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Abstract In this paper, we study a model problem for the stationary turbulent motion
of two fluids in disjoint bounded domains €, and €, such that I' :== Q; N Qy # @. The
specific difficulty of this problem arises from the boundary condition which characterizes
the interaction of the fluid motions along I'.

We prove the existence of a weak solution to the problem under consideration which
is more regular than the solution obtained in [3]. Moreover, we establish some regularity
results for any weak solution. Our discussion is heavily based on the results in appendices
1 and 2 which seem to be of independent interest.



1. Introduction

Let ©; and €5 be bounded domains in R? (d = 2 or d = 3) such that

leQQIQ, Flzﬁlﬂﬁg#g,

0%); Lipschitz, [' C 09 relatively open (i = 1,2).

O\

3

O\

Figure 1

We consider the following system of PDEs in §2; (i = 1,2)

where



u; = (U, ..., uy) = mean velocity, p; = mean pressure,
k; = mean turbulent kinetic energy

are the unknown functions. For a vector field w = (uq, ..., uy) we use the notations
1
D(u) = 5(Vu+(Vu)'),  [D(u)* = D(u): D(u).

The coefficients v; and p; are assumed to be uniformly bounded. We notice that the
special case v;(k;) = vy + vir(k;) where

Vo = const > 0 dynamic viscosity of the fluid,

0 < vir(k;) < const eddy viscosity,

as well as the two cases

(ki) = vi(ks) or pi(ki) = vip(k;) Y
are included in our discussion.

Finally, f, represents an external force in €2;.

The system (1.1) - (1.3) belongs to the class of one-equation RANS (Reynolds Aver-
aged Navier-Stokes) models. The triple (wu;, ki, p;) (i = 1,2) characterizes the stationary
turbulent motion of a viscous fluid in €2;, where the convection term in the fluid equations
as well as in the turbulent kinetic energy equations is neglected.

A discussion of RANS models can be found in [2; pp. 304-316], [12; pp. 182-196, 216-
252], [18; 319-337] (with u(k) = vr(k)), and in [14] within the context of oceanography.
Related problems (but without turbulence effects) are studied in [17]. The stationary
turbulent motion of a fluid with unbounded eddy viscosities of the type vr(k) = covk
(Kolmogorov 1942, Prandtl 1945) has been studied in [7] and [13]. n

We complete (1.1) - (1.3) by the following boundary conditions which link both systems
of PDEs in €y and €25 through the interface I':

u; =0 on 0€; T,
(1.4) u;-n; =0 on T,
vi(ki)(D(wi)mi) - + |ui — wjf(u; —uj)- =0 on I' (i#j),

DIf p; = v;, system (1.1), (1.3) has some common features with the thermistor equations (see, e. g.,
Howison, S. D.; Rodrigues, J. F.; Shillor, M., Stationary solutions to the thermistor problem. J. Math.
Analysis Appl. 174 (1993), 573-588; Cimatti, G., The stationary thermistor problem with a current
limiting device. Proc. Royal Soc. Edinb. 116A (1990), 79-84). We notice that the assumption p; = v;
significantly simplifies the arguments of the passage to the limit in (1.3) with approximate solutions (cf.
[7] and Gallouét, T.; Lederer, J.; Lewandowski, R.; Murat, F.; Tartar, L., On a turbulent system with
unbounded eddy viscosities. Nonlin. Analysis 52 (2003), 1051-1068).



(15) kz =0 on E)QZ N F, k’z = Gl(|u1 — ’U,2|2) on I
where

n; = (na,...,n;g) = unit outward normal on 92,

£, = € (& n)n;  (E€RY),
(16) 0 S Gz(t) S Cot, |Gl(t)—Gl(£>| S Cg|t—f| Y t, E € [O, +OO) (CO = const > O)

(1 =1,2). In (1.4), the boundary conditions on the (fixed) interface I' model the situation
when the interface is nonpermeable for both fluids which, however, do not completely
adhere to the interface. Along this interface the fluids exhibit a partial slip which produces
kinetic energy (cf. [3; pp. 69-73] for more details).

The boundary value problem (1.1) - (1.5) (with Vu,; in place of D(u;) in (1.1), (1.3)
and (1.4)) has been investigated in [3]. In this paper, the authors prove the existence of
a solution {wq, k1, p1;us, ko, po} to (1.1)-(1.5) where (1.1) is satisfied in the usual weak
sense (cf. our definition in Section 2), while (1.4) is satisfied in the sense of transposition
of the Laplacean —A under zero boundary conditions. The aim of the present paper is
to give an existence proof for a weak solution to (1.1)-(1.5) (in the sense of the definition
of Section 2). Our proof is shorter and more transparent than the one in [3]. Moreover,
we establish some regularity results on (w;, k;).

Our paper is organized as follows. In Section 2, we introduce the notion of weak
solution {wq, k1;us, ko} to (1.1)-(1.5). By appealing to standard references, we show the
existence of a pressure p; associated with the pair (u;, k;) (i = 1,2). Section 3 contains
our main existence result. It’s proof is based on a straightforward application of the
Schauder ? fixed point theorem. A higher integrability result on Vu; is established in
Section 4. From this result we deduce the local existence of the second order derivatives
of k;. In Appendix 1 we study in great detail the problem of whether a function which
belongs to a Sobolev-Slobodeckij space over I' and equals zero on 92 \ T, is a trace of
a Sobolev function defined in €2. The solution of this problem is fundamental to the
homogenization of the boundary condition (1.5). Finally, Appendix 2 is concerned with
the inhomogeneous Dirichlet problem for the Poisson equation with right hand side in L.

2. Weak formulation of (1.1)-(1.5)

Let W(Q) (1 < ¢ < +00) denote the usual Sobolev space. We define

W) :={oeW"(Q):p=0 a. e on 0N}

2)We notice that the Schauder fixed point theorem has been also used in: Bernardi, C.; Chacon, T.;
Lewandowski, R.; Murat, F., Ezistence d’une solution pour un modéle de deux fluides turbulentes couplés.
C. R. Acad. Sci. Paris, Ser. I, 328 (1999), 993-998. In comparison with this paper, our existence theorem
for a weak solution {w1, k1, p1; U2, ka,p2} to (1.1)-(1.5) (see Section 3) involves more regularity of k1, ko
(see Remark 2.2 for details).



Spaces of vector-valued function will be denoted by bold letters, e. g., LY(Q) := [L4(Q)]¢,
Wh(Q) .= [WH(Q)]? etc. Next, define

V, = {veW?(Q):dive=0 a.ein Q

v=0 aeon IU~T, v-n;=0 a.eon T}

(i=1,2).
Without any further reference, throughout the paper we suppose

*

there exist constants v,,v* and p* such that
0<v <p(t) <v* <400, 0<p(t) <p* <+oo VteR (1=1,2).

Definition Let f, € L* () ® (i = 1,2). The functions {u, ky;us, ky} are called weak
solution to (1.1)-(1.5) if

(2.1) (wik) €Vix [ WH(Q) (i=1,2),

S

' /yl(lﬁ)D(ul):D(vl)+/l/2(k32)D(U2)1D(’Uz)+

Q1 Qs
(2.2) +/ ur — us|(ur — ug) - (v1 — v2)dS =

T
:/fl'vl—f—/fz'w V (v1,v2) € Vi X Vo,
\ 1951 Qo

( for some r >d,

(2.3) 4

/vki'vw = //‘i(ki)|D(Ui)|290 Vope Wy () Y,

\ Qi Qi

(2.4) ki=0 a.e.on 0U~T, k=Gi(lui—us®) a. e on T.

Remark 2.1 (existence of a pressure) Define

3By ¢* we denote Sobolev embedding exponent for W4(Q) (2 c RN bounded, Lipschitzian; N > 2),

i.e ¢*= NN—fq ifl<g< N,and 1 <¢* < +ooif g=N. If ¢ > N, then WH4(Q) C C(Q) continuously.

YNotice that r > N if 1 <r < %



W(l)%(Qz) ={w e WLZ(Qi) s w=0 a.e.on O NT,

w-n;=0 a. e on I}

(1 =1,2). Clearly, V; is a closed subspace of Wé%(QZ) We have:

Let {uy, ky;us, kot be a weak solution to (1.1)-(1.5). Then there exists p; € L*(€)
with /p,- = 0 such that

Q;

/l/z<kfz)D('U,Z> : D(’U)) + <—1)i+1 / |u1 — ’U,2|(’U,1 — ’LLQ) -wdS =

(2.2) ”z‘
:/fi-w+/p7; divw  Vwe Wyi().
Q;

i

In addition, there holds

@) Ipille < o(IVuillze + £l ).
To prove this, we first note the following

Proposition Let Q C RY (N > 2) be a bounded Lipschitz domain and let 1 < r < +o0.

Then, for every f € L"(2) with /f = 0, there exists v € W' (Q) such that
Q

dive = f a. e in

Vol < e[ f]ler

For a proof, see, e. g. [9; Chap. III, Thm. 3.2], [22; Chap. II, Lemma 2.1.1, a)].

We now proceed as follows. For w & Wé%(Qz), define

Fiw) = [ wk)Dlw) : Dw) + (-1 [ fur =l — ) wdS — [ £,w

). It is easy to check that F; is a linear continuous functional on Wé%(Ql) By

(i =1,2).
i(v)=0forallv eV,

(2 )7



Next, the above Proposition implies that the mapping
A:v— Av =divw

is surjective from Wé%(QZ) onto the space

{feLQ(QZ-):/f:O}.

Now, following word by word the arguments of the proof in [9; Chap. III, Thm. 5.2] or
[22; Chap. II, Lemma 2.11, b)] we obtain the existence of a p; € L?(Q;) with /pz- =0
Q;
such that
Fi(w) = /pidiv w YV we Wé%(Ql),

Q;

i. e, (2.2’) holds.
Estimate (2.27) is readily seen.

Remark 2.2 In [3; Thm. 5.2, pp. 88-89] the notion of (weak) solution to (1.1)-(1.5)
means that k; belongs to the Sobolev-Slobodeckij space W*2(€;) (0 < s < 3), and that
(1.3) is satisfied in the sense of transposition of —A (cf. [3; p. 78]). In contrast to that
paper, our definition of weak solution to (1.1)-(1.5) involves more regularity of k; ).

2d

1
Indeed, for any0<s<§vvehave2+d_28<d_1. Thus, if
2d e d
2d—2s 1S a-1
then

d d

l—=>s5—-
¢ T

and therefore
Wha(Q,) ¢ W*2(€,)
(see, e. g., [24; p. 328]). Hence, k; € ﬂ Wha(€),) implies k; € W*2(€;) for all
1§q<E%T

0< <1
S —.
2

5)See also Appendix 2.



Finally, let k; € Wh(€;) (1 < ¢ < 7%4) satisfy (2.3) and (2.4). Integration by parts
on the left hand side of (2.3) gives, for any o € W22(;) N W, *(Q,),

_ / kg + / Gilwr — ws)m, - VipdS = / (k) | D () P,

Qi r Qi

i. e., k; satisfies (1.3) in the sense of transposition of —A under zero boundary conditions
on ¢ (cf. [3; p. 78]). n

3. Existence of a weak solution

The following theorem is the main result of our paper.

Theorem Let ; C R (i =1,2; d =2 or d = 3) be bounded domains of class C* 9.
Suppose that assumption (A) ) is satisfied.

Then, for every f; € L* () (i = 1,2) there exists a weak solution {u, ky;ua, ky} to
(1.1)-(1.5). In addition,

(3.1) ki>0 a.e in

(3.2) anan / u — wsf*dS < can 22 0,

( d
for every 1<¢g< -1 there exists ¢ = const such that

(33) [Eillwra, < cz 1£512

where c:c(q)—>—i—oo as q— —,
\ d—1

( for every QL €@y and every § >0,

Vk;|?
(3.4) [y < 5Z||f 2

Q/

| where ¢ — 400 as dist (Q,0€;) — 0

6)The condition Q; € C' we need in order to apply Theorem A2.1.
"See p. 22

10



Proof We consider the space L'(2;) x L'(€s) equipped with the norm

2
(e, Bl o= [kill 1 (@)-
=1

For appropriate R > 0 which will be fixed below, we set
ICR = {(k?l,kfg) € Ll(Ql) X LI(QQ) : ||(k’1,k’2)|| < R}

Then, for any (ki,k) € Kr we show that there exists exactly one (uj,us) € Vi X
V', which satisfies (2.2). With (wuq, ky1; ug, ko) at hand, we deduce from Theorem A2.1

A . d
the existence and uniqueness of a pair (ky, ke) € WhHI(Qy) x Wi(Qy) (1 < ¢ < 1
arbitrary) which solves (2.3) with the given L'-function u;(k;)|D(u;)|* on the right hand
side, and with given G;((Ju; —us|?) on T (z = 1,2). This gives rise to introduce a mapping
T :Kr— Kg by

T(kfl, k’g) L= (l;‘l, ]%2)
We then prove:
(i) 7 is continuous;
(ii) 7 (Kg) is precompact.
From Schauder’s fixed it follows that there exists (k}, k) € Kg such that 7 (k}, k3) =
(K1, k3).
Now, with the fixed point (k7, k3) at hand, we obtain the existence and uniqueness of

a pair (u},ul) € V| x Vo which satisfies (2.2) (with (k, k3) in place of (k1, ko) therein).
By the definition of 7', the functions {uj, k; ub, k3 } are a weak solution to (1.1)-(1.5). m

We turn to the details of the proof.

Definition of 7 : Kr — Kr. The space V1 x V5 is a Hilbert space with respect to the
scalar product

<(’U,1,'U,2), (U17v2)> = Z/V’Uq . V’UZ'.

i=1 0

By |- || := (-,-)2 we denote the associated norm.

1) The mapping (k1, ko) — (u1,uy). Given any (ki, ko) € L' () x L'(£2), we prove
the existence and uniqueness of a pair (uy,us) € V1 x V5 which satisfies (2.2). To do
this, we replace (2.2) by an operator equation in V'; x V5 to which an abstract existence
and uniqueness theorem applies.

11



Firstly, for any (fixed) (ki,k2) € L'(€) x L*(€) we introduce a linear bounded
mapping A, k) V1 X Vo — Vi X V3 by

2

<"4(k1,k2)<u1ﬂu2)7 (’121,’1)2)> = Z/%(kﬁD(ul) : D(’lh)

=1 ;
By Korn’s equality,

(A ) (W1, w2), (w1, u2)) > ol (g, us)||*  (co = const > 0)

for all (u1,us2) € V1 X Vi (¢o independent of (kq, k2)).

Secondly, observing the continuity of the trace mapping v : W'3(Q) — L*(0Q)
(d = 2 and d = 3; see, e. g., [8], [11], [24; pp. 281-282, 329-330]) we obtain, for
every (uy, us), (v1,v5) € Vi x V¥,

/|u1 — ’U,2|('U,1 — ’LLQ) . (’01 — ’Ug)dS S

I
< </|u1—u2|§ds> </|v1 —vg|4ds>
I I

2 2
<o Ll ) D lolcn,?
i=1 j=1

< cll(ur, w2) [P (w1, v2).

We now introduce a (nonlinear) mapping B : V; x Vo — V' X Vy by
(Bl wa)s (01,02)) = [ s = sl — ) - (01 = 02)d5
r

By elementary calculus,

(B(u1,uz) — By, u2), (uq, u) — (w1, U2)) >

> /<\u1 sl — @ — Bol?) (s — wa] — [ — @a)dS > 0

r

8) For notational simplicity, in this section we use the same notation for a function in W1 ¢ (Q) and its
trace.

9 Throughout the paper, we denote by ¢ positive constants which may change their numerical value
but do not depend on the functions under consideration.

12



and

2

1B, ws)=Bar, wo)ll < el (ur, )+ (s, @)l) Y llui—tlwrzo,
i=1

for all (ul,’uQ), (111,112) € V1 X V2
Thus,

Ay k) + B is continuous on the whole of Vi x Vy
and maps bounded sets into bounded sets,

((Aky ko) + B) (w1, ) — (A k) + B) (81, 82), (w1, us) — (U1, U2)) >
> cofl(wr, ug) — (@, we)||* Y (w1, u2), (U1, %) € Vi X Vs

From [27; Thm. 26.A, p. 557] it follows that for every f; € L* (Q;) (i=1,2) there exists
exactly one (uy,uy) € Vi x V5 such that

(3.5) (A o) + B) (w1, u2), (v1,v2)) Z/f v; V(v1,v5) €V X Vg,

119

e., (2.2) holds with the given (ky, ko) € L' (1) x L'(£2,). In addition, we have

2
(3.6) S uilpneo, / s — uaPdS < cz 15012
=1

T
where the constant ¢ does not depend on (ky, k).

. d
2) The mapping (wy,us) — (k1,k2). Let 1 < ¢ < T Let (ug,ug) € Vi x Vy

denote the solution to (3.5) (uniquely determined by (ki,ks) € L*(€4) x L'(€2)) which
has been obtained by the preceding step 1).
Define

Gi(luy —usl?) a.e. on T,
0 a. e.on 0 ~\T
(G; as in (1.6); i = 1,2). By Corollary Al1.1,

2
~ 1 ~
(3.7) B € W00, il s < €D Il
j=1

13



Now, from Theorem A2.1 and Theorem A2.2, 1° we obtain the existence and uniqueness
of a pair (ki, ko) € WH4(Q) x W4(Qy) such that

(3.8) k>0 a. e in Qi

(3.9 [ Vo= [wElD@Per ¥ e W),
(3.10) ki=h; a.e. on 09,

(3.11) [Rillwraga < e(ll D) Pllasen + Tl o ):

( for every Q€ and every & >0,

~

ki
ayE <
(3.12) ' A
Vk,
/(1+k)1+5 - 5<” D) llzran + il (aﬂ))

Qi
where ¢ — 400 as dist(§2, 09;) —

\

We notice that the constants ¢ in (3.7), (3.11) and (3.12) do not depend on (kq, ks). By
combining (3.7) and (3.11) we find

(3.13) (i, ko) |<CZ||fHL2*(Q =R

3) Let us consider Kz ' with R as in (3.13). For (ki, ks) € K, define
T : (ki ko) = (wr, u2) = T (ke ko) = (ke ko),

where (uy,us) is as in step 1), (kp, ko) as in step 2). Then T is a well-defined (single
valued) mapping of K into itself. 'V

(i) 7 is continuous. Let be (kiy, ko) € Kg (m € N) such that

Eim — ki strongly in  L'(€Q;) as m —oo (i=1,2).

Recall Kg := {(k1,k2) € LY (1) x LY(Q2) : [|(k1, k2)|| < R}.
WIn fact, 7 maps the whole of L'(€;) x L'(Qs) into Kg.

14



Clearly, (k1,kq) € Kgr. Without loss of generality, we may assume that
(3.14) kim — ki a.e.in Q; as m—oo (i=1,2).
We prove that

T (kim, kom) — T (k1, ko) strongly in - L'(Q1) x L'(€) as m — oo.

To begin with, we introduce the following notation. For (ki kam), let (wim,, usn) €
V1 x V5 denote the uniquely determined solution of

2
(35m) <(A(k1m7k2m) + B) <u1m> u2m)7 (Uh ’1)2>> = Z

i=1

/fzvl V('Ui,'vg) eV, xV,.
Q;

Clearly,

9 2
(3'6m) Z ||uim||%}[/1»2(ﬂ.) + |u1m - u2m|3ds < CZ ”.fi”iﬁ*(g.)’
=1 Z 2 i=1 '

Analogously, for the limit element (ki, k2), let (w1, us) € V1 X V5 denote the uniquely
determined solution to (3.5). This solution satisfies (3.6).
We claim

(3.15) (Wi, Uapm) — (U, uy) strongly in WH3(Q)) x WH(Q,) as m — oo.

To prove this, we first note that from (3.6,,) it follows that there exists a subsequence
{(w1m,, wam,)} (s € N) such that

(’U,lms, UQmS) — (’ljlq, ﬂg) Weakly in W1’2(Ql)XW1’2(Qg) as S — OQ.

Using the compactness of the embedding W'?(Q) C L"(02) (1 < r < 4; d = 2 resp.
d = 3), we obtain

<B(u1’msa ’u’2m5)a ('Uh ’02)> - B(ﬂl, 1_1'2)7 (vla ’02)> \V/ (’017/02) S Vl X V2
as m — o0o. With the help of (3.14) the passage to the limit s — oo in (3.5,,) gives

<("4 k1,k2) +B u17u2 Z/f V; V vlan) S Vl X V2-

le

Comparing this and (3.5) we find w; = u; (i = 1,2) Therefore the whole sequence
{ (Wi, Uapm)} converges weakly in W2(Q ) x WH2(Qy,) to (ug,uy).

15



We now form the difference between (3.5,,) and (3.5), and use the test function v; =
Wim — w; (i =1,2). Observing the monotonicity of B, we find

0. 1D = w)f <3 [ v (Dlwin) = D) s D~ )

i=1¢ i=1¢,

IA
—

S
=
3
_l’_
S
=
S
e
S
S
3
=

Whence (3.15). o
Next, set (kim, kom) := 7T (kim, k2m) (m € N) and (ky, ko) := 7T (ky, ko). Let 1 < g <

d;dl' By the definition of 7, the pair (kim,kam) € W() x W(€) is uniquely
determined by (ki,, k2m) and (Wi, way,) through

(3.9,) /V/%im -V, = /Mi(kim)|D<uim)|2§0i Vi € W()l’q/(Qz‘)7
Qi Qi
(3.10,,) Eim = him  a. €. on O,

where hy, € Wl_%’q((?Qi) is defined by
- Gi([wim — uom|?) a.e. on T
"o a. e.on 0\ T

(see Theorem A2.1). From (3.7) (with w;, in place of u;) it follows that

2
il 1= oy < €D Mtimlynage, ) < const.
j=1

We obtain

(3.16) him — h; weakly in Wl_%’q(ﬁQi) as  m — oo,

where h; is defined as above, i. e.

By — Gi<|U1 - U2|2) a.e.on T,
Lo a.e.on 0 \T

(i = 1,2). To see (3.16), we first note that (3.15) implies w;,, — u; strongly in L*(9€;)
as m — 0o (d =2 resp. d = 3). Therefore

Gi(|tim — uzm|?) — Gi(lur — uy)?) strongly in  L*(I') as m — oo.

16



Since Wlfé’q((‘?Qi) is reflexive, (3.16) is now readily seen by routine arguments.
To proceed, we note that k;,, satisfies the estimate

Finllwraay < (D @im) Pl + Wil poy,) [ef (3:11)
2
< o) lumls,)
j=1

2
DIl gy [y (3.60)]
j=1

IN

(i =1,2; m € N). Hence there exists a subsequence {kin,} (t € N) such that

~

Kim, — k; weakly in  Wh4(Q;) as t— oo.

Using (3.14), (3.15) and (3.16) the passage to the limit ¢ — oo in (3.9,,,) and (3.10,,,)
gives

Q;

/Vki'v@i = /ﬂz ’D U; | Pi vspzewolq(gl)?
Q;
h;

k, = a. e. on 0S).
Combining this and (3.9), (3.10) we get

Q;
];Ii - l%z = 0 a.e on an
By theorem A2.1, k; = k; a. e. in Q; (i =1,2). It follows that the whole sequence {kim }

converges weakly in W14(Q;) to k; as m — oo. Therefore, by the compactness of the
embedding W(Q) c L'(9),

j—% strongly in  L*(Q;) as m — oo,
i. e., 7 is continuous.
(ii) 7(Kg) is precompact. Let (l;:lm,l%gm) € T(Kgr) (m € N). Then (l;’lm,ffgm) =
T (k1m, kom), where (kim,, kom) € Kr. As above, let (w1, Uay) € Vi x Vi denote the

uniquely determined solutions to (3.5,,). The existence and uniqueness argument used at
the end of the proof of the continuity of 7 (cf. Theorem A2.1), implies that (ki,, ko) €

d
Wha(Q) x WhH(Qy) and 1 < ¢ < — 1) and (3.9,,) and (3.10,,) hold. It follows that

d

i llwrageny <CZHf Iz, (i=L2meN)

17



(cf. above). By the compactness of the embedding W'4(Q2) C L'(2), there exists a
subsequence {k;,,} (s € N) and an element (I,15) € L'(Q1) x L'(2,) such that

l%ims — I; strongly in  L'(€;) as s — oo,

i.e. T(Kpg) is precompact.
By Schauder’s fixed point theorem, there exists (kf, k3) € Kr such that 7 (k],k}) =
(ki k3). The proof of the theorem is complete.

4. Regularity properties of weak solutions

In this section, we establish regularity properties for any weak solution {wq, k1;us, ko } to
(1.1)—(1.5) (see Sect.2 for the definition).

2). Then there exists o > 2

Theorem 4.1 (Local regularity) Let f; € L*(€;) (i = 1,
1.1)~(1.5) there holds

such that for every weak solution {wy, ki;us, ko} to (

Vau, € LO(Q), ki € W2 ().

loc

Indeed, the local higher integrability of Vu; follows from [6; Prop.4.1]. It follows
|D(u;)|> € LE (). Then k; € W2’§(Qi) is a consequence of Theorem A 2.1, (A2.7).

loc loc

Theorem 4.2 (global higher integrability of Vu,;) Assume that
TN (O \T) s Lipschitz (i =1,2)'?

Let f; € L*(Q;). Then there exists p > 2 such that for every weak solution {wy, ki;us, ko }
to (1.1)=(1.5) there holds

V’U;i € LP(Q,L)

This result is a special case of [26; Thm. 2.1]. n

We notice that the higher integrability of the gradient has been used in [3] for the
uniqueness of the weak solution to (1.1)—(1.5) in the case d = 2. It has been also used in
[4].

Appendix 1. Extension of a function g € W*%(I") by
zero onto 00) \ I

12) See [26; (1.24a), (1.24b)] for details.

18



Let Q@ € RY (N > 2) be a bounded domain with Lipschitz boundary 0.

0<s<land 1< qg< +oo we consider the Sobolev-Slobodeckij space

W1(9Q) := { w e LI9Q) : / [wiz) = w(y)|qu$dSy < +00

|z —y| Nt
o2 002

with the norm

Q=

w(z) — w(y)
[wllwesoe) == | lwll7qoe +/ |z — y|N-1tsa dSzdsSy
02 0Q2

(see, e. g., [8], [19] for details).
Let I' C 012 be relatively open. We have

[1.1]Let w € W*9(09). If w =0 a. e. on I\ T, then

/ w(z) — w(y)‘qudey _

|.CE _ y|N71+sq
o002 90

(AL1) :/ wiz) — vl )o 45

|z — y| Nt

1
+/’w(y)|q / stx das,
r

9NN

q

|I’ _ y|N—1+sq
oO~I" T

This follows from the additivity of the integral.

For

We notice that the second and third integral on the right hand side of (A1.1) are equal.

Indeed, we have
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Yl
/ /\x—y\N el K
r

Q~I"

/ / | | N i+ q Sy | dS,  [by Fubini-Tonelli|
T —y s

oONT T
(A12) :/ /Iw y|N s, | as,
159NN

[change of notation of the variables = and y].

Let g € LY(T") (1 < ¢ < +00), let 0 < s < 1 and assume that

(A1.3) / m—ﬂljjqu dSy < +oo,

(A14) /|g )jo / e le 157052 )dS, < +oo.
oONT

Define

3 g a.e. onl,
9=
0 a.e. ondQNT.

Then g € W#59(042).

Indeed, firstly g € L1(052). Secondly, from (A1.3) and (A1.4) it follows

20



|z — y[N-1+sa |z — y[N-1+sa
oO~T"

+OO>/ \g(w)—g(y)\qd5$+ / 19(z) — g(y)|? as, | as,

3(w)=0

l9(x) = g(y)|* L
+ 7 — g[N-1+ea asS; + ~ 0 dS, [observe(Al.2) with g in place of w]
T \ T Y——~—" 9(z)=g(y)=0
9(y)=0

Remark A1.1 Under the above assumptions, for y € ' define

1
w(y) = wsqly) = / |z — y|N—1+squx'

OONT
We have
1) w is continuous on T,

mes(0Q N\ T)
2) @) < (Hisiy, o0 ~ D))V

3) let zp € 00 \ I, dist(xo,I') = 0; if there exists ag > 0, po > 0 such that
mes((0Q \T) N B,(w0)) > agpN ™t for all 0 < p < py ¥ then

< +00,

lim w = +00.
jeiim (y)

Condition (A1.4) reads

(ALL) / w(y)lg(y)|7dS, < +oo.

r

Thus, condition (A1.4) (resp. (A1.47)) expresses a decay property of ¢g near the boundary
or. u

BB, (z0) = {¢ € RN : |¢ — 9| < p} We notice that the condition on mes ((9Q \ ') N B,(zy)) occurs
in the discussion of Campanato spaces; (see [8; pp. 209-245], [10; p. 32]) for more details.
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The above discussion gives rise to introduce the following

Definition Let 0 < s < 1, let 1 < g < 400 and let be w as in Remark A1.1. Then

WD) = {g € Wor): [wl)lgtulids, < +oo}

(cf. the definition of HZ () in [16; Chap. 1, Thm. 11.7 (with g = 0 therein)] and the
notation HO%O(F) in [3; pp. 73, 80 etc.]).

Let v : Wh4(Q) — Wl_%’q(ﬁQ) (1 < ¢ < +00) denote the trace mapping (see, e. g.,
8], [11], [19], [24; pp. 281-282, 329-330]). To make things clearer, we also write v in
place of ~.

Summarizing our preceding discussion, we have:

1° Let h € Wh(Q) satisfy y(h) =0 a. e. on 9Q \T. Then

1-1
Y(R)|r € Wy **(T).

1
2° Let g € Wolo “(I). Define

) g a.e. on T,
g =
0 a.e on OQNT.

Then there exists h € WH4(Q) such that

v(h)=g a.e on T.

Indeed, 1° follows immediately from . To verify 2°, we notice that our above discus-

sion gives § € Wl_%’q((?Q). The claim then follows from the inverse trace theorem (see
8], [19], [24; p. 332)). =

We now study the extension of any function g € W*4(T") by zero onto 92 \. T’
(i. e. without the decay property (Al.4)).
Let {ey,...,e,} denote the standard basis in RY. We introduce

Assumption (A) For every x € T N (90 \T) there exists
(i) a Buclidean basis {fi,..., fx} in RN 14,

(i) an open cube A = {1 € RN"! i max{|n|,..., |tnv_1| < &},

WIfi, ..., fn} originates from {ey,...,en} by shift and rotation.
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(i) a Lipschitz function a : A — R
such that in terms of local coordinates & € span{fy,..., fxy} '*) there holds
1) x=(0,...,0,a(0)),

)
2.1) {£eRI ¢ e A, al€) <én <alé)+6} CQ,
22) {€€RT: € € A, £ =al€)} C O,

)

2.3 {{ERd €/€A —0 < &v_1 <0, §N—a( )}CF
(cf. figure 2).

For what follows we need some more notations.

AT = {{elA:-5<&y 1 <0},
AT = {feA:0< &y <0}
and
&1
P(§) == : , €=(E,86n) € Ax (=94,9)
En—1
a(¢’) + &N

15)FOI‘ 5 = Span{fla" 7fN} we write € = (5/751\7)7 g/ = (51)"'751\771)-

23



EN

{(f]).,..

Figure 2
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We obtain

A=A"U{{eA: =0 UAT,

1€ — € lpv-1 < |6(€) — O(E)ry < o€ — E)lrnv—1 VEE €A X (=4,0),

T
o~ (n) = : . n=,nn) eU.
NIN-1
ny — a(n')

Then conditions 1) and 2.1)- 2.3) can be equivalently stated as follows:

1) $(0) = (0,....0,a(0))",
2.1) ¢(A x (0,6)) =QNU,
2.2') ¢(A x {0}) = dQNU,
2.3") ¢(A~ x {0}) =T NU.

Theorem A1.1 Let assumption (A) be satisfied and let 1 < ¢ < +00. For g € W#4(T'),

define
3 g a.e. on T,
g:=
0 a.e. on OONT.
1 .
If s < 7 then g € W*1(0Q2) and

(AL.5) 19llw=a@0) < cllgllwsar).

Proof The definition of the Lipschitz continuity of 92 implies the existence of Euclidean
coordinate systems { fa1, ..., fan} in R, open cubes A, C R¥~! and Lipschitz functions
o : Ay — R (e =1,...,m) such that 2.1) and 2.2) hold with A, and a, in place of A
and a, respectively (see, e. g. [8; pp. 304-306], [10; pp. 21-25], [11; pp. 5-7]). It follows

0Q C U U,, where
a=1

Us := ¢a(As X (=04, 04))
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(recall ¢o (&) = (€, aa(€)+En)T, €= (€. &n) € AX(—0,6)). By2.2), 24 = (0,...,0,a4(0)) €
o0.
fINU, CTor (02\T)NU, C 0Q \ T there is nothing to prove. Therefore,

it suffices to consider a local representation {{fa1,..., fan},Aa,aa} of 9 such that
To € 'N (002 N T). Then 2.3) of assumption (A) implies

{eRY: & eN 0, <Eén_1 <0, Ev=uan(E)} = I'NU,.

For notational simplicity, in what follows we omit the index a.

Let g € W*4(I"). By 2.3),

[ ] it

I'nU I'nU

| o T ST Ot o

o] [ A

Next, define z(§') := go ¢(¢',a(¢’)) for a. e. & € A~ and

z a.e in A7,
z =
0 a.e in AT,

Then z € W#9(A™), and

Z=go¢ a.e in A, G=Z20¢ ' a e in 9QNU.
Now from [25; Thm. 3.5 (see also [16; Chap. 1, Thm. 11.4] for ¢ = 2) it follows that
(AL6) zeW=A),  |Zllweaa) < dlzllwsaan).

We obtain
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HORFIOJ
o = gt oS =
oQNU oQNU

_ / [goa(E,a(f) —goo(n,aln))|? "
6(£,a(€)) — o' aln)) [N -1+s

A A

<1+ |Va(€) V1 + [Va(y)Pdg'dy by (2.1)]

g0 (&, a(§)) —go o, a) .,
< // € — [N d¢'dn’  |by (iii)]

A A

g0 6(¢'.a(&) g o o0 aly)l* .
s@/[ & de'dn’ by (ALG)

/ N71+Sq
A— A

< e / / @) = wW 1o 15 by (i) and 2.3)

‘l’ _ y‘N71+sq
I'nU I'nU

The proof of the theorem is now easily completed by standard arguments. [ ]

1
Remark A1.2 If s = —, then the statement of Theorem Al.1 fails.
q
Let 1,9, C R (d =2 or d = 3) be bounded domains such that
QlﬂQQIQ, FizﬁlﬂQQ#g,
0€); Lipschitz, T relatively open in 09; (i = 1,2)

(cf. Section 1). Let g, : WH(Q;) — Wi (082;) (1 < ¢ < +00) denote the trace
mapping (cf. above). In what follows, we write v; = 7q,. For w; € W(Q;) the trace
vi(u;) is understood componentwise. By Sobolev’s embedding theorem,

lu;|> € Wh(€;)  where
(A1.7) 3
1<qg<2 arbitrary if d=2, 7= if d=3.

Then ~;(|wi|?) € W' a9(59;). n

Let us consider

u; € WH(Q,), ~i(uw;) =0 a.e.on 0 \T.
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For notational simplicity, set v; := 7;(w;) a. e. on I'. Then v; € W2*(I), |vi]? €
W'a9(T) 19 and

1
r

o ~\I"

(cf. (A1l.1). To homogenize boundary condition (2.3), we have to consider the following

Problem (P) Define g := |vy — v3|> a. e. on T, and

. g a.e on I,
gi ‘=
0 a.e on 00; \T.

Does there exist h; € Wha(Q,) such that %(ﬁl) =g; a. e. on 087
An answer to this problem can be given by imposing the following condition on the

geometry of €, and Q, "near to the interface I' = Q; N Q"

Assumption (B) For every y € I', there holds

1 1
/md&: / md&; for all yeTl

oI 0 \I"

(q as in (A1.7))

We obtain the following result.

Let assumption (B) be satisfied. Let be u; € WH2(Qy), vi(u;) = 0 a.e. on Q\T (i =
1,2). Set v; :=v;(uw;) a.e. on . If

(A1.9) v — w2 € W0 UT) (g as in (AL1.7)),
then there exists h; € W-9(Q;) such that

vi(hi) = gi  a.e. on 0.

16)The definition of the trace mapping implies

(7(9)? = (¢lr)? = @*r = 7(¢?)

for every ¢ € C1(). Thus, by approximation

d d d
il = (viwar)® =Y vilufy) = %‘(Zﬁz) = 7i(lui?).

=1 =1
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Indeed, combining (A1.8) and assumption (B) we find
|(v1 — v2)(y)|* ;dS dS, < +oo (i=1,2)
1 2)\Y |(L’ . y|d_2+q T Y =

Observing (A1.9) we see that (A1.3) and (A1.4) are satisfied with g = |v; — va?,
1

N=d, s=1——-and Q =(;. The claim follows from above. [ ]
q

It is easily verified that this result continues to hold for G;(|v; — v2|?) in place of
|’l]1 — ’UQ|2.

We notice that assumption (B) is satisfied if €2; and €25 obey an appropriate symmetry
property with respect to I'.
Remark A1.2 Assumption (A1.9) is equivalent to
(A1.9) vy vy € WIHUT).
This is readily seen when observing the elementary identity

la —b]* —|a - b]* = |a]* — |a* + (|b]* — b) —2(a-b—a-b)

(a,a,b,b e RY).

Remark A1.3 We notice that (A1.9’) is true in case d = 2. To see this, first observe
that W22(9€) C L7(08;) (1 < r < +oo arbitrary). We obtain, for every 1 < ¢ < 2,

//h’z ]x—y’q 2 [v;(2)]?dS,dS, <
< ([ )

T

2—q

( / \vj<x>|2"’—%dsx>2dsy

r

[0S

24
< (mes T) 2 ||vi||iv%,2(r)||”j||12%q

(1,7 =1,2;i # j). Whence (A1.9").
We obtain: if d = 2 and assumption (B) holds, then problem (P) has a solution. =

Theorem A1.2 Suppose that T' N (0Q2; N T) (i = 1,2) satisfies assumption (A). Let
v1,V2 € W%’Q(F). Define g := |vy —v3|* a. e. on T, and
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3 g a.e on T,
gi ‘=
0 a.e. on O ~NT.

Then
N _1
ge [ whetow),
1§q<d%‘i1
19ill 130 g,y < llvr =2l 3y 01 = V2]l r @),
where

(@) d (1< - d )
c = c(q +oo as ¢ T 1<7—7)

r = —— 4f d=2, r=4 if d=3.
2—q

Proof |d = 2] First, notice W22(9Q) C L"(9Q) (1 < r < 400) continuously.
Observing that
‘|a—b|2— la—b?|<la—b—(a—b)la—b+(a—b), a abbecR"

we obtain by the aid of Holder’s inequality, for every 1 < ¢ < 2,

[ s

T

q
2

vi(z) — va(z) — (vi(y) — v2(y))[?
< ( /] g dsxdsy) y

[z —y|?
' I

2—gq
q

X (// v1(2) — va(z) + (v1(y) — ’vz(y))qudedSy)
r T
< cllor - ’02||3V%,2(F)||171 - v2||qL;qu
Thus, g € Wlﬁ’q(lﬂ) and
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IN

2
g 2\ l9(z) — g(y)|?
lgll* s vy — vy| 27 + 2 T d4S,dS,
WD) ) |z —y|

T

< dvi—walfy llr = vl

I

1 1
On the other hand, Theorem Al.1 (with Q =€Q;, s=1— — s < —) gives
q q

~ _1
Goe whoR), gl . < cllgll . s

(0%) @)

Whence the claim.

Then W22(9Q) C L*(9Q) continuously. Hence g € L2(T'). We divide the proof
into two steps.

Step 1 For every 0 < § < 1, there holds

(A1.10) / l9(x) — 9(y)|5

dS,dS, < c|lvy —v v, — Vo[ 24,
/ J |x_y‘2+2(1 5) H 1 2” )H 1 2“L4(F)

Indeed, with the help of the above inequality for a, a, b, b € RY and Holder’s inequality
we find

Wl

\rm — va(@)? = [v1(y) — va(y)
<e / / o 45,4,

y|2+
[v1(2) = v3(w) = (v1(y) = va(w))|}
// I-/Jﬁ—y|2 -
via) - v2|<x> + <|g<1<g)> @I 4o 45
r—y
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(AL.11) < dl|vy — vs||® x

1
72

1

<//(!'v1 — 0y )‘;2‘31(5)_v2<y>’)4d8xdsy>3

(notice that W22(T') ¢ L4(I)).
Next, by elementary integral calculus it is easily seen that there exists a positive
constant Ky such that

1 .

(Ko = Ko(d) — +00 as § — 0). Then the second double integral on the right hand side
of (A1.11) can be estimated as follows

// (o1(0) = walo)|  or) = a0 g g

|z — y[20=9)

1
< 16/|’01(3&‘) —vz(l")|4</md5y> dS,
I T
1
+16/|v1(y) —va(y)|4(/md5m> dSy
I

T

S 32K0||'U1 - U2H4L4(1-)
Inserting this estimate into (A1.11) we find (A1.10) (¢ = ¢(§) — 400 as 6 — 0).

1-— 4
Step 2 From Theorem Al.1 (with Q = Q;, s = T(S,q = §) and (A1.10) it follows

that

cllglly 1504 0y =

30 = 301 4 s )’
(uguw [ 2 as.as,

rr

IN

|v1 — U2||L4(r))

(o1 = U2||2Lg(r) + [lor — ”2||W%72(r)
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(A1.12) < (flor — 02”;/%«2@)””1 — Vallw )

To proceed, we notice the continuous embedding

(A1.13) W'z

Wi
)
=
N
S
oL
Q
‘f‘,;
5
S
S
VR
@)
AN
Q
AN
I
N————

(see, e. g., [1], [25; p. 328, n=d — 1 =2 1n (8)]).
Now, consider g such that 3 <q< 5 Define
2(3 —2q) _1-20

0= —— = —
¢ " 6

It follows
1—6 1 4

- a=1-=
5 ¢ ¢ 3-2a

By combining (A1.12) and (A1.13) we obtain the statement of Theorem A1.2 when d = 3.
]

Corollary A1.1 Suppose that I' N (02 \T') (1 = 1,2) satisfies assumption (A). Let be
u; € WH(Q,) such that

vi(u;)) =0 a.e.on O \T.

Define

7 .

Gi(|7i(uy) — v2(u2)|?) a.e.on T,
B 0 a.e.on O ~\T

(Gi as in (1.6); i =1,2).

Then, for every 1 < q < FIET

2
- 1 ~
hz‘ c Wl qvq(an’)7 ||hi||W1_%’q(5Qi) S CZ ”uj”%/Vl,Z(Qj)?
j=1
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d
where ¢ = ¢(q) — +00 as ¢ — IR

Proof As above, for notational simplicity, set v; := ;(u;) and h; :== G;(|v; — v2]2) a.
e.on I (:=1,2). Then

- h; a.e.on T,
h@I:
0 a.e.on 0 ~T

and

|hi(x) = hi(y)] < col[vi(x) — va(2)* = [01(y) — va(y)]| fora. e zyel.

It is readily seen that the proof of Theorem A1.2 can be repeated word by word with h;
and h; in place of g and g;, respectively. We obtain
hie () W'elo0),
1§q<E%T
17|
where r is as in Theorem A1.2.

Combining this and the continuity of the trace mapping v; : WY2(Q;) — W22(9;)
we get the assertion of the corollary.

Wl—%,q(agi) < cljvy — ’U2||W%(r)||’01 - 'U2||LT(F)7

Appendix 2. The inhomogeneous Dirichlet problem
for the Poisson equation with right hand side in L!

Let Q C RY (N > 2) be a bounded domain with boundary 9Q € C'. We consider the
following boundary value problem:

(A2.1) —Au=f in €
(A2.2) u=g on O
Our basic existence result concerning weak solutions to this problem is

Theorem A2.1 Assume

FerlQ), gewi1o0) (1 <q< %)

Then, there exists exactly one u € WH4(Q) such that
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(A2.3) /Vu -V = /fcp Ve Wol’q/(Q),
Q Q
(A2.4) u=g on 0,

(A2.5)  lullwre < ([ fller + llgll-1.0)

Moreover, for every Q' CC Q2 and every § > 0 there holds

( Vu

(A2.6) / |Vul? < ¢
(1 + |u|)1+5 = 5(||f||Ll + ||g||W1—%,q)
Q/
| where c¢— +oo as dist (€2,00) — 0.

If, in addition, f € L .(2) (r > 1) then

loc

(A2.7) ue W2 (Q).

loc

Proof We begin by noting the following result. For every 1 < ¢ < +o00 there exists a
positive constant C, such that, for any v € W,(Q),

/Vv-Vgo

QHVT; oS Wol’q/(Q)a o #0
La

(A2.8) ||Vv| L« < Cysup

(see. [21; Thm. 4.2, p. 191]).

Next, by the inverse trace theorem, there exists h € W14(Q) such that

) =g aeon 09 [hlwe < clgli g

Then we can find functions f,,, by, € C®(Q) (m € N) such that
fn — f strongly in L'(Q), h, — h strongly in Wh(Q)

as m — oo. The Riesz representation theorem for linear continuous functionals on the
Hilbert space W, *(Q) provides the existence and uniqueness of a v, € Wy*(Q) satisfying

(A2.9) /va -V = /(fmgo + (Oshm)0ip) ¥V € W5P(9).
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Now, let 1 < ¢ < <. Observing that W' () C C(€) we obtain

‘/(fmsoJr (Dilm)0:0)| < el fnller + [Pmllwra) @l ¥ 0 € Wo? ().
Q

Combining this estimate and (A2.8), (A2.9) gives

IVUm|[e < el fmllzr + [[Pm[wra)-
Define wy, := vy, + hy, (m € N). Then u,, € W?(Q) and

(A2.10) /Vum Vo= /fmgo Yo € Wy (Q),
Q )
(A2.11) Um = hmym a.e.on 00 [in the sense of traces],

(A2.12) IV tml|zs < ([ fmllzo + 1 hmllwra)-

From (A2.12) we conclude (by passing to a subsequence if necessary) that u,, — u weakly
in WhH(Q) as m — oo. By a routine argument, u = g a. e. on 99 (in the sense of traces).
The passage to the limit m — oo in (A2.10), (A2.11) gives (A2.3), (A2.4), respectively.
Finally, taking the liminf on both sides of (A2.12) provides (A2.5).

m—0o0

The uniqueness of u follows from (A2.5).

To prove the interior estimate (A2.6), let 6 > 0. We consider the function

b(t) = du(t) = (1 - m> sent, tcR.

Clearly,

)
] <1 't)= ———— VteR.
I <1 6= s Ve
Let ¢ € CL(2) be a cut-off function for ', i. e. ( =10on Q' and 0 < ¢ < 1in Q. Then
the function ¢ = ¢(u,,)¢? is admissible in (A2.10). By (A2.12),

[ e < o+ 2mg 1961 [ 19
(T fuplyiee = Wmier T2 o
Q

Q/

S
7

< [ fmlla +2max [VC|mes Q) - (| funllzr + ol ).

Thus,
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Vi, |? C B
Q/

As above, we may assume that u,, — u weakly in W4(Q) and, in addition, u,, — u a.

e. in . These convergence properties together with (A2.13) imply

Vu,, Vu

H
(1+ Jum])%*

5 weaklyin L*(?) as m — .
(1 + ful) =

Whence (2.6).

To prove (A2.7), we first note that W14(Q) C LNL—qq(Q) Now, let By be a ball such
that Bogp C Q. Let 1 <r < NN—fq. Then u € L"(Bsyg) and

/ ulAp

Bar

< N ller@mllelermg Ve € CF(Bar) by (A2.3)].

From [20; Thm. 9.5 (3), p. 144] it follows

u € WQ’T<BR): HUHW”(BR) < C<HfHLT(B2R) + HUHLT(B2R))'

Hence, (A2.7) holds for all values of r satisfying 1 < r < %}. By a bootstrapping argu-
Ng_

ment, (A2.7) can be proved for any r > N

]
Remark A2.1 We notice that the existence and uniqueness result stated in Theorem
A2.1, follows from the LP-theory of linear elliptic boundary value problems developed in
[15], provided the boundary 02 is sufficiently smooth. Theorem A2.1 is also an immediate
consequence of [20; Thm. 10.7, pp. 181-182; 9Q € C'].

On the other hand, the existence of a weak solution v € () Wy Q) to linear

1<q<%

elliptic equations in divergence form with bounded measurable coefficients, right hand
sides in L' and zero boundary condition has been proved in [23] by a duality argument.

Remark A2.2 Our approximation procedure for solving boundary value problem (A2.1),
(A2.2) permits to prove additional properties of the weak solution v € Wh4(Q2) (1 < ¢ <

) (for instance, the interior estimate (A2.6)). Moreover, we have

Theorem A2.2 Let the assumptions of Theorem A2.1 hold. Let uw € WY9(Q) satisfy
(A2.3)-(A2.5). Then

1 f>0a e inQandg>0 a. e on 02, then

u>0 a. e in
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30

if f el (Q)(r>%), then

loc

ess sup lu] < 400 V' CcC O

if feL™(Q) (r>%), ess sup lg| < 400, then

ess sup lu| < 4o0.

This theorem can be proved by the methods developed in [5] and [23].
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