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ABSTRACT

The numerous technical applications in deposit metal plates with new materials likeSiC and

T iC has an advantage to overcome the leaking corrosive behaviorand have additional a good

electrical behavior. Here we present an application of a porous media to model a homogenized

deposition with a parallel plate PE-CVD apparatus. Specialgeometries of parallel Anodes and

cathodes helps to obtain at least a laminar flow field. By the way the delicate arrangement of

the anode and cathode has to be simulated. The flux of the precursors are important to simulate

to the porous media given as the plasma background. Here we can optimize the transport to the

delicate geometry respecting the flux field in the permeable layers. To derive a mathematical

model, we deal with a model for the transport and kinetics of the different species. Underlying

physical experiments help to approximate the parameters ofthe numerical model. We introduce

a multi regression method to approximate the physical to themathematical parameters. We

present results of some numerical simulations and help to foresee some effects to find on optimal

deposition process.

Keywords: numerical methods, CVD processes, regression method, iteration process, opti-
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mization.
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1 INTRODUCTION

We motivate our studying on simulating a thin film depositionprocess that can be done with

plasma enhanced chemical vapor deposition (PECVD) processes. In the last years, due to the

research in producing high temperature films by depositing of low pressure, processes have

increased. The interest on standard applications toSiC and T iC are immense but delicate

to model and optimize a homogene deposition rate, which is important to achieve a stable

nanolayer.

We present a model for the transport and kinetic processes ofthe precursor gases in a low tem-

perature and low pressure plasma. We take into account the transport and kinetics of CVD

processes in the reactor and the retardation of molecules, which are treated by the underlying

process plasma.

The model is discussed as a transport-reaction model with systems of coupled partial and ordi-

nary differential equations.

The paper is outlined as follows.

In section 2 and 3 we present the physical and mathematical model and a possible reduced

model for the further approximations. In section 4 we present the underlying discretization

methods and analysis of the coupled model equations. The approximation to the physical pa-

rameters are discussed in Section 5. The numerical experiments are given in Section 6. In the

contents, that is given in Section 7, we summarize our results.

2 PHYSICAL MODEL AND EXPERIMENTS TO SIC AND TIC

The base of the experimental setup is the plasma reactor chamber of a NISTGEC reference

cell. The spiral antenna of a hybrid ICP/CCP-RF plasma source wasreplaced by a double spiral

antenna (Kadetov 2004). This reduces the asymmetry of the magnetic field due to the superposi-

tion of the induced fields of both antennas. Also, the power coupling to the plasma increases and
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enhances the efficiency of the source. A set of MKS mass flow-controllers allow any defined

mixture of gaseous precursors. Even the flows of liquid precursors with high vapor pressure is

controlled by this system. All other liquid and all solid precursors will be directly transported to

the chamber by a controlled carrier gas flow. Besides the precursor flow, the density can also be

changed by varying the pressure inside the recipient. Controlling the pressure is achieved with

a valve between the recipient and vacuum pumps. In addition,a heated and insulated substrate

holder was mounted. Thus, a temperature up to800oC and a bias voltage can be applied to the

substrate. While the pressure and RF power determine the undirected particle energy (plasma

temperature), the bias voltage adds, only to the charged particles, energy directed at the sub-

strate. Apart from the pressure and RF power control, the degree of ionization and number as

well as size of molecular fractions can be controlled.

For the precursor ofSiC is given via Tetramethyl-silane and have the following reaction mech-

anism:

Si(CH3)4 → ·CH3 + ·Si(CH3)3 (1)

·CH3 + H2 → CH4 + ·H (2)

·CH3 + Si(CH3)4 → CH4 + (CH3)3SiĊH2 (3)

·Si(CH3)3 + H2 → HSi(CH3)3 + Ḣ (4)

2 · Si(CH3)3 → Si(CH3)4 + S̈i(CH3)2 (5)

Si(CH3)4 + H2 → HSi(CH3)3 + CH4 (6)

HSi(CH3)3 → S̈i(CH3)2 + CH4 (7)

S̈i(CH3)2 → ṠiH2ĊH2 (8)

The last reaction ends up in the deposition of SiC.

3



For the precursor ofT iC is given via Tetraethyl-titanium and we have the following kinetics:

T i(CH2CH3)4 → ·T i(CH2CH3)3 + ·CH2CH3 (9)

·T i(CH2CH3)3 → T̈ i(CH2CH3)2 + ·CH2CH3 (10)

T̈ i(CH2CH3)2 → ·T̈ iCH2CH3 + ·CH2CH3 (11)

Additionally we can use a titanium precursor shown in Figure1. Here we can step by step

separate the·CH3 groups.

Figure 1: Cp*TiMe3 or (Trimethyl)pentamethylcyclopentadienyltitanium(IV)

3 MATHEMATICAL MODEL

In the following the models are discussed in two directions of far-field and near-field problems:

1. Reaction-diffusion equations, see (Gobbert and Ringhofer 1998) (far-field problems);

2. Boltzmann-Lattice equations, see (Senega and Brinkmann2006) (near-field problems).

3. Reaction equations, see (Geiser and Arab 2008) (kinetic problems).

The modeling of the far- and near-field problems are considered by the Knudsen number (Kn)

which is the ratio of the mean free pathλ over the typical domain sizeL. For small Knud-

sen numbersKn ≈ 0.01 − 1.0 we apply the convection-diffusion equation, whereas for large
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Knudsen numbersKn ≥ 1.0 we deal with a Boltzmann equation, see (Ohring 2002). For the

kinetic problems we only consider the chemical reaction between the species, see (Geiser and

Arab 2008).

The geometry of fare field apparatus is given as:

Electrical Field
Homogeneous

Deposition area
(Near field)

Outflow of the gases

Inflow
of the
gases
(Brush)

Apparatus geometrie (Fare field)

Figure 2: Fare field of the parallel PECVD apparatus.

The geometry of the near field apparatus is given as:

Anode
Inflow of the gases

Near field (Deposition of the wires)

Outflow of the gases

Cathode

Wire to deposite

Apparatus geometrie (Near field)

Figure 3: near field of the deposition area.

3.1 Model for Small Knudsen Numbers (Far-field Model)

When gas transport is physically more complex due to combined flows in three dimensions,

the fundamental equations of fluid dynamics become the starting point of the analysis. For our

models with small Knudsen numbers we can assume a continuum flow. The fluid equations can

be treated with a Navier-Stokes or especially with a convection-diffusion equation.
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Three basic equations describe the conservation of mass, momentum and energy that are suffi-

cient to describe the gas transport in the reactors, see (Ohring 2002).

1. Continuity - the conservation of mass requires the net rate of mass accumulation in a

region to be equal to the difference between the inflow and outflow rates.

2. Navier-Stokes - momentum conservation requires the net rate of momentum accumulation

in a region to be equal to the difference between the in- and out-rate of the momentum,

plus the sum of the forces acting on the system.

3. Energy - the rate of accumulation of internal and kinetic energy in a region is equal to

the net rate of internal and kinetic energy by convection, plus the net rate of heat flow by

conduction, minus the rate of work done by the fluid.

We will concentrate on the conservation of mass and assume that energy and momentum are

conserved, see (Gobbert and Ringhofer 1998) and (Geiser 2001). Therefore the continuum flow

can be described as a convection-diffusion equation given as:

φ∂tci + ∇ · (vci − De(i)∇ci) = −λiφci +
∑

k=k(i)

λkφck + Q̃i, (12)

where we have the following parameters

φ : effective porosity[−],

ci : concentration of theith species, e.g.Si, T i, C

phase[mol/mm3],

v : Velocity in the underlying plasma atmosphere[mm/s],

De(i) : element specific diffusions-dispersions tensor[mm2/s],

λi : decay constant of theith species[1/s],

Q̃i : source term of theith species[mol/(m3s)],
6



with i = 1, . . . , M andM denotes the number of species.

The effective porosity is denoted byφ and declares the portion of the porosities of the aquifer

(air), that is filled with the ionized plasma. The transport term is indicated by the velocityv, that

presents the direction and the absolute value of the plasma flux in the apparatus. The velocity

field is divergence-free. The kinetic constant of theith species is denoted byλi. Thereby does

k(i) denote the indices of the successor species. The initial value is given asci,0 and we assume

a Dirichlet boundary with the functionci,1(x, t) sufficiently smooth.

3.2 Model for Large Knudsen Numbers (Near-field Model)

The model assumes that the heavy particles can be described with a dynamical fluid model,

where the elastic collisions define the dynamics and few inelastic collisions are, among other

reasons, responsible for the chemical reactions.

To describe the individual mass densities as well as the global momentum and the global energy

as dynamic conservation quantities of the system corresponding conservation equations are

derived from Boltzmann equations.

The individual character of each species is considered by mass-conservation equations and the

so-called difference equations.

The Boltzmann equation for heavy particles (ions and neutral elements) is given as:

∂

∂t
ns +

∂

∂r
· (nsu + nscs) = Q(s)

n , (13)

∂

∂t
ρu +

∂

∂r
·
(

ρuu + nTI − τ ∗
)

=

N
∑

s=1

qsns

〈

E
〉

, (14)

∂

∂t
E∗

tot +
∂

∂r
·
(

E∗
totu + q∗ + nTu − τ ∗ · u

)

=
N
∑

s=1

qsns (u + cs) ·
〈

E
〉

− Q
(e)
E,inel, (15)

whereρ denotes the mass density,u is the velocity, andT the temperature of the ions.E∗
tot is the
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total energy of the heavy particles;ns is the particle density of heavy particles speciess; q∗ is

the heat flux of the heavy particle system;τ ∗ is the viscous stress of the heavy particle system;

E is the electric field andQE is the energy conservation.

Further, the production terms areQ
(s)
n =

∑

r asignkα,rnαnr with rate coefficientskα,r.

We have drift diffusion for heavy particles in the followingfluxes. The dissipative fluxes of the

impulse and energy balance are linear combinations of generalized forces:

q ∗ = λE

〈

E
〉

− λ
∂

∂r
T −

N
∑

s=1

N
∑

α=1

λ(α,s)
n

1

ns

∂

∂r
nα, (16)

τ ∗ = −η

(

∂

∂r
u +

(

∂

∂r
u

)⊤

−
2

3

(

∂

∂r
· u

)

I

)

, (17)

E∗
tot =

N
∑

s=1

1/2ρsc
2
s + 1/2ρu2 + 3/2nT. (18)

whereλ is the thermal diffusion transport coefficient.T is the temperature,n is the particle

density.

Diffusions of the species are underlying to the given plasmaand are described by the following

equations:

∂
∂t

ns + ∂
∂r · (nsu + nscs) = Q

(s)
n , (19)

cs = µs

〈

E
〉

− d
(s)
T

∂
∂rT −

∑N
α=1 D

(α,s)
n

1
ns

∂
∂rnα. (20)

The density of the species is of dynamical values and the species’ transport and mass transport

are subject to the following constraint conditions:

∑

s msns = ρ, (21)

∑

s nsmscs = 0. (22)
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wherems is the mass of the heavy particle,ns is the density of the heavy particle, andcs is the

difference-velocity of the heavy particle.

Field Model

The plasma transport equations are Maxwell equations and are coupled with a field. They are

given as:

1

µ0
∇× Bdyn = −eneue + j̃ext, (23)

∇ · Bdyn = 0, (24)

∇× E = −
∂

∂t
Bdyn, (25)

whereB is the magnetic field andE is the electric field.

3.3 Simplified Model for Large Knudsen Numbers (Near-field Model)

For the numerical analysis and for the computational results, we reduce the complex model and

derive a system of coupled Boltzmann and diffusion equations.

We need the following assumptions:

q ∗ = −λ
∂

∂r
T, (26)

τ ∗ = 0, (27)

E∗
tot = 3/2nT, (28)

Q
(e)
E,inel = const, (29)
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and obtain a system of equations:

∂

∂t
ρ +

∂

∂r
· (ρu) = 0, (30)

∂

∂t
ρu +

∂

∂r
·
(

ρuu + nTI
)

=
N
∑

s=1

qsns

〈

E
〉

, (31)

∂

∂t
3/2nT +

∂

∂r
·

(

3/2nTu + λ
∂

∂r
T + nTu

)

=
N
∑

s=1

qsns (u + cs) ·
〈

E
〉

− Q
(e)
E,inel . (32)

Remark 1 We obtain three coupled equations for density, velocity andtemperature of the

plasma. The equations are strong-coupled and decomposition can be done in discretized form.

4 NUMERICAL METHODS: DISCRETIZATION OF THE CONVECTION-DIF FUSION

EQUATION

For the space-discretization we use finite-volume methods and for the time-discretization we

apply explicit or implicit Euler methods. In the next sections we introduce the notation for the

space-discretization and describe the discretization-methods for each equation-part.

4.1 Notation

The time-steps for the calculation in the time-intervals are(tn, tn+1) ⊂ (0, T ) , for n = 0, 1, . . ..

The computational cells are given asΩj ⊂ Ω with j = 1, . . . , I. The unknownI is the number

of the nodes.

For the application of finite-volumes we have to construct a dual mesh for the triangulationT

, for the domainΩ. First the finite-elements for the domainΩ are given byT e, e = 1, . . . , E.

The polygonal computational cellsΩj are related to the verticesxj of the triangulation.

The notation for the relation between the neighbor cells andthe concerned volume of each cell

is given in the following notation.

Let Vj = |Ωj | and the setΛj denote the neighbor-pointxk to the pointxj. The boundary of the
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cell j andk is denoted asΓjk.

We define the flux over the boundaryΓjk as

vjk =

∫

Γjk

n · v ds . (33)

The inflow-flux is given asvjk < 0, and the outflow-flux isvjk > 0. The antisymmetry of the

fluxes is denoted asvjk = −vkj . The total outflow-flux is given as

νj =
∑

k∈out(j)

vjk. (34)

The idea of the finite-volumes is to construct an algebraic system of equation to express the

unknownscn
j ≈ c(xj , t

n). The initial values are given byc0
j . The expression of the interpolation

schemes can be given naturally in two ways: the first possibility is given with the primary mesh

of the finite-elements

cn =
I
∑

j=1

cn
j φj(x) (35)

whereφj are the standard globally-finite element basis functions (Frolkovič and Geiser 2003).

The second possibility is given with the dual mesh of the finite volumes with,

ĉn =

I
∑

j=1

cn
j ϕj(x) (36)

whereϕj are piecewise constant discontinuous functions defined byϕj(x) = 1 for x ∈ Ωj and

ϕj(x) = 0 otherwise.
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4.2 Discretization of the advection equation

If no reactions are considered in (12), the remaining advection equation takes the following

form:

∂tc + ∇ · (vc) = 0 . (37)

The initial conditions are given by (12), andc(t, γ) is explicitly given fort > 0 at the inflow

boundaryγ ∈ ∂inΩ by (12).

The exact solution of (37) can be directly defined by use of theso-calledforward trackingform

of characteristic curves. If the solution of (37) is known atsome time pointt0 ≥ 0 and some

pointy ∈ Ω∪∂inΩ, thenu remains constant fort ≥ t0 along the characteristic curveX = X(t),

i.e. u(t, X(t)) = u(t0, y) and

X(t) = X(t; t0, y) = y +

t
∫

t0

v(X(s)) ds . (38)

The characteristic curveX(t) starts at the timet = t0 in the pointy, i.e. X(t0; t0, y) = y,

and it is tracked forward in time fort > t0. Of course, we can obtain thatX(t) 6∈ Ω, i.e. the

characteristic curve can leave the domainΩ through∂outΩ.

Consequently, we have thatc(t, X(t; t0, y)) = U(t0, y), where the functionU(0, y) is given for

t0 = 0 andy ∈ Ω by initial conditions (12) and fort0 > 0 andy ∈ ∂inΩ by the inflow boundary

conditions (12).

The solutionc(t, x) of (37) can also be expressed in a backward tracking form, which is more

suitable for a direct formulation of the discretization schemes. Concretely, for any characteristic

curveX = X(t) = X(t; s, Y ), that is defined in a forward manner, i.e.X(s; s, Y ) = Y and

t ≥ s, we obtain the curveY = Y (s) = Y (s; t, x) that is defined in a backward manner, i.e.

Y (t; t, X) = X ands ≤ t. If we expressY as function oft0 for t0 ≤ t, we obtain from (38):

Y (t0) = Y (t0; t, x) = x −

t
∫

t0

v(X(s)) ds , (39)
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and we havec(t, x) = c(t0, Y (t0)).

To simplify our treatment of inflow boundary conditions, we suppose thatU(t, γ) = Un+1/2 ≡

const for γ ∈ ∂inΩ andt ∈ [tn, tn+1). Moreover, we define formally for anyγ ∈ ∂inΩ and

t0 ∈ [tn, tn+1] thatY (s; t0, γ) ≡ Y (t0; t0, γ) for tn ≤ s ≤ t0.

In (Frolkovič 2002a), the so-calledflux-based (modified) method of characteristicswas de-

scribed. This method can be deemed to be an extension of the standard finite volume methods

(FVMs)). The standard FVM for differential equations (37) takes the form:

|Ωj | c
n+1
j = |Ωj | c

n
j −

∑

k

tn+1
∫

tn

∫

Γjk

nj(γ) · v(γ) c(t, γ) dγdt , (40)

The idea of a flux-based method of characteristics is to applythe substitution

c(t, γ) = c(tn, Y (tn; t, γ)) on (40).

In particular, for the integration variablet ∈ (tn, tn+1) and for each pointγ ∈ ∂outΩj , the

characteristic curvesY (s) are tracked backward, starting inγ at s = t and ending ins = tn.

We must reach a pointY = Y (tn), such thatY ∈ ∂inΩ or Y ∈ Ω. In the first case,c(tn, Y ) is

given by the inflow concentrationU(tn, Y ) = Un, in the latter byc(tn, Y ).

The integral on the right-hand side of (40) can be solved exactly for the one-dimensional case

with general initial and boundary conditions (Roach 1992).For the general 2D or 3D case, a

numerical approximation ofc(t0, Y (t0)), respectively ofY (t0), will be used (Leveque 2002).

4.3 Discretization method for the convection-reaction equation based on embedded one-

dimensional analytical solutions

We apply Godunov’s method for the discretization method, cf. (Leveque 2002), and extend

the formulation with analytical solution of convection-reaction equations. We reduce the multi-

dimensional equation to one-dimensional equations and solve each equation exactly. The one-

dimensional solution is multiplied by the underlying volume and we get the mass-formulation.

The one-dimensional mass is embedded into the multi-dimensional mass-formulation and we

obtain the discretization of the multi-dimensional equation.
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The algorithm is given in the following manner

∂t cl + ∇ · vl cl = −λl cl + λl−1 cl−1,

with l = 1, . . . , m .

The velocity vectorv is divided byRl. The initial conditions are given byc0
1 = c1(x, 0) , or

c0
l = 0 for l = 2, . . . , m and the boundary conditions are trivialcl = 0 for l = 1, . . . , m.

We first calculate the maximal time-step for cellj and concentrationi with the use of the total

outflow fluxes

τi,j =
Vj Ri

νj

, νj =
∑

k∈out(j)

vjk .

We get the restricted time-step with the local time-steps ofcells and their components

τn ≤ min
i=1,...,m

j=1,...,I

τi,j .

The velocity of the discrete equation is given by

vi,j =
1

τi,j
.

We calculate the analytical solution of the mass, cf. (Geiser 2003) and we get

mn
i,jk,out = mi,out(a, b, τn, v1,j , . . . , vi,j, R1, . . . , Ri, λ1, . . . , λi) ,

mn
i,j,rest = mn

i,j f(τn, v1,j , . . . , vi,j, R1, . . . , Ri, λ1, . . . , λi) ,

wherea = VjRi(c
n
i,jk − cn

i,jk′) , b = VjRic
n
i,jk′ andmn

i,j = VjRic
n
i,j. Furthercn

i,jk′ is the concen-

tration at the inflow- andcn
i,jk is the concentration at the outflow-boundary of the cellj.
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The discretization with the embedded analytical mass is calculated by

mn+1
i,j − mn

i,rest = −
∑

k∈out(j)

vjk

νj
mi,jk,out +

∑

l∈in(j)

vlj

νl
mi,lj,out ,

where vjk

νj
is the re-transformation for the total massmi,jk,out in the partial massmi,jk . In the

next time-step the mass is given asmn+1
i,j = Vj cn+1

i,j and in the old time-step it is the rest mass

for the concentrationi. The proof is provided in (Geiser 2003). In the next section we derive an

analytical solution for the benchmark problem, cf. (Higashi and Pigford 1980), (Jury and Roth

1990).

4.4 Discretization of the reaction-equation

The reaction-equation is an ordinary-differential equation is given as follows:

∂tRici = −λiRici + λi−1Ri−1ci−1 , (41)

wherei = 1, . . . , m and we denoteλ0 = 0. The decay-factors areλi ≥ 0.0 and the retardation-

factors areRi > 0.0. The initial-conditions arec1(x, t0) = c01 and ci(x, t0) = 0 with i =

2, . . . , m.

We can derive the solutions for these equations, cf. (Bateman 1910), as

ci = c01
R1

Ri

Λi

i
∑

j=1

Λj,i exp(−λj t) , (42)

wherei = 1, . . . , m. The solutions are defined for the caseλj 6= λk with j 6= k andj, k ∈

1, . . . , M .
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The factorsΛi andΛj,i are given as

Λi =

i−1
∏

j=1

λj , Λj,i =

i
∏

j=1

j 6=k

1

λk − λj
. (43)

For wise equal reaction-factors we have derived the solution (Geiser 2003).

In the next subsection we introduce the discretization of the diffusion-dispersion-equation.

4.5 Discretization of the source-terms

The source terms are part of the convection-diffusion equations and are given as follows:

∂tci(x, t) − v · ∇ci + ∇D∇ci = qi(x, t) , (44)

wherei = 1, . . . , m, v is the velocity,D is the diffusion tensor andqi(x, t) are the source

functions, which can be point wise, linear in the domain.

The point wise sources are given as :

qi(t) =











qs,i

T
t ≤ T,

0 t > T,
, with

∫

T

qi(t)dt = qs,i, (45)

whereqs,i is the concentration of speciesi at source pointxsource,i ∈ Ω over the whole time-

interval.

The line and area sources are given as :

qi(x, t) =











qs,i

T |Ωsource,i|
, t ≤ T andx ∈ Ωsource,i,

0, t > T,
, (46)

with
∫

Ωsource,i

∫

T

qi(x, t)dtdx = qs,i,
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whereqs,i is the source concentration of speciesi at the line or area of the source over the whole

time-interval.

For the finite-volume discretization we have to compute :

∫

Ωsource,i,j

qi(x, t) dx =

∫

Γsource,i,j

n · (vci − D∇ci) dγ , (47)

whereΓsource,i,j is the boundary of the finite-volume cellΩsource,i,j which is a source area. We

have∪jΩsource,i,j = Ωsource,i wherej ∈ Isource, whereIsource is the set of the finite-volume cells

that includes the area of the source.

The right-hand side of (47) is also called the flux of the sources (Frolkovič 2002b).

In the next subsection we introduce the discretization of the diffusion-dispersion-equation.

4.6 Discretization of the diffusion-dispersion-equation

We discretize the diffusion-dispersion-equation with implicit time-discretization and the finite-

volume method for the following equation

∂tR c −∇ · (D∇c) = 0 , (48)

wherec = c(x, t) with x ∈ Ω and t ≥ 0 . The diffusions-dispersions-tensorD = D(x,v)

is given by the Scheidegger-approach (Scheidegger 1961). The velocity is given asv. The

retardation-factor isR > 0.0.

The boundary-values are denoted byn ·D ∇c(x, t) = 0, wherex ∈ Γ is the boundaryΓ = ∂Ω,

(Frolkovič 2002a). The initial conditions are given byc(x, 0) = c0(x).

We integrate the equation (48) over space and time and derive

∫

Ωj

∫ tn+1

tn
∂tR(c) dt dx =

∫

Ωj

∫ tn+1

tn
∇ · (D∇c) dt dx . (49)
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The time-integration is done by the backward-Euler method and the diffusion-dispersion term

is lumped, (Geiser 2003)

∫

Ωj

(R(cn+1) − R(cn)) dx = τn

∫

Ωj

∇ · (D∇cn+1) dx , (50)

The equation (50) is discretized over the space with Green’s-formula.

∫

Ωj

(R(cn+1) − R(cn)) dx = τn

∫

Γj

D n · ∇cn+1 dγ , (51)

whereΓj is the boundary of the finite-volume cellΩj . We use the approximation in space

(Geiser 2003).

The spatial-integration for (51) is done by the mid-point rule over the finite boundaries and is

given as

VjR(cn+1
j ) − VjR(cn

j ) = τn
∑

e∈Λj

∑

k∈Λe
j

|Γe
jk|n

e
jk · D

e
jk∇ce,n+1

jk , (52)

where|Γe
jk| is the length of the boundary-elementΓe

jk. The gradients are calculated with the

piecewise finite-element-functionφl, cf. (35) and we obtain

∇ce,n+1
jk =

∑

l∈Λe

cn+1
l ∇φl(x

e
jk) . (53)

With the difference-notation we get for the neighbor-pointj andl (Frolkovič and De Schepper

2001) and get the discretized equation

VjR(cn+1
j ) − VjR(cn

j ) = (54)

τn
∑

e∈Λj

∑

l∈Λe\{j}

(

∑

k∈Λe
j

|Γe
jk|n

e
jk · D

e
jk∇φl(x

e
jk)
)

(cn+1
j − cn+1

l ) ,
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wherej = 1, . . . , m.

5 REGRESSION AND APPROXIMATION OF THE PARAMETERS

We apply regression analysis to includes the techniques formodeling and analyzing several

variables.

We have the dependent variables (physical parameters) and one and more independent variables

(mathematical parameters).

Therefore we understand how the typical value of the dependent variable changes when any one

of the independent variables is varied, while the other independent variables are held fixed. It

is also of interest to characterize the variation of the dependent variable around the regression

function, which can be described by a probability distribution.

The regression models involve the following variables:

• The unknown parameters denoted asβ; this may be a scalar or a vector of lengthk.

• The independent variables, X.

• The dependent variable, Y.

A regression model relatesY to a function ofX andβ.

Y ≈ f(X, β). (55)

The approximation is usually formalized asE(Y |X) = f(X, ). To carry out regression analysis,

the form of the function f must be specified.

We concentrate on linear regression:

1.) We exactlyN = k data points are observed, and the function f is linear, so theequation

Y = f(X, ) can be solved exactly rather than approximately. This reduces to solving a set ofN
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equations withN unknowns (the elements ofβ), which has a unique solution as long as theX

are linearly independent.

2.) We haveN > k data points. In this case, there is enough information in thedata to estimate

a unique value forβ that best fits the data in some sense, and the regression modelwhen applied

to the data can be viewed as an overdetermined system inβ.

Method:

Finding a solution for unknown parametersβ that will, for example, minimize the distance

between the measured and predicted values of the dependent variableY (also known as method

of least squares).

Means we have at least to compute the functionF :

Ŷ = XF, (56)

Yreg = XnewF, (57)

Y − Ŷ = Err, (58)

whereY is the exact value and̂Y the approximated values,F is the regression function.

Algorithm:

We apply the multi-physics equation with mass transport with a system of convection-diffusion-

reaction equations with embedded sorption equations.

For all the experiments we approximate the physical experiment with a mathematical experi-

ment and obtain parameter for the simulation models. Later we apply by regression new pa-

rameters in the physical experiment to have some tendencies, see (Geiser and Arab 2010). A

superposition of the single regression functions is applied to derive the new regression func-

tions.

In the next section, we discuss the numerical experiments.
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6 NUMERICAL EXPERIMENTS

In the following, we present the numerical experiments, which are compared with physical

experiments. We apply the physical results of the deposition rates and approximate to our

model equations with respect to the reaction and retardation parameters.

Based on this parameters, we could approximate to differentparameters in the simulations and

achieve numerical deposition rates, which could be used fora preview of physical experiments.

For all the experiments we have the following parameters of the model, the discretization and

solver methods.

We apply interpolation and regression methods to couple thephysical parameters to the mathe-

matical parameters, see Figure 4 and Table 1.

Physical Experiments

Physical parameters

Interpolation or Regression

Mathematical Experiments

Mathematical parameters

Figure 4: Coupling of physical and mathematical parameter space.

Physical parameter Mathematical parameter
Temperature,pressure,powervelocity, Diffusion,Reaction

T , p , W V , D , λ

Table 1: Physical and mathematical parameters.

In the following Figure 5 the underlying geometry of the apparatus is given. The inflow of the

precursor gases are at left and right the top of the apparatus, while the outflows are at the left
21



and right bottom. The measure point(130, 70) is in the middle of the deposition area and the

deposition rates could be measured.

(180,200)
(250,200)

(250,0)
(180,0)

(70,0)
(0,0)

(70,70)

(180,130)

(0,200)

(130,70)

Figure 5: The geometry of the apparatus with the measure points.

6.1 Parameters of the model equations

In the following all parameters of the model equations (12) are given in Table 3.

density ρ = 1.0
mobile porosity φ = 0.333

immobile porosity 0.333
Diffusion D = 0.0

longitudinal Dispersion αL = 0.0
transversal Dispersion αT = 0.00

Retardation factor R = 10.0e − 4 (Henry rate).
Velocity field v = (0.0,−4.0 10−8)t.

Decay rate of the species of 1st EX λAB = 1 10−68.
Decay rate of the species of 2nd EXλAB = 2 10−8, λBNN = 1 10−68.
Decay rate of the species of 3rd EXλAB = 0.25 10−8, λCB = 0.5 10−8.

Geometry (2d domain) Ω = [0, 100] × [0, 100].
Boundary Neumann boundary at

top, left and right boundaries.
Outflow boundary

at the bottom boundary

Table 2: Model-Parameters.

The discretization and solver method are given as:

For the spatial discretization method, we apply Finite volume methods of 2nd order, with the

following parameters in Table 3.
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spatial step size ∆xmin = 1.56, ∆xmax = 2.21
refined levels 6

Limiter Slope limiter
Test functions linear test function

reconstructed with neighbor gradients

Table 3: Spatial discretization parameters.

For the time discretization method, we apply Crank-Nicolson method (2nd order), with the

following parameters in Table 4.

Initial time-step ∆tinit = 5 107

controlled time-step ∆tmax = 1.298 107, ∆tmin = 1.158 107

Number of time-steps 100, 80, 30, 25
Time-step control time steps are controlled with

the Courant-Number CFLmax = 1

Table 4: Time discretization parameters.

For the discretised equations are solved with the followingmethods, see the description in Table

5.

Solver BiCGstab (Bi conjugate gradient method)
Preconditioner geometric Multi-grid method

Smoother Gauss-Seidel method as smoothers for
the Multi-grid method

Basic level 0
Initial grid Uniform grid with2 elements

Maximum Level 6
Finest grid Uniform grid with8192 elements

Table 5: Solver methods and their parameters.

For the numerical experiments, we discuss the approximation to theSiC andT iC experiments.

The underlying software tool isr3t, which was developed to solve discretised partial differential

equations. We use the tool to solve transport-reaction equations, see (Fein 2004).

6.2 Test Experiment withSiC deposition (Near Field)

For theSiC, we obtain a different setup for the physical experiment, including the Bias voltage

of the electric field, which is simulated as retardation to the species.
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For simplification of the reactive process, we consider the last kinetic process, given as:

2SiC + 4H →λ SiC + CH4 + Si, (59)

Here we have the physical experiments and approximate to thetemperature parameters ofT =

400, 600, 800. For the physical experiment we have the following parameters:

W T Pmbar RSi RC Physical Numerical
ratio(Si:C) ratio(Si:C)

100 700 9.7e-02 4e-04 2e-04 0.569 0.568
300 700 9.7e-02 2.3e-04 2e-04 0.744 0.740
900 700 9.7e-02 1.35e-04 2e-04 0.919 0.9
100 400 1e-01 2e-04 0.7e-04 0.617 0.6103
500 400 1e-01 2e-04 1.6e-04 0.757 0.745
500 400 1e-01 2e-04 1.3e-04 0.704 0.691
900 400 1e-01 2e-04 3.48e-04 1.010 1.017
900 400 1e-01 2e-04 3.4e-04 1.0 1.0
100 400 4.5e-02 4.7e-04 0.1e-04 0.342 0.342

Table 6: Approximated Deposition rates and comparison to physical experiments.

In the following numerical experiment, we apply the deposition area (near field), see Figure 4.

Here we assume to have a constant velocity field and start withthe speciesSiC andH, which

are given as point and line sources, see Table 8.

81 point sources ofSiC at the position X = 10, 11, 12, . . . , 90, Y = 20
Line source ofH at the position x ∈ [5, 95], y ∈ [20, 25]

Amount of the permanent source concentrationSiCsource = 0.4, 0.7,0.8,0.85,0.84,0.82,0.8
,0.6,0.4,0.2,0.0.,Hsource = 0.12

Number of time steps 200

Table 7: Parameter of the source concentration.

We take here the concentration ofSiC as a point sources, and the concentration ofH is a line

source.

In Figure 6, we present the concentration after100 and200 time-steps.
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Figure 6: Experiment with moving point sources, whereSiCexperiment after200 time-steps.

Figure 7: Experiment with moving point sources, whereSiCexperiment after200 time-steps.

In Figure 8, we show the deposition rates of the 81 point sources experiment.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 0  5e+08  1e+09  1.5e+09  2e+09  2.5e+09

SiC at point 50 18
CH4 at point 50 18

H at point 50 18
SiC at point 50 2

CH4 at point 50 2
H at point 50 2

Figure 8: Deposition rates in case of 81 point sources experiment.

Remark 2 The numerical experiments can be fitted in the near field to thephysical experi-

ments. In different situations, the best deposition resultis obtained with at least homogeneous
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RATE
Csource,max : SiCtarget,max

8.7.106 : 8.7.106 = 1.

Table 8: Rate of the concentration.

concentrations below the deposition area. The near field simulations obtain an optimum at low

temperature400[oC] and high plasma power about900[W ]. Such results are also obtained in

our physical studies, see (Geiser and Arab 2010).

6.3 Test Experiment withT iC deposition (Fare field)

For theT iC, we obtain a different setup for the physical experiment, including the Bias voltage

of the electric field, which is simulated as retardation to the species. In the following numerical

experiment, we apply the deposition area (fare field), see Figure 4. Such a contrast to the near

field allows to specify the situation in the whole apparatus.

For the physical experiment we have the following parameters:

Pressure in the chamberp = 9.810−2 − 2[mbar]
Precursor temperature Tprecursor = 71.5[0C]
Velocity (argon gas) v = 30.0[cm3/min]
Inflow velocity of the

precursor gas vinflow = 0.60[cm3/min]

Table 9: Physical parameters.

Based on the approximation scheme, we apply the simulation with respect to derive the mathe-

matical parameters.

For different physical situations, we could achieve the following mathematical parameters, see

Table 10.

In the following Figure 9 and 10, we present an example of the concentration of two inflow

sourcesxT i, yT i = (35, 190) andxT i, yT i = (215, 190). The velocity is given perpendicular to

the apparatus.
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Power [W] Bias [V] RC at material 1 RT i at material 2 Ratio(C:Ti) (numerical)

300 0 0.1 10−4 20 10−4 5.5 : 1.5 = 3.6
600 0 1.0 10−4 20 10−4 4.4 : 1.5 = 2.93
900 0 1.5 10−4 20 10−4 3.8 : 1.5 = 2.53
300 -10 2.8 10−4 20 10−4 3.1 : 1.5 = 2.066
600 -10 1.0 10−15 20 10−4 5.7 : 1.5 = 3.8
900 -10 1.0 10−15 60 10−4 5.7 : 05 = 11.4

Table 10: Computed and experimental fitted parameters with UG simulations.

Figure 9: Two inflow sourcesxT i, yT i = (35, 190) andxT i, yT i = (215, 190) with perpendicular

velocity and100 time-steps with ratio betweenC andT i equal to3.6.

Figure 10: Two inflow sourcesxT i, yT i = (35, 190) andxT i, yT i = (215, 190) with perpendicu-

lar velocity and150 time-steps with ratio betweenC andT i equal to3.6.

In Figure 11, we show the deposition rates of two inflow sources xT i, yT i = (35, 190) and

xT i, yT i = (215, 190) with perpendicular velocity and after150 time-steps.
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Figure 11: Deposition rates in case of two point sources,x= 35,215.y=190.with perpendicular

velocity and150 time-steps with ratio betweenC andT i equal to3.6.

Remark 3 The numerical experiments can also be fitted in the fare field to the physical ex-

periments. By the way the situations are more delicate. The best deposition result is obtained

with at least different flow regimes in the left and right inflow sources, means the mixture in the

deposition area is optimal. The fare field simulations obtain an optimum at lower temperature

300[oC] and a high bias voltage about−10[V ]. Such prognostic results are also obtained in

our physical studies.

7 CONCLUSION

We have presented a model for the chemical vapor deposition processes. The approximations

are done to a realistic apparatus with transport-reaction.The equations are discretized by the

finite volume method and the complex material functions are embedded in this method. The ap-

proximation methods to the numerical parameters are presented. We present numerical results

for the stoichiometry forSiC andT iC depositions. Near and fare field simulations can derive

an optimal parameter setting and prognostic results to future experiments. Such simulations

help to reduce physical experiments and gave tendencies to future expensive physical experi-

ments. In our future work, we concentrate on further implementations and numerical methods
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for a full growth model.
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