|_{\Gamma})^2 = \varphi^2|_{\Gamma} = \gamma(\varphi^2)$$

for every $\varphi \in C^1(\bar{\Omega})$. Thus, by approximation

$$|\boldsymbol{v}_i|^2 = \sum_{l=1}^d (\gamma_i(u_{il}))^2 = \sum_{l=1}^d \gamma_i(u_{il}^2) = \gamma_i \left(\sum_{l=1}^d u_{il}^2\right) = \gamma_i(|\boldsymbol{u}_i|^2).$$

¹⁶⁾The definition of the trace mapping implies

Indeed, combining (A1.8) and assumption (B) we find

$$\int_{\Gamma} |(\boldsymbol{v}_1 - \boldsymbol{v}_2)(y)|^{2q} \left(\int_{\partial \Omega_i \setminus \Gamma} \frac{1}{|x - y|^{d - 2 + q}} dS_x \right) dS_y < +\infty \quad (i = 1, 2).$$

Observing (A1.9) we see that (A1.3) and (A1.4) are satisfied with $g = |\boldsymbol{v}_1 - \boldsymbol{v}_2|^2$, N = d, $s = 1 - \frac{1}{q}$ and $\Omega = \Omega_i$. The claim follows from 1.2 above.

It is easily verified that this result continues to hold for $G_i(|\boldsymbol{v}_1 - \boldsymbol{v}_2|^2)$ in place of $|\boldsymbol{v}_1 - \boldsymbol{v}_2|^2$.

We notice that assumption (B) is satisfied if Ω_1 and Ω_2 obey an appropriate symmetry property with respect to Γ .

Remark A1.2 Assumption (A1.9) is equivalent to

(A1.9')
$$\boldsymbol{v}_1 \cdot \boldsymbol{v}_2 \in W^{1 - \frac{1}{q}, q}(\Gamma).$$

This is readily seen when observing the elementary identity

$$|a - b|^2 - |\hat{a} - \hat{b}|^2 = |a|^2 - |\hat{a}|^2 + (|b|^2 - |\hat{b}|^2) - 2(a \cdot b - \hat{a} \cdot \hat{b})$$

 $(oldsymbol{a},\hat{oldsymbol{a}},oldsymbol{b},\hat{oldsymbol{b}}\in\mathbb{R}^d).$

Remark A1.3 We notice that (A1.9') is true in case d=2. To see this, first observe that $W^{\frac{1}{2},2}(\partial\Omega_i) \subset L^r(\partial\Omega_i)$ $(1 \leq r < +\infty \text{ arbitrary})$. We obtain, for every $1 \leq q < 2$,

$$\int_{\Gamma} \int_{\Gamma} \frac{|\boldsymbol{v}_{i}(x) - \boldsymbol{v}_{i}(y)|^{q}}{|x - y|^{q}} |\boldsymbol{v}_{j}(x)|^{q} dS_{x} dS_{y} \leq$$

$$\leq \int_{\Gamma} \left(\int_{\Gamma} \frac{|\boldsymbol{v}_{i}(x) - \boldsymbol{v}_{i}(y)|^{2}}{|x - y|^{2}} dS_{x} \right)^{\frac{q}{2}} \left(\int_{\Gamma} |\boldsymbol{v}_{j}(x)|^{\frac{2q}{2-q}} dS_{x} \right)^{\frac{2-q}{2}} dS_{y}$$

$$\leq (\operatorname{mes} \Gamma)^{\frac{2-q}{2}} \|\boldsymbol{v}_{i}\|_{\boldsymbol{W}^{\frac{1}{2},2}(\Gamma)}^{q} \|\boldsymbol{v}_{j}\|_{\boldsymbol{L}^{\frac{2q}{2-q}}(\Gamma)}^{q}$$

 $(i, j = 1, 2; i \neq j)$. Whence (A1.9').

We obtain: if d=2 and assumption (B) holds, then problem (\mathcal{P}) has a solution.

Theorem A1.2 Suppose that $\Gamma \cap (\partial \Omega_i \setminus \Gamma)$ (i = 1, 2) satisfies assumption (A). Let $\mathbf{v}_1, \mathbf{v}_2 \in \mathbf{W}^{\frac{1}{2}, 2}(\Gamma)$. Define $g := |\mathbf{v}_1 - \mathbf{v}_2|^2$ a. e. on Γ , and

$$\tilde{g}_i := \left\{ egin{array}{ll} g & a. \ e. \ on & \Gamma, \\ 0 & a. \ e. \ on & \partial \Omega_i \smallsetminus \Gamma. \end{array}
ight.$$

Then

$$\tilde{g}_i \in \bigcap_{1 \le q < \frac{d}{d-1}} W^{1-\frac{1}{q},q}(\partial \Omega_i),$$

$$\|\tilde{g}_i\|_{W^{1-\frac{1}{q},q}(\partial\Omega_i)} \le c\|v_1-v_2\|_{W^{\frac{1}{2},2}(\Gamma)}\|v_1-v_2\|_{L^r(\Gamma)},$$

where

$$c=c(q) \rightarrow +\infty \quad as \quad q \rightarrow \frac{d}{d-1}, \quad \left(1 \le q < \frac{d}{d-1}\right),$$
 $r=\frac{2q}{2-q} \quad if \quad d=2, \quad r=4 \quad if \quad d=3.$

Proof d=2 First, notice $W^{\frac{1}{2},2}(\partial\Omega) \subset L^r(\partial\Omega)$ $(1 \le r < +\infty)$ continuously. Observing that

$$\left||oldsymbol{a}-oldsymbol{b}|^2-|\hat{oldsymbol{a}}-\hat{oldsymbol{b}}|^2
ight|\leq |oldsymbol{a}-oldsymbol{b}-(\hat{oldsymbol{a}}-\hat{oldsymbol{b}})|\;|oldsymbol{a}-oldsymbol{b}+(\hat{oldsymbol{a}}-\hat{oldsymbol{b}})|, \quad oldsymbol{a},\hat{oldsymbol{a}},\hat{oldsymbol{b}}\in\mathbb{R}^N,$$

we obtain by the aid of Hölder's inequality, for every $1 \le q < 2$,

$$\int_{\Gamma} \int_{\Gamma} \frac{|g(x) - g(y)|^{q}}{|x - y|^{q}} dS_{x} dS_{y} \leq$$

$$\leq \left(\int_{\Gamma} \int_{\Gamma} \frac{|\boldsymbol{v}_{1}(x) - \boldsymbol{v}_{2}(x) - (\boldsymbol{v}_{1}(y) - \boldsymbol{v}_{2}(y))|^{2}}{|x - y|^{2}} dS_{x} dS_{y} \right)^{\frac{q}{2}} \times$$

$$\times \left(\int_{\Gamma} \int_{\Gamma} |\boldsymbol{v}_{1}(x) - \boldsymbol{v}_{2}(x) + (\boldsymbol{v}_{1}(y) - \boldsymbol{v}_{2}(y))|^{\frac{2q}{2-q}} dS_{x} dS_{y} \right)^{\frac{2-q}{q}}$$

$$\leq c \|\boldsymbol{v}_{1} - \boldsymbol{v}_{2}\|_{\boldsymbol{W}^{\frac{1}{2},2}(\Gamma)}^{q} \|\boldsymbol{v}_{1} - \boldsymbol{v}_{2}\|_{\boldsymbol{L}^{\frac{2q}{2-q}}(\Gamma)}^{q}.$$

Thus, $g \in W^{1-\frac{1}{q},q}(\Gamma)$ and

$$\|g\|_{W^{1-\frac{1}{q}}(\Gamma)}^{q} \leq \left(\int_{\Gamma} |\boldsymbol{v}_{1} - \boldsymbol{v}_{2}|^{\frac{2q}{2-q}} \right)^{2-q} + \int_{\Gamma} \int_{\Gamma} \frac{|g(x) - g(y)|^{q}}{|x - y|^{q}} dS_{x} dS_{y}$$

$$\leq c \|\boldsymbol{v}_{1} - \boldsymbol{v}_{2}\|_{\boldsymbol{W}^{\frac{1}{2}}(\Gamma)}^{q} \|\boldsymbol{v}_{1} - \boldsymbol{v}_{2}\|_{\boldsymbol{L}^{\frac{2q}{2-q}}(\Gamma)}^{q}.$$

On the other hand, Theorem A1.1 (with $\Omega = \Omega_i$, $s = 1 - \frac{1}{q}$, $s < \frac{1}{q}$) gives

$$\tilde{g}_i \in W^{1-\frac{1}{q}}(\partial \Omega_i), \quad \|\tilde{g}_i\|_{W^{1-\frac{1}{q},q}(\partial \Omega_i)} \le c \|g\|_{W^{1-\frac{1}{q},q}(\Gamma)}.$$

Whence the claim.

d=3 Then $W^{\frac{1}{2},2}(\partial\Omega)\subset L^4(\partial\Omega)$ continuously. Hence $g\in L^2(\Gamma)$. We divide the proof into two steps.

Step 1 For every $0 < \delta < 1$, there holds

(A1.10)
$$\begin{cases} g \in W^{\frac{1-\delta}{2}, \frac{4}{3}}(\Gamma), \\ \int_{\Gamma} \int_{\Gamma} \frac{|g(x) - g(y)|^{\frac{4}{3}}}{|x - y|^{2 + \frac{2(1-\delta)}{3}}} dS_x dS_y \le c \|\boldsymbol{v}_1 - \boldsymbol{v}_2\|_{\boldsymbol{W}^{\frac{1}{2}, 2}(\Gamma)}^{\frac{4}{3}} \|\boldsymbol{v}_1 - \boldsymbol{v}_2\|_{\boldsymbol{L}^4(\Gamma)}^{\frac{4}{3}}. \end{cases}$$

Indeed, with the help of the above inequality for $a, \hat{a}, b, \hat{b} \in \mathbb{R}^N$ and Hölder's inequality we find

$$\int_{\Gamma} \int_{\Gamma} \frac{|g(x) - g(y)|^{\frac{4}{3}}}{|x - y|^{2 + \frac{2(1 - \delta)}{3}}} dS_x dS_y \leq
\leq c \int_{\Gamma} \int_{\Gamma} \frac{\left| |\mathbf{v}_1(x) - \mathbf{v}_2(x)|^2 - |\mathbf{v}_1(y) - \mathbf{v}_2(y)|^2 \right|^{\frac{4}{3}}}{|x - y|^{2 + \frac{2(1 - \delta)}{3}}} dS_x dS_y
\leq c \int_{\Gamma} \int_{\Gamma} \frac{\left| \mathbf{v}_1(x) - \mathbf{v}_2(x) - (\mathbf{v}_1(y) - \mathbf{v}_2(y))|^{\frac{4}{3}}}{|x - y|^2} \times
\times \frac{|\mathbf{v}_1(x) - \mathbf{v}_2(x) + (\mathbf{v}_1(y) - \mathbf{v}_2(y))|^{\frac{4}{3}}}{|x - y|^{\frac{2(1 - \delta)}{3}}} dS_x dS_y$$

(A1.11)
$$\leq c \| \boldsymbol{v}_{1} - \boldsymbol{v}_{2} \|_{W^{\frac{1}{2},2}(\Gamma)}^{\frac{4}{3}} \times \left(\int_{\Gamma} \int_{\Gamma} \frac{(|\boldsymbol{v}_{1}(x) - \boldsymbol{v}_{2}(x)| + |\boldsymbol{v}_{1}(y) - \boldsymbol{v}_{2}(y)|)^{4}}{|x - y|^{2(1 - \delta)}} dS_{x} dS_{y} \right)^{\frac{1}{3}}$$

(notice that $W^{\frac{1}{2},2}(\Gamma) \subset L^4(\Gamma)$).

Next, by elementary integral calculus it is easily seen that there exists a positive constant K_0 such that

$$\int_{\partial\Omega_i} \frac{1}{|x-y|^{2(1-\delta)}} dS_y \le K_0 \qquad \forall \ x \in \partial\Omega_i \quad (i=1,2)$$

 $(K_0 = K_0(\delta) \to +\infty \text{ as } \delta \to 0)$. Then the second double integral on the right hand side of (A1.11) can be estimated as follows

$$\int_{\Gamma} \int_{\Gamma} \frac{(|\boldsymbol{v}_{1}(x) - \boldsymbol{v}_{2}(x)| + |\boldsymbol{v}_{1}(y) - \boldsymbol{v}_{2}(y)|)^{4}}{|x - y|^{2(1 - \delta)}} dS_{x} dS_{y} \leq$$

$$\leq 16 \int_{\Gamma} |\boldsymbol{v}_{1}(x) - \boldsymbol{v}_{2}(x)|^{4} \left(\int_{\Gamma} \frac{1}{|x - y|^{2(1 - \delta)}} dS_{y} \right) dS_{x}$$

$$+16 \int_{\Gamma} |\boldsymbol{v}_{1}(y) - \boldsymbol{v}_{2}(y)|^{4} \left(\int_{\Gamma} \frac{1}{|x - y|^{2(1 - \delta)}} dS_{x} \right) dS_{y}$$

$$\leq 32K_0\|\boldsymbol{v}_1-\boldsymbol{v}_2\|_{\boldsymbol{L}^4(\Gamma)}^4.$$

Inserting this estimate into (A1.11) we find (A1.10) $(c = c(\delta) \to +\infty \text{ as } \delta \to 0)$.

Step 2 From Theorem A1.1 (with $\Omega = \Omega_i$, $s = \frac{1-\delta}{2}$, $q = \frac{4}{3}$) and (A1.10) it follows that

$$\begin{split} \tilde{g} &\in W^{\frac{1-\delta}{2},\frac{4}{3}}(\partial\Omega_{i}), \\ \|\tilde{g}\|_{W^{\frac{1-\delta}{2},\frac{4}{3}}(\partial\Omega_{i})} &\leq c\|g\|_{W^{\frac{1-\delta}{2},\frac{4}{3}}(\Gamma)} = \\ &= c\left(\|g\|_{L^{\frac{4}{3}(\Gamma)}}^{\frac{4}{3}} + \int_{\Gamma} \int_{\Gamma} \frac{|\tilde{g}(x) - \tilde{g}(y)|^{\frac{4}{3}}}{|x - y|^{2 + \frac{2(1-\delta)}{3}}} dS_{x} dS_{y}\right)^{\frac{3}{4}} \\ &\leq (\|\boldsymbol{v}_{1} - \boldsymbol{v}_{2}\|_{L^{\frac{8}{3}(\Gamma)}}^{2} + \|\boldsymbol{v}_{1} - \boldsymbol{v}_{2}\|_{\boldsymbol{W}^{\frac{1}{2},2}(\Gamma)} \|\boldsymbol{v}_{1} - \boldsymbol{v}_{2}\|_{L^{4}(\Gamma)}) \end{split}$$

(A1.12)
$$\leq (\|\boldsymbol{v}_1 - \boldsymbol{v}_2\|_{\boldsymbol{W}^{\frac{1}{2},2}(\Gamma)}^2 \|\boldsymbol{v}_1 - \boldsymbol{v}_2\|_{\boldsymbol{W}^4(\Gamma)}.$$

To proceed, we notice the continuous embedding

$$(A1.13) W^{\frac{1-\delta}{2},\frac{4}{3}}(\partial\Omega_i) \subset W^{\frac{1-\delta}{2}-\alpha,\frac{4}{3-2\alpha}}(\partial\Omega_i) \left(0 < \alpha < \frac{1-\delta}{2}\right)$$

(see, e. g., [1], [25; p. 328, n = d - 1 = 2 in (8)]). Now, consider q such that $\frac{4}{3} < q < \frac{3}{2}$. Define

$$\delta := \frac{2(3-2q)}{q}, \qquad \alpha := \frac{1-2\delta}{6}.$$

It follows

$$\frac{1-\delta}{2} - \alpha = 1 - \frac{1}{q}, \qquad \frac{4}{3-2\alpha} = q.$$

By combining (A1.12) and (A1.13) we obtain the statement of Theorem A1.2 when d=3.

Corollary A1.1 Suppose that $\Gamma \cap (\partial \Omega_i \setminus \Gamma)$ (i = 1, 2) satisfies assumption (A). Let be $\mathbf{u}_i \in \mathbf{W}^{1,2}(\Omega_i)$ such that

$$\gamma_i(\boldsymbol{u}_i) = \mathbf{0}$$
 a. e. on $\partial \Omega_i \setminus \Gamma$.

Define

$$\tilde{h}_i := \begin{cases} G_i(|\gamma_1(\boldsymbol{u}_1) - \gamma_2(\boldsymbol{u}_2)|^2) & a. \ e. \ on \quad \Gamma, \\ 0 & a. \ e. \ on \quad \partial \Omega_i \setminus \Gamma \end{cases}$$

(G_i as in (1.6); i = 1, 2). Then, for every $1 \le q < \frac{d}{d-1}$,

$$\tilde{h}_i \in W^{1-\frac{1}{q},q}(\partial\Omega_i), \|\tilde{h}_i\|_{W^{1-\frac{1}{q},q}(\partial\Omega_i)} \le c \sum_{j=1}^2 \|\boldsymbol{u}_j\|_{\boldsymbol{W}^{1,2}(\Omega_j)}^2,$$

where
$$c = c(q) \to +\infty$$
 as $q \to \frac{d}{d-1}$.

Proof As above, for notational simplicity, set $\mathbf{v}_i := \gamma_i(\mathbf{u}_i)$ and $h_i := G_i(|\mathbf{v}_1 - \mathbf{v}_2|^2)$ a. e. on Γ (i = 1, 2). Then

$$\tilde{h}_i := \left\{ \begin{array}{ll} h_i & a.\ e.\ on & \Gamma, \\ \\ 0 & a.\ e.\ on & \partial \Omega_i \smallsetminus \Gamma \end{array} \right.$$

and

$$|h_i(x) - h_i(y)| \le c_0 ||\boldsymbol{v}_1(x) - \boldsymbol{v}_2(x)|^2 - |\boldsymbol{v}_1(y) - \boldsymbol{v}_2(y)||$$
 for a. e. $x, y \in \Gamma$.

It is readily seen that the proof of Theorem A1.2 can be repeated word by word with h_i and \tilde{h}_i in place of g and \tilde{g}_i , respectively. We obtain

$$\tilde{h}_i \in \bigcap_{1 \le q < \frac{d}{d-1}} W^{1-\frac{1}{q},q}(\partial \Omega_i),$$

$$\|\tilde{h}_i\|_{W^{1-\frac{1}{q},q}(\partial\Omega_i)} \le c \|\boldsymbol{v}_1 - \boldsymbol{v}_2\|_{\boldsymbol{W}^{\frac{1}{2}(\Gamma)}} \|\boldsymbol{v}_1 - \boldsymbol{v}_2\|_{\boldsymbol{L}^r(\Gamma)},$$

where r is as in Theorem A1.2.

Combining this and the continuity of the trace mapping $\gamma_i: W^{1,2}(\Omega_i) \to W^{\frac{1}{2},2}(\partial \Omega_i)$ we get the assertion of the corollary.

Appendix 2. The inhomogeneous Dirichlet problem for the Poisson equation with right hand side in L^1

Let $\Omega \subset \mathbb{R}^N$ $(N \geq 2)$ be a bounded domain with boundary $\partial \Omega \in \mathcal{C}^1$. We consider the following boundary value problem:

(A2.1)
$$-\Delta u = f$$
 in Ω ,

(A2.2)
$$u = g$$
 on $\partial \Omega$.

Our basic existence result concerning weak solutions to this problem is

Theorem A2.1 Assume

$$f \in L^1(\Omega), \quad g \in W^{1-\frac{1}{q},q}(\partial\Omega) \quad \left(1 < q < \frac{N}{N-1}\right)$$

Then, there exists exactly one $u \in W^{1,q}(\Omega)$ such that

(A2.3)
$$\int_{\Omega} \nabla u \cdot \nabla \varphi = \int_{\Omega} f \varphi \quad \forall \ \varphi \in W_0^{1,q'}(\Omega),$$

(A2.4)
$$u = g$$
 on $\partial \Omega$,

(A2.5)
$$||u||_{W^{1,q}} \le c(||f||_{L^1} + ||g||_{W^{1-\frac{1}{q},q}})$$

Moreover, for every $\Omega' \subset\subset \Omega$ and every $\delta > 0$ there holds

(A2.6)
$$\begin{cases} \frac{\nabla u}{(1+|u|)^{\frac{1+\delta}{2}}} \in \mathbf{L}^{2}(\Omega'), \\ \int_{\Omega'} \frac{|\nabla u|^{2}}{(1+|u|)^{1+\delta}} \leq \frac{c}{\delta} (\|f\|_{L^{1}} + \|g\|_{W^{1-\frac{1}{q},q}}) \\ where \quad c \to +\infty \quad as \quad \text{dist } (\Omega', \partial\Omega) \to 0. \end{cases}$$
If, in addition, $f \in L^{r}_{L^{r}}(\Omega) \ (r > 1) \ then$

If, in addition, $f \in L^r_{\mathrm{loc}}(\Omega)$ (r > 1) then

$$(A2.7) u \in W_{loc}^{2,r}(\Omega).$$

Proof We begin by noting the following result. For every $1 < q < +\infty$ there exists a positive constant C_q such that, for any $v \in W_0^{1,q}(\Omega)$,

(A2.8)
$$\|\nabla v\|_{\boldsymbol{L}^q} \le C_q \sup \left\{ \frac{\int \nabla v \cdot \nabla \varphi}{\|\nabla \varphi\|_{\boldsymbol{L}^{q'}}}; \quad \varphi \in W_0^{1,q'}(\Omega), \quad \varphi \ne 0 \right\}$$
(see. [21; Thm. 4.2, p. 191]).

Next, by the inverse trace theorem, there exists $h \in W^{1,q}(\Omega)$ such that

$$\gamma(h) = g$$
 a. e. on $\partial \Omega$, $||h||_{W^{1,q}} \le c||g||_{W^{1-\frac{1}{q},q}}$.

Then we can find functions $f_m, h_m \in C^{\infty}(\bar{\Omega})$ $(m \in \mathbb{N})$ such that

$$f_m \to f$$
 strongly in $L^1(\Omega)$, $h_m \to h$ strongly in $W^{1,q}(\Omega)$

as $m \to \infty$. The Riesz representation theorem for linear continuous functionals on the Hilbert space $W_0^{1,2}(\Omega)$ provides the existence and uniqueness of a $v_m \in W_0^{1,2}(\Omega)$ satisfying

(A2.9)
$$\int_{\Omega} \nabla v_m \cdot \nabla \varphi = \int_{\Omega} (f_m \varphi + (\partial_i h_m) \partial_i \varphi) \quad \forall \ \varphi \in W_0^{1,2}(\Omega).$$

Now, let $1 < q < \frac{N}{N-1}$. Observing that $W^{1,q'}(\Omega) \subset C(\bar{\Omega})$ we obtain

$$\left| \int_{\Omega} (f_m \varphi + (\partial_i h_m) \partial_i \varphi) \right| \le c(\|f_m\|_{L^1} + \|h_m\|_{W^{1,q}}) \|\varphi\|_{W^{1,q'}} \quad \forall \ \varphi \in W_0^{1,q'}(\Omega).$$

Combining this estimate and (A2.8), (A2.9) gives

$$\|\nabla v_m\|_{L^q} \le c(\|f_m\|_{L^1} + \|h_m\|_{W^{1,q}}).$$

Define $u_m := v_m + h_m \ (m \in \mathbb{N})$. Then $u_m \in W^{1,2}(\Omega)$ and

(A2.10)
$$\int_{\Omega} \nabla u_m \cdot \nabla \varphi = \int_{\Omega} f_m \varphi \quad \forall \varphi \in W_0^{1,2}(\Omega),$$

(A2.11)
$$u_m = h_m$$
 a. e. on $\partial \Omega$ [in the sense of traces],

(A2.12)
$$\|\nabla u_m\|_{\mathbf{L}^q} \le c(\|f_m\|_{L^q} + \|h_m\|_{W^{1,q}}).$$

From (A2.12) we conclude (by passing to a subsequence if necessary) that $u_m \to u$ weakly in $W^{1,q}(\Omega)$ as $m \to \infty$. By a routine argument, u = g a. e. on $\partial \Omega$ (in the sense of traces). The passage to the limit $m \to \infty$ in (A2.10), (A2.11) gives (A2.3), (A2.4), respectively. Finally, taking the liminf on both sides of (A2.12) provides (A2.5).

The uniqueness of u follows from (A2.5).

To prove the interior estimate (A2.6), let $\delta > 0$. We consider the function

$$\phi(t) = \phi_{\delta}(t) := \left(1 - \frac{1}{(1+|t|)^{\delta}}\right) \operatorname{sign} t, \quad t \in \mathbb{R}.$$

Clearly,

$$|\phi(t)| \le 1$$
, $\phi'(t) = \frac{\delta}{(1+|t|)^{1+\delta}} \quad \forall \ t \in \mathbb{R}$.

Let $\zeta \in C_c^1(\Omega)$ be a cut-off function for Ω' , i. e. $\zeta \equiv 1$ on Ω' and $0 \le \zeta \le 1$ in Ω . Then the function $\varphi = \phi(u_m)\zeta^2$ is admissible in (A2.10). By (A2.12),

$$\delta \int_{\Omega'} \frac{|\nabla u_m|^2}{(1+|u_m|)^{1+\delta}} \leq ||f_m||_{L^1} + 2 \max_{\Omega} |\nabla \zeta| \int_{\Omega} |\nabla u_m|
\leq ||f_m||_{L^1} + 2 \max_{\Omega} |\nabla \zeta| (\text{mes }\Omega)^{\frac{1}{q'}} \cdot c (||f_m||_{L^1} + ||h_m||_{W^{1,q}}).$$

Thus,

(A2.13)
$$\int_{\Omega'} \frac{|\nabla u_m|^2}{(1+|u_m|)^{1+\delta}} \le \frac{C}{\delta} \quad \forall m \in \mathbb{N} \ (C = \text{const}).$$

As above, we may assume that $u_m \to u$ weakly in $W^{1,q}(\Omega)$ and, in addition, $u_m \to u$ a. e. in Ω . These convergence properties together with (A2.13) imply

$$\frac{\nabla u_m}{(1+|u_m|)^{\frac{1+\delta}{2}}} \to \frac{\nabla u}{(1+|u|)^{\frac{1+\delta}{2}}} \quad \text{weakly in} \quad \mathbf{L}^2(\Omega') \quad as \quad m \to \infty.$$

Whence (2.6).

To prove (A2.7), we first note that $W^{1,q}(\Omega) \subset L^{\frac{Nq}{N-q}}(\Omega)$. Now, let B_R be a ball such that $B_{2R} \subset \Omega$. Let $1 < r \le \frac{Nq}{N-q}$. Then $u \in L^r(B_{2R})$ and

$$\left| \int_{B_{2R}} u\Delta \varphi \right| \le \|f\|_{L^r(B_{2R})} \|\varphi\|_{L^r(B_{2R})} \quad \forall \ \varphi \in C_c^{\infty}(B_{2R}) \quad \text{[by (A2.3)]}.$$

From [20; Thm. 9.5 (3), p. 144] it follows

$$u \in W^{2,r}(B_R), \|u\|_{W^{2,r}(B_R)} \le c(\|f\|_{L^r(B_{2R})} + \|u\|_{L^r(B_{2R})}).$$

Hence, (A2.7) holds for all values of r satisfying $1 < r \le \frac{Nq}{N-q}$. By a bootstrapping argument, (A2.7) can be proved for any $r > \frac{Nq}{N-q}$.

Remark A2.1 We notice that the existence and uniqueness result stated in Theorem A2.1, follows from the L^p -theory of linear elliptic boundary value problems developed in [15], provided the boundary $\partial\Omega$ is sufficiently smooth. Theorem A2.1 is also an immediate consequence of [20; Thm. 10.7, pp. 181-182; $\partial\Omega \in \mathcal{C}^1$].

On the other hand, the existence of a weak solution $u \in \bigcap_{1 < q < \frac{N}{N-1}} W_0^{1,q}(\Omega)$ to linear

elliptic equations in divergence form with bounded measurable coefficients, right hand sides in L^1 and zero boundary condition has been proved in [23] by a duality argument.

Remark A2.2 Our approximation procedure for solving boundary value problem (A2.1), (A2.2) permits to prove additional properties of the weak solution $u \in W^{1,q}(\Omega)$ ($1 < q < \frac{N}{N-1}$) (for instance, the interior estimate (A2.6)). Moreover, we have

Theorem A2.2 Let the assumptions of Theorem A2.1 hold. Let $u \in W^{1,q}(\Omega)$ satisfy (A2.3)-(A2.5). Then

1° if $f \ge 0$ a. e. in Ω and $g \ge 0$ a. e. on $\partial \Omega$, then

$$u \geq 0$$
 a. e. in Ω ;

2° if
$$f \in L^r_{loc}(\Omega)$$
 $(r > \frac{N}{2})$, then
$$\operatorname{ess\,sup} |u| < +\infty \quad \forall \; \Omega' \subset \subset \Omega;$$
 3° if $f \in L^r(\Omega)$ $(r > \frac{N}{2})$, $\operatorname{ess\,sup} |g| < +\infty$, then
$$\operatorname{ess\,sup} |u| < +\infty.$$

This theorem can be proved by the methods developed in [5] and [23].

References

- [1] Adams, R. A., Sobolev spaces. Academic Press, Boston 1978.
- [2] Bernard, P. S.; Wallace, J. M., **Turbulent flow**. J. Wiley, Hoboken/New Jersey 2002.
- [3] Bernardi, C.; Chacón Rebollo, T.; Lewandowski, R.; Murat, F., A model for two coupled turbulent flows. Part I: Analysis of the system. In: Nonlin. part. diff. equs. and their applications. Collège de France Sem., vol. 14. D. Cioranescu, J.-L. Lions (eds.), North-Holland, Elsevier, Amsterdam 2002; pp. 69-102.
- [4] Bernardi, C.; Chacón, T.; Hecht, F.; Lewandowski, R., Automatic insertion of a turbulence model in the finite element discretization of the Navier-Stokes equations. Math. Models Meth. Appl. Sci. 19 (2009), 1139-1183.
- [5] Boccardo, L., Some developments on Dirichlet problems with discontinuous coefficients. Boll. Unione Mat. Ital. (9)2(2009), 285-297.
- [6] Druet, P.-É., On existence and regularity of solutions for a stationary Navier-Stokes system coupled to an equation for the turbulent kinetic energy. Preprint 2007-13, Institut f. Mathematik, Humboldt-Univ. Berlin (2007). Available at: http://www.mathematik.hu-berlin.de/publ/pre/2007/P-07-13.pdf.
- [7] Druet, P.-É.; Naumann, J., On the existence of weak solutions to a stationary one-equation RANS model with unbounded eddy viscosities. Ann. Univ. Ferrara 55 (2009), 67-87.
- [8] Fučík, S.; John, O.; Kufner, A., Function spaces. Academia, Prague 1977.
- [9] Galdi, G. P., An introduction to the mathematical theory of the Navier-Stokes equations, vol I. Springer-Verlag, New York/Berlin, 1994.

- [10] Griepentrog, J. A., Zur Regularität linearer elliptischer und parabolischer Randwertprobleme mit nichtglatten Daten. Logos Verlag, Berlin 2002.
- [11] Grisvard, P., Elliptic problems in nonsmooth domains. Monographs and Studies in Math., vol. 24, Pitman, Boston 1985.
- [12] Jischa, M., Konvektiver Impuls-, Wärme- und Stoffaustausch. Vieweg-Verlag, Braunschweig/Wiesbaden 1982.
- [13] Lederer, J.; Lewandowski, R., A RANS 3D model with unbounded eddy viscosities. Ann. Inst. H. Poincaré; Anal. Non Linéaire 24 (2007), 413-441.
- [14] Lewandowski, R., **Analyse mathématique e océanographie**. Masson, Paris 1997.
- [15] Lions, J.-L.; Magenes, E., *Problemi ai limiti non omogenei*, III. Annali Scuola Norm. Pisa, serie III, 15 (1961), 41-103.
- [16] —, Problèmes aux limites non homogénes et applications, vol. 1 Dunod, Paris 1986.
- [17] Lions, J.-L.; Temam, R.; Wang, S., Mathematical theory for the coupled atmosphere-ocean models (CAO III). J. Math. Pures Appl. 74 (1995), 105-163.
- [18] Murty, B. S., *Turbulence modeling*. In: **Turbulent flows**. G. Biswas, V. Eswaran (eds.). Alpha Sci. Internat., Pangbourne, England 2002; pp. 319-337.
- [19] Nečas, J., Les méthodes directes en théorie des équations elliptiques. Academie, Prague 1967, Engl. transl.: Direct methods in the theory of elliptic equations. Springer 2010 (to appear).
- [20] Simader, Ch. G., **On Dirichlet's boundary value problem**. Lecture Notes Math. 268; Springer-Verlag, Berlin 1972.
- [21] —, The weak Dirichlet and Neumann problem for the Laplacian in L^q for bounded and exterior domains. Applications. In: Nonlin. analysis, function spaces and applications, vol. 4. M. Krbec, A. Kufner, B. Opic, J. Rákosník (eds.); Teubner-Texte zur Mathematik, Bd. 119, Teubner-Verlag, Leipzig 1990; pp. 180-223.
- [22] Sohr, H., The Navier-Stokes equations An elementary functional analytic approach. Birkhäuser Verlag, Basel 2001.
- [23] Stampacchia, G., Le probléme de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Annales Inst. Fourier 15 (1965), 189-258.
- [24] Triebel, H., Interpolation theory, function spaces, differential operators; 2nd ed. J. A. Barth Verlag, Heidelberg 1995.

- [25] —, Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers. Revista Matem. Compl. 15 (2002), 475-524.
- [26] Wolff, M., A global L^k-gradient estimate on weak solutions to nonlinear stationary Navier-Stokes equations under mixed boundary conditions. Preprint Nr. 96-3, Institut f. Mathematik, Humboldt-Univ. Berlin 1996.
- [27] Zeidler, E., Nonlinear function analysis and its applications. II/B: Nonlinear monotone operators. Springer-Verlag, New York 1990.