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Abstract.
We discuss different numerical methods for solving the shallow shelf equations with basal drag.

The coupled equations are decomposed into operators for membranes stresses, basal shear stress
and driving stress. Applying reasonable parameter values, we demonstrate that the operator of the
membrane stresses is much stiffer than operator of the basal shear stress. Therefore, we propose a
new splitting method, which alternates between the iteration on the membrane-stress operator and
the basal-shear operator, with a stronger iteration on the operator of the membrane stress. We show
that this splitting improves the computational performance of the numerical method, although the
choice of the (standard) method to solve for all operators in one step speeds up the scheme too.
(Based on the delicate and coupled equation we propose a new decomposition method to decouple
into simpler solvable sub-equations. After a number of approximations we consider the error of the
method and proposed a choice of the operators.)
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1. Introduction. The shallow shelf approximation with basal drag (SSAB) finds
its application in the simulation of ice streams, which are regions of fast ice flow in
ice sheets like Greenland or Antarctica, but also former ice bodies like the Laurentide
ice sheet or the Fennoscandinavian ice sheet. Due to rather low but still present basal
drag, the speed of such streams is one to two orders of magnitude higher than that of
ordinary ice flow.

In this paper, we will discus different numerical solutions of SSAB equations.
They follow from balance of momentum and the flow law of ice after a number of
approximations (scaling, introducing vertically averaged stress, see e.g. [18]). u and
v are the x- and y-components of (average) horizontal velocity, respectively.

∂

∂x

(
2νH

(
2
∂u

∂x
+

∂v

∂y

))
+

∂

∂y

(
νH

(
∂u

∂y
+

∂v

∂x

))
− ρgH

∂h

∂x
− τx(b) = 0 (1.1)

∂

∂y

(
2νH

(
2
∂v

∂y
+

∂u

∂x

))
+

∂

∂x

(
νH

(
∂u

∂y
+

∂v

∂x

))
− ρgH

∂h

∂y
− τy(b) = 0 (1.2)

where g, ρ, H and h are the Earth’s acceleration, density of ice, ice thickness and
ice surface elevation, respectively. Physically spoken, above equations balance the
membranes stresses (longitudinal stresses and lateral shear stress) with driving stress
resulting from the Earth’s acceleration and the and the basal shear stress. Glaciologist
often subsume the lateral shear stress among longitudinal stress regarding all stress
components which are not horizontal plane stress as longitudinal stress ([22]).
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We assume a simple expression for the basal shear stress:

τx(b) =
csu

(u2 + v2)p/(2(p+1))
(1.3)

τy(b) =
csv

(u2 + v2)p/(2(p+1))
(1.4)

with a parameter p other value possible. In praxis, different values for p apply.
Ref. [33] use p ≈ 1.25. For p = 0 equation (1.4) reduces to a linear relation between
velocity and basal shear.

The effective viscosity reads
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with n = 3 and

B̄ =
∫ h

b

B(T ′) dz

b denotes the elevation of base of the ice stream and T ′ is the homologous tem-
perature (temperature corrected for melting point).

For our numerical schemes, we assume in our first approach that the average
inverse rate factor B̄ is constant. In general, B(T ′) can depend on temperature and
water content in the ice and is calculated via separate equations.

The outline of the paper is as follows. The mathematical methods are introduced
in the section 2. The solver schemes are discussed in section 3. In Section 4, we discuss
the algorithm and the assembling of the splitting schemes. In Section 5 we introduce
the application of our methods for some real-life problems. Finally we discuss future
works in the area of iterative methods.

2. Mathematical Method. In the following we discuss the iterative splitting
methods:

Iterative splitting with respect to one operator

∂ci(t)
∂t

= Aci(t) + Bci−1(t), with ci(tn) = cn, i = 1, 2, . . . ,m (2.1)

Iterative splitting with respect to alternating operators

∂ci(t)
∂t

= Aci(t) + Bci−1(t), with ci(tn) = cn (2.2)

i = 1, 2, . . . , j ,

∂ci(t)
∂t

= Aci−1(t) + Bci(t), with ci+1(tn) = cn , (2.3)

i = j + 1, j + 2, . . . ,m ,
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In addition, c0(tn) = cn , c−1 = 0 and cn is the known split approximation at
the time level t = tn. The split approximation at the time-level t = tn+1 is defined as
cn+1 = c2m+1(tn+1). (Clearly, the function ci+1(t) depends on the interval [tn, tn+1],
too, but, for the sake of simplicity, in our notation we omit the dependence on n.)

2.1. Iterative operator-splitting method as fixed-point scheme. The it-
erative operator-splitting method is used as a fixed-point scheme to linearize the
nonlinear operators (see [15] and [26]).

We concentrate again on nonlinear differential equations of the form

du

dt
= A(u(t))u(t) + B(u(t))u(t), with u(tn) = un, (2.4)

where A(u), B(u) are matrices with nonlinear entries and densely defined, where we
assume that the entries involve the spatial derivatives of c [38]. In the following
we discuss the standard iterative operator-splitting method as a fixed-point iteration
method to linearize the operators.

We split our nonlinear differential equation (2.4) by applying

dui(t)
dt

= A(ui−1(t))ui(t) + B(ui−1(t))ui−1(t), with ui(tn) = un, (2.5)

dui+1(t)
dt

= A(ui−1(t))ui(t) + B(ui−1(t))ui+1(t), with ui+1(tn) = un, (2.6)

where the time-step is τ = tn+1 − tn. The iterations are i = 1, 3, . . . , 2m + 1. u0(t) =
un is the starting solution, where we assume that the solution un+1 is near un, or
u0(t) = 0. Therefore we have to solve the local fixed-point problem. un is the known
split approximation at time-level t = tn. The stopping rule is given as

||ui − ui−1|| ≤ ε, (2.7)

where ε > 0 is the error bound.
The split approximation at time-level t = tn+1 is defined as un+1 = u2m+2(tn+1).

We assume that the operators A(ui−1(tn+1)), B(ui−1(tn+1)) are constant for i =
1, 3, . . . , 2m + 1. Here the linearization is done with respect to the iterations, such
that A(ui−1), B(ui−1) are at least non-dependent operators in the iterative equations,
and we can apply the linear theory. For the linearization we assume at least in the first
equation A(ui−1(t)) ≈ A(ui(t)), and in the second equation B(ui−1(t)) ≈ B(ui+1(t)),
for small t.
We have

||A(ui−1(tn+1))ui(tn+1)−A(un+1)u(tn+1)|| ≤ ε,
for sufficient iterations i ∈ {1, 3, . . . , 2m + 1}.

Remark 2.1. The linearization with the fixed-point scheme can be used for
smooth or weak nonlinear operators, otherwise we lose the convergence behavior, while
we did not converge to the local fixed point [26].

2.2. Operator-splitting method with embedded Jacobian Newton iter-
ative method. Newton’s method is used to solve the nonlinear parts of the iterative
operator-splitting method (see the linearization techniques in [26, 28]). We apply the



4 2. MATHEMATICAL METHOD

iterative operator-splitting method and obtain:

F1(ui) = ∂tui −A(ui)ui −B(ui−1)ui−1 = 0,

with ui(tn) = un,

F2(ui+1) = ∂tui+1 −A(ui)ui −B(ui+1)ui+1 = 0,

with ui+1(tn) = un,

where the time-step is τ = tn+1−tn. The iterations are i = 1, 3, . . . , 2m+1. u0(t) = 0
is the starting solution and un is the known split approximation at time-level t = tn.
The results of the methods are c(tn+1) = u2m+2(tn+1). The splitting method with
the embedded Newton’s method is given by

u
(k+1)
i = u

(k)
i

−D(F1(u
(k)
i ))−1(∂tu

(k)
i −A(u(k)

i )u(k)
i −B(u(k)

i−1)u
(k)
i−1), (2.8)

with D(F1(u
(k)
i )) = −(A(u(k)

i ) +
∂A(u(k)

i )

∂u
(k)
i

u
(k)
i ), (2.9)

and k = 0, 1, 2, . . . ,K1, (2.10)
with ui(tn) = un, (2.11)

Initialization : u
(0)
i = un (2.12)

Stopping rule : |u(k+1)
i − u

(k)
i | ≤ ε1, (2.13)

u
(l+1)
i+1 = u

(l)
i+1 −D(F2(u

(l)
i+1))

−1(∂tu
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i+1 −A(u(k)

i )u(k)
i −B(u(k)

i+1)u
(k)
i+1), (2.14)

with D(F2(u
(l)
i+1)) = −(B(u(l)

i+1) +
∂B(u(l)

i+1)

∂u
(l)
i+1

u
(l)
i+1), (2.15)

and l = 0, 1, 2, . . . ,K2, (2.16)
with ui+1(tn) = un, (2.17)

Initialization : u
(0)
i+1 = un, (2.18)

Stopping rule : |u(l+1)
i+1 − u

(l)
i+1| ≤ ε1. (2.19)

The iterations are i = 1, 3, . . . , 2m+1. u0(t) = 0 is the starting solution and un is the
known split approximation at the time level t = tn. The stopping rule of the outer
iteration is given as:

|u(K̃2)
i+1 − uK̃1

i | ≤ ε2, (2.20)

where K̃1 and K̃2 are the number of steps for the inner iterations. The result of the
schemes is c(tn+1) = um̃(tn+1).

Remark 2.2. For the iterative operator-splitting method with Newton’s method
we have two iteration procedures. The first iteration is Newton’s method for computing
the solution of the nonlinear equations, and the second iteration is the iterative split-
ting method, which computes the resulting solution of the coupled equation systems.
The embedded method is used for strong nonlinearities.
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2.3. Decoupling ideas based on eigenvalue problems. To detect the op-
erators in the differential equation as stiff or non-stiff operators, we can apply the
eigenvalues of each operator and use them as reciprocal time scales.

The operator equations are analyzed with the eigenvalue problem:

∂tc(t) = (A + B)c(t) = (λA + λB)c(t), t ∈ (tn, tn+1), (2.21)
c(tn) = g(t), c′(tn) = f(t),

where the operators A and B result form the spatial discretization.
Stiffness:
We consider constant coefficients to the abstract Cauchy problem, see [17], where

we suppose the stiffness in the following sense:
The matrix A is supposed to be stiff and B non-stiff.
Parabolic Part
Stiffness is seen as τA is huge in norms for the range of step size τ , see [21]. So

the step size represents a splitting step size and we assume:

||τA|| >> 1, ||τB|| = O(τ) (2.22)

For the notation of the eigenvalues, we have:

Re(τλ) << −1, |τµ| = O(τ) (2.23)

where λ is a stiff eigenvalue of A and µ a non-stiff eigenvalue of B.
Elliptic Part
Stiffness is seen as A (A is spatial discretised with the spatial step h) is huge in

the condition, see [20].
So the maximal and minimal eigenvalues are strong variating, we assume:

λmax = ||A||2, λmin = 1/||A−1||2, (2.24)
χA = λmax/λmin (2.25)

where χA is the condition of matrix A.
For stiffness of the matrix, we have:

χA >> 1, χB ≈ 1. (2.26)

where the eigenvalues of A are very strong variating and the eigenvalue of B are very
small variating.

In the following we discuss the idea to derive the eigenvalues:
The eigenvalues are detected in the decoupled equations:

Ac = λAc, (2.27)

Bc = λBc, (2.28)

Based on the eigenvalues λA,min, λA,max, λB,min and λB,max we can propose the
condition number and the stiffness of the systems.

If we deal with a parabolic equation, the time steps ∆tA ≈ 1/λA,max and ∆tB ≈
1/λB,max.

If we deal with a elliptic equation, the condition number can be improved by
pre-conditioners, e.g. SSOR method, such that χA,precond ≈ 1.
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We propose the vector iteration based on the Rayleigh quotient for the computa-
tion of the eigenvalues of the operators A and B:

ci,k+1 =
(A− IλA,k)−1ci,k

||(A− Iµi)−1ci,k||
(2.29)

ci,m+1 =
(B − IλB,m)−1ci,m

||(B − Iµi)−1ci,m||
(2.30)

where k, m = 0, 1, 2, . . . and the eigenvalues and we assume to have the initialization
of a eigenvector ci,0 and eigenvalues λA,0 and λB,0 , and set the next approximation
of the eigenvalue to the Rayleigh quotient of the current iteration are given as:

λA,k =
ct
i,kAci,k

ct
i,kci,k

, (2.31)

λB,m =
ct
i,mBci,m

ct
i,mci,m

, (2.32)

where k, m = 0, 1, 2, . . . and the eigenvalues are given as

||ci+1,k+1||
||ci+1,k||

= |λA,1|+O(pk), (2.33)

||ci+1,m+1||
||ci+1,m||

= |λB,1|+O(qm), (2.34)

where λA,1 and λB,1 are the maximal eigenvalues. The values are given as p = λA,2
λA,1

with λA,1 ≥ λA,2 . . . ≥ λA,n, q = λB,2
λB,1

with λB,1 ≥ λB,2 . . . ≥ λB,n.
The following algorithm is used for separating the different scales of the operators

A and B, we assume that pre-eigenvalues are first results of eigenvalues with 2 − 3
iterative steps:

Algorithm 2.3.
1) We have the operators A, B.
2) We compute eigenvalues with a given norm || · ||:

||Ac|| , ||Bc|| ,
where c is a possible solution vector of the equations (2.2)-(2.3).

3) We compare the pre-eigenvalues:
||Ac|| ≤ ||Bc||: A is stiff,
or
||Ac|| ≥ ||Bc||: B is stiff.

4) We initialize our splitting method (e.g. for the nonlinear case).
4.1.) If A is stiff, we start with the iteration (2.5)
4.2.) If B is stiff, we start with the iteration (2.6)

Remark 2.4. The efficiency of the method is given with the correct decomposi-
tion, which means the correct ordering of the underlying operators. If the operators
are different based on their spectrum, the error of the scheme, can be reduced more if
the iterations are done via the larger eigenvalues to solve the more delicate operator.
With respect to the local error, means the higher eigenvalues for example of A, the
starting operator A in the first iterative equation dominates the error, if we assume
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large time-steps, or for the stationary problem (t →∞). Therefore the pre-processing
to obtain the underlying eigenvalues is important and accelerates the solver process.
Here we propose the vector iterations to compute the eigenvalues as a method that is
embedded to our iterative splitting method. The declaration of the operators to be stiff
or non-stiff results in the correct splitting operators.

At least splitting into two different iterative schemes makes sense, if we have
strongly varying eigenvalues, so we decouple into each special iterative problem. If the
eigenvalues are nearly the same, the splitting, does not make sense, while we could
solve the problem in one operator.

2.4. ADI and LOD methods. We deal with non-stationary formulations means
we introduce an artificial time, for which we assume to have the stationary case with
t →∞.

Further, we have the heat equation, see [15], for which the mathematical equations
are given by

∂t u = D1(x, y) ∂xx u + D2(x, y) ∂yy u + D3(x, y) ∂zz u , in Ω× [0, T ] ,(2.35)
u(x, y, 0) = u0(x, y) , on Ω , (2.36)

The unknown function u = u(x, t) is considered to be in Ω×(0, T ) ⊂ IRd×IR where the
spatial dimension is given by d . The function D(x, y) = (D1(x, y), D2(x, y), D3(x, y))t ∈
IR3,+ describes the heat transfer in x, y, z. The functions u0(x, y) is the initial condi-
tion for the heat equation.

The boundary conditions are given as

u(x, y, t) = o , on ∂Ω× T : Dirichlet boundary condition , (2.37)
∂u(x, y, t)

∂n
= 0 , on ∂Ω× T : Neumann boundary condition , (2.38)

D∇u(x, y, t) = uout , on ∂Ω× T : outflow boundary condition . (2.39)

2.5. Spatial Discretization methods. For the spatial discretization methods
we apply higher-order compact methods (HOC), see [27]. We concentrate on the two
dimensional case, but the three dimensional case can be done in the same manner.

For equation (2.35) we can derive the following higher order spatial discretization
methods

LxLyũ = (LyAx + LxAy)u + O(hp), (2.40)

where ũ = ut (first order time derivative) or ũ = ut (second order time derivative)
and p = 2, 4.
We obtain the following operators :

Lx = 1,

Ax = D1δxx,

Ly = 1,

Ay = D2δyy,
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with fourth order in space, we obtain the following operators :

Lx = 1 +
h2

x

12
δxx,

Ax = D1δxx,

Ly = 1 +
h2

y

12
δyy,

Ay = D2δyy,

where h = max{hx, hy}. δxxui = ui+2−ui+ui−2
4∆x2 and δyy are the central difference

operators for the second derivative.

2.6. Time-Discretization methods. For the time-discretization methods, we
apply the standard discretization methods, as Crank-Nicolson scheme for the first
order derivative, or the central difference scheme for the second order derivative. We
obtain higher order methods by Richardson-Extrapolation or weighted methods.

First order derivative in time
For the first order derivative in time we deal with the second-order Crank-Nicolson

method. To obtain higher order we apply Richardson Extrapolation to get fourth and
fifth order methods.

Our standard Crank-Nicolson method is given as

un+1−un

∆t = 1/2(f(un) + f(un+1)),
u(0) = u0,

(2.41)

where un is the time-approximated solution at tn = n∆t, n ≥ 0. ∆t denotes the time
increment.

The scheme is given as

SCN (∆t, un) = un+1,CN = un +
∆t

2
(f(un) + f(un+1)),

SCN (∆t, un) = B(
∆t

2
, F (

∆t

2
, un)),

where

B(
∆t

2
, un+1/2) = un+1,B = un+2 +

∆t

2
f(un+1),

F (
∆t

2
, un) = un+1/2,F = un +

∆t

2
f(un).

where B is the backward and F is the forward discretization scheme.
Based on this second-order method, we can apply an extrapolation method to obtain
a higher-order method, which we need for our modified ADI method.

We apply the Richardson extrapolation on the second-order Crank-Nicolson method
to obtain higher-order methods.

The idea of the extrapolation method is given as follows.

D4(∆t, un) = un+1,4th =
4
3
SCN (

∆t

2
, SCN (

∆t

2
, un))− 1

3
SCN (∆t, un). (2.42)
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To obtain fifth order, we have to apply a Richardson extrapolation additionally, see
[9]:

D5(∆t, un) = un+1,5th =
16
15

D4(
∆t

2
, D4(

∆t

2
, un))− 1

15
D4(∆t, un). (2.43)

These methods can be implemented with respect to the basic time-discretization
method. Another method, which we can obtain a higher order, is given in the follow-
ing part.

2.7. Alternating direction implicit (ADI) method). To obtain a fourth-
order ADI method, the underlying time-discretization method has to be at least
fourth-order in time.

So we support our new method with the Richard extrapolation that uses the
second-order ADI method, based on the Crank-Nicolson time discretization, and we
reach at least a fourth-order method.

For the second-order ADI method we apply the second-order time-discretization
given as Crank-Nicolson (CN) method.

The CN time discretization is given as

(LxLy +
∆t

2
L∗)un+1 = (LxLy −

∆t

2
L∗)un + O(h4) + O(∆t3), (2.44)

where L∗ = LyAx + LxAy and the discretization is of order 2 in time and order 4 in
space, see equation (2.40).

The ADI-method, following [7], is given as follows.

(Lx +
∆t

2
Ax)u∗ = (Lx −

∆t

2
Ax)(Ly −

∆t

2
Ay)un, (2.45)

(Ly +
∆t

2
Ay)un+1 = u∗, (2.46)

where we obtain a second order ADI-scheme.
By applying the Richardson extrapolation we obtain a fourth-order method for

the CN scheme, see scheme (2.42).
Proposition 2.1.

The ADI-method based on the extrapolation and CN method is given in the next
steps.
Step 1 (first ∆t/2 step), α = 1/2:

(Lx + α
∆t

2
Ax)u∗,n+1/2 = (Lx − α

∆t

2
Ax)(Ly − α

∆t

2
Ay)un, (2.47)

(Ly + α
∆t

2
Ay)un+1/2 = u∗,n+1/2, (2.48)

Step 2 (∆t step), α = 1.0 :

(Lx + α
∆t

2
Ax)u∗,n+1 = (Lx − α

∆t

2
Ax)(Ly − α

∆t

2
Ay)un, (2.49)

(Ly + α
∆t

2
Ay)ũn+1 = u∗,n+1, (2.50)
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Step 3 (second ∆t/2 step), α = 1/2 :

(Lx + α
∆t

2
Ax)u∗,n+1 = (Lx − α

∆t

2
Ax)(Ly − α

∆t

2
Ay)un+1/2, (2.51)

(Ly + α
∆t

2
Ay)˜̃un+1 = u∗,n+1, (2.52)

Resulting step:

un+1 = 4/3˜̃un+1 − 1/3ũn+1, (2.53)

where we obtain a 4th order method, due to the Richardson Extrapolation with 2nd
order methods.

2.8. Locally one dimensional (LOD) method). In the following we intro-
duce the LOD method, see [27], as an improved splitting method while using pre-
stepping techniques.

The method was discussed in [27] and is given by:

un+1,0 − un = dt(A + B)un (2.54)
un+1,1 − un+1,0 = dtηA(un+1,1 − un) (2.55)

un+1 − un+1,1 = dtηB(un+1 − un) (2.56)

where η ∈ (0.0, 0.5) and A,B are the spatial discretised operators.
If we eliminate the intermediate values in 2.54- 2.56 we obtain

un+1 − un= ∆t(A + B)(ηun+1 − (1− η)un)

and thus we obtain O(∆t2).
So we obtain a second-order method for η = 0.5.
By applying the Richardson extrapolation we obtain a fourth-order method for

the CN scheme, see scheme (2.42).
Proposition 2.2.
The LOD-method based on the extrapolation and CN method is given in the next

steps.
Step 1 (first ∆t/2 step), α = 1/2:

un+1/2,0 − un = α dt (A + B)un (2.57)
un+1/2,1 − un+1/2,0 = α dt η A(un+1/2,1 − un) (2.58)

un+1/2 − un+1,1 = α dt η B(un+1/2 − un) (2.59)

Step 2 (∆t step), α = 1.0 :

un+1,0 − un = α dt (A + B)un (2.60)
un+1,1 − un+1,0 = α dt η A(un+1,1 − un) (2.61)

ũn+1 − un+1,1 = α dt η B(ũn+1 − un), (2.62)

Step 3 (second ∆t/2 step), α = 1/2 :

un+1,0 − un+1/2 = α dt (A + B)un+1/2 (2.63)
un+1,1 − un+1,0 = α dt η A(un+1,1 − un+1/2) (2.64)

˜̃un+1 − un+1,1 = α dt η B(˜̃un+1 − un+1/2), (2.65)
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Resulting step:

un+1 = 4/3˜̃un+1 − 1/3ũn+1, (2.66)

where we obtain a 4th order method, due to the Richardson Extrapolation with 2nd
order methods.

Remark 2.5.
For η ∈ (0, 0.5) we have unconditionally stable methods and for higher order we

use η = 1
2 . Then for sufficiently small time steps we get a conditionally stable splitting

method.

3. Linear Iterative Methods: Jacobi Methods, Gauss-Seidel Methods
and SOR Methods. To decompose a complicate matrix to simpler matrices we dis-
cuss in the following iterative schemes. The idea is to obtain a simpler, e.g. diagonal
or tridiagonal matrix and a rest matrix. With the simpler matrix, that we assume to
compute simpler the inverse, we iterate in the scheme, where the rest matrix (more or
less a full matrix) is explicitly in the scheme. Therefore we save computational time
in such an iterative scheme.

Decoupling idea
An underlying idea is to decouple a full matrix A into an part D that is simple

to invert and a part E + F that are delicate to invert and are expensive to compute.
Here we can save computational time and not forget stability reasons while D include
the diagonal part of the matrix.

In the following we discuss different splitting schemes.
The SOR method is described together with its properties. The same results hold

for the Gauss-Seidel method, since it is a special case of the SOR method.
Consider the decomposition of matrix A:

A = D − E − F, (3.1)
E : strict lower triangular matrix ,

F : strict upper triangular matrix .

The iterative methods result from the choice of approximated inverses and itera-
tion matrices M :

NJacobi
ω = (

1
ω

D)−1, (3.2)

MJacobi
ω = I1− (

1
ω

D)−1A, (3.3)

ω ∈]0, 1[IR,

describes the weighted Jacobi method. For ω = 1 the method is the same as
the Jacobi method, which is also known as method of simultaneous displacements,
Richardson iterative method or total-step iterative method [36]).

NSOR
ω = (

1
ω

D − E)−1, (3.4)

MSOR
ω = I1− (

1
ω

D − E)−1A, (3.5)

ω ∈]0, 2[IR,
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where NSOR denotes the inverse and MSOR the iteration matrix of the SOR method.
Matrix M is applied to vector xm. The component-wise representation can then

be written as a sequence of single corrections xm
i or xm+1

i , respectively.
There holds:

xm+1
i = (1− ω)xm

i +
ω

Dii

i−1∑
j=1

Eijx
m
i +

n∑
j=i+1

Fijx
m
i

 , (3.6)

i = 1, . . . , n,

for the weighted Jacobi method and

xm+1
i = (1− ω)xm

i +
ω

Dii

i−1∑
j=1

Eijx
m+1
i +

n∑
j=i+1

Fijx
m
i

 , (3.7)

i = 1, . . . , n,

for the SOR method where n is the number of components.
The SOR method can be differentiated into locally damped methods with (0 < ω < 1)
or locally overrelaxed Gauss-Seidel methods with (1 < ω < 2).
Choosing ω = 1 the methods coincide.

The convergence of SOR methods can be proved over all positive definite matrices.
We have the following theorems:

Theorem 3.1. Let A be a symmetric positive definite matrix. Then

ρ(MGS
ω ) ≤ ||MGS

ω ||A < 1, ∀ω ∈]0, 2[IR. (3.8)

Theorem 3.2. Let A ∈ IRI×I be an irreducible diagonally dominant matrix, that
satisfies the M-matrix conditions. Let I be an sorted index set.
Then

ρ(MSOR
ω ) < 1, ∀ω ∈]0, 1]IR, (3.9)

||MSOR
ω ||∞ < 1, ∀ω ∈]0, 1]IR. (3.10)

The SOR method depends on the sorting. The reversal of the sorting yields a
backward oriented SOR method. By successive execution of SOR method and back-
ward oriented SOR method a new method, the so-called SSOR method (symmetric
SOR method), can be constructed. For ω = 1 the method is called symmetric Gauss-
Seidel method.

3.1. ILU Method. Subsequently we describe the ILU method (incomplete tri-
angular decomposition).

Matrix A can be written as follows using multiplicative splitting:

A = LU. (3.11)

LU is the denotation for LowerUpper referring to the decomposition into lower and
upper triangular matrices. It is a direct method, where the triangular matrices are
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usually full. Therefore, these methods aren’t suitable due to their efficiency to solve
large linear systems.

Hence a modification of the LU method is done yielding the ILU method
(IncompleteLowerUpper). The Gauss elimination used for the LU decomposition is
executed following a preset allocation pattern and yields using this pattern an iterative
method with linear effort. A typical allocation method is achieved by choosing the
graph of matrix A.

A = LU −R, (3.12)
Lαβ = 0, (α, β) 6∈ G(A), L lower triangular matrices, (3.13)
Uαβ = 0, (α, β) 6∈ G(A), U upper triangular matrices, (3.14)
Rαβ = 0, (α, β) ∈ G(A). (3.15)

The ILU method is obtained using the following choice of approximated inverse N
and iteration matrix M :

N ILU := U−1L−1, (3.16)
M ILU := I1− U−1L−1A, (3.17)

where N ILU denotes the inverse and M ILU the iteration matrix of the ILU method.
Consider, that the existence of the decomposition is ensured for special cases. For

the M-matrices the following theorems hold:
Theorem 3.3. Let A be a M-matrix, and let the pattern for the ILU decompo-

sition be the graph of matrix A, then the ILU decomposition exists.
Theorem 3.4. Let A be a M-matrix. Then the ILU method (3.16), (3.17),

converges in the maximum norm:

ρ(M ILU ) ≤ 1, (3.18)
||M ILU ||∞ ≤ 1. (3.19)

In the next section we apply our theoretical results to a test example with respect
to correct or incorrect decompositions.

4. Algorithm and Assembling of the splitting methods with respect to
the eigenvalues of the operators. In the following we discuss the algorithms and
their implementation to the software code. Here the underlying idea the calculation
of the eigenvalues is embedded.

We discuss in the following operators:
Linearized Part:

A1(ν̂) =

(
4 ∂

∂x ν̂H ∂
∂x 2 ∂

∂x ν̂H ∂
∂y

2 ∂
∂y ν̂H ∂

∂x 4 ∂
∂y ν̂H ∂

∂y

)
(4.1)

where ν̂ = ν(uold, vold)

A2(h) = −
(

ρgH ∂
∂xh

ρgH ∂
∂y h

)
, (4.2)
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B(u, v) = −µ(u, v)
(

1 0
0 1

)
(4.3)

with

µ(u, v) =
cs

(u2 + v2)p/(2(p+1))
(4.4)

and the nonlinear part:

B(u, v)(u, v)t =
(

τx(b)

τy(b)

)
(4.5)

4.1. One side iterative schemes:. That is split into the following schemes,
where both operators A1 and B are solved together in one iterative step:

A1(νi−1)(ui, vi)t + A2(h) + B(ui−1, vi−1)(ui, vi)t = 0 (4.6)

or with explicitely expressed operators

∂

∂x

(
2νi−1H

(
2
∂ui

∂x
+

∂vi

∂y

))
+

∂

∂y

(
νi−1H

(
∂ui

∂y
+

∂vi

∂x

))
− ρgH

∂h

∂x
− µi−1ui = 0

(4.7)

∂

∂y

(
2νi−1H

(
2
∂vi

∂y
+

∂ui

∂x

))
+

∂

∂x

(
νi−1H

(
∂ui

∂y
+

∂vi

∂x

))
− ρgH

∂h

∂y
− µi−1vi = 0

(4.8)

where νi−1 is given with ui−1, vi−1 for the previous solution.

Equations (4.7) and (4.8) are discretised using centred differences in the Arakawa
C grid ([3]).
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1
∆xl+1/2,m

[
2νl+1,mhl+1,m

(
2
ul+3/2,m − ul+1/2,m

∆xl+1,m

+
vl+1,m+1/2 − vl+1,m−1/2

∆yl+1,m

)]
− 1

∆xl+1/2,m

[
2νl,mhl,m(

2
ul+1/2,m − ul−1/2,m

∆xl,m
+

vl,m+1/2 − vl,m−1/2

∆yl,m

)]
+

1
∆yl+1/2,m

[
νl+1/2,m+1/2hl+1/2,m+1/2

(
ul+1/2,m+1 − ul+1/2,m

∆yl+1/2,m+1/2

+
vl+1,m+1/2 − vl,m+1/2

∆xl+1/2,m+1/2

)]
− 1

∆yl+1/2,m

[
νl+1/2,m−1/2hl+1/2,m−1/2(

ul+1/2,m − ul+1/2,m−1

∆yl+1/2,m−1/2
+

vl+1,m−1/2 − vl,m−1/2

∆xl+1/2,m−1/2

)]
− µl+1/2,mul+1/2,m = ρgHl+1/2,m

(
hl+1,m − hl,m

∆xl+1/2,m

)
(4.9)

1
∆yl,m+1/2

[
2νl,m+1hl,m+1

(
2
vl,m+3/2 − vl,m+1/2

∆yl,m+1

+
ul+1/2,m+1 − ul−1/2,m+1

∆xl,m+1

)]
− 1

∆yl,m+1/2

[
2νl,mhl,m(

2
vl,m+1/2 − vl,m−1/2

∆yl,m
+

ul+1/2,m − ul−1/2,m

∆xl,m

)]
+

1
∆xl,m+1/2

[
νl+1/2,m+1/2hl+1/2,m+1/2

(
ul+1/2,m+1 − ul+1/2,m

∆yl+1/2,m+1/2

+
vl+1,m+1/2 − vl,m+1/2

∆xl+1/2,m+1/2

)]
− 1

∆xl,m+1/2

[
νl−1/2,m+1/2hl−1/2,m+1/2(

ul−1/2,m+1 − ul−1/2,m

∆yl−1/2,m+1/2
+

vl,m+1/2 − vl−1,m+1/2

∆xl−1/2,m+1/2

)]
− µl,m+1/2vl,m+1/2 = ρgHl,m+1/2

(
hl,m+1 − hl,m

∆yl,m+1/2

)
(4.10)

where the integers l, m refer to the two horizontal coordinates.
The discretised effective viscosity together with the velocities which appear therein

are taken from the previous solution at step i− 1. It reads

νl,m =
B̄

2

{(
ul+1/2,m − ul−1/2,m

∆xl,m

)2

+
(

vl,m+1/2 − vl,m−1/2

∆yl,m

)2

+
1
4

(
ul−1/2,m+1/2 − ul−1/2,m−1/2

∆yl,m
+

vl+1/2,m−1/2 − vl−1/2,m−1/2

∆xl,m

)2

+
ul+1/2,m − ul−1/2,m

∆xl,m

vl,m+1/2 − vl,m−1/2

∆vl,m+1/2
+ ε2ν

}(1−n)/2n

(4.11)

As in [5] we introduce a regularization according εν = 3 · 10−14s−1.
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Following the standard procedure, equations (4.9) and (4.10) are rewritten by
collecting the coefficients of the discrete velocities:

β0
l,mul+1/2,m + β1

l,mul+3/2,m + β2
l,mul−1/2,m + β3

l,mul+1/2,m+1

+β4
l,mul+1/2,m−1 + β′5l,mvl,m+1/2 + β′6l,mvl,m−1/2 + β′7l,mvl+1,m+1/2

+β′8l,mvl+1,m−1/2 = fl,m (4.12)

β′0l,mvl,m+1/2 + β′1l,mvl+1,m+1/2 + β′2l,mvl−1,m+1/2 + β′3l,mvl,m+3/2

+β′4l,mvl,m−1/2 + β5
l,mul−1/2,m+1 + β6

l,mul−1/2,m + β7
l,mul+1/2,m+1

+β8
l,mul+1/2,m = f ′l,m. (4.13)

Using these equations as basis, we will construct the matrix corresponding to the
operator A := A1 + B in equation (4.6) of the linear system Aû = f . The right-hand
side column vector f is the discretised representation of the two columns vector −A2

in equation (4.6).
We order the velocities and the right-hand side column vector f as

û = (v1,1.5, u1.5,1, v1,2.5, · · · , ulmax−0.5,mmax)t, f = (f ′1,1, f1,1, f
′
1,2, · · · , fl,m)t

(4.14)

and find the five diagonal matrix

A =


D R
L D R

L D R
. . .

L D

 (4.15)

where the elements L, D and R denote

D =



β′0l,1 β8
l,1 β′3l,1 β7

l,1

β′5l,1 β0
l,1 · β3

l,1 ·
β′4l,2 · β′0l,2 β8

l,2 β′3l,2 β7
l,2

β6
l,2 β4

l,2 β′5l,2 β0
l,2 · β3

l,2

· · β′4l,3 · β′0l,3 β8
l,3 β′3l,3

β6
l,3 β4

l,3 β′5l,3 β0
l,3 · β3

l,3

. . .


,

R =



β′1l,1
β′7l,1 β1

l,1

· β′1l,2
β′8l,2 β′7l,2 β1

l,2

· · β′1l,3
. . .


, L =


β′2l,1 β6

l,1 · β5
l,1

β2
l,1

β′2l,2 β6
l,2 β5

l,2

. . .

 .



4.1 One side iterative schemes: 17

The coefficients of the velocities are given as

β0
l,m =− 4ν̂l+1,m

∆xl+1/2,m∆xl+1,m
− 4ν̂l,m

∆xl+1/2,m∆xl,m

−
ν̂l+1/2,m+1/2

∆yl+1/2,m∆yl+1/2,m+1/2
−

ν̂l+1/2,m−1/2

∆yl+1/2,m∆yl+1/2,m−1/2
− µl+1/2,m, (4.16)

β1
l,m =

4ν̂l+1,m

∆xl+1/2,m∆xl+1,m
, (4.17)

β2
l,m =

4ν̂l,m

∆xl+1/2,m∆xl,m
, (4.18)

β3
l,m =

ν̂l+1/2,m+1/2

∆yl+1/2,m∆yl+1/2,m+1/2
, (4.19)

β4
l,m =

ν̂l+1/2,m−1/2

∆yl+1/2,m∆yl+1/2,m−1/2
, (4.20)

β′5l,m =− 2ν̂l,m

∆xl+1/2,m∆yl,m
−

ν̂l+1/2,m+1/2

∆yl+1/2,m∆xl+1/2,m+1/2
, (4.21)

β′6l,m =
2ν̂l,m

∆xl+1/2,m∆yl,m
+

ν̂l+1/2,m−1/2

∆yl+1/2,m∆xl+1/2,m−1/2
, (4.22)

β′7l,m =
2ν̂l+1,m

∆xl+1/2,m∆yl+1,m
+

ν̂l+1/2,m+1/2

∆yl+1/2,m∆xl+1/2,m+1/2
, (4.23)

β′8l,m =− 2ν̂l+1,m

∆xl+1/2,m∆yl+1,m
−

ν̂l+1/2,m−1/2

∆yl+1/2,m∆xl+1/2,m−1/2
(4.24)

and
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β′0l,m =− 4ν̂l,m+1

∆yl,m+1/2∆yl,m+1
− 4ν̂l,m

∆yl,m+1/2∆yl,m

−
ν̂l+1/2,m+1/2

∆xl,m+1/2∆xl+1/2,m+1/2
−

ν̂l−1/2,m+1/2

∆xl,m+1/2∆xl−1/2,m+1/2
− µl,m+1/2, (4.25)

β′1l,m =
4ν̂l,m+1

∆yl,m+1/2∆yl,m+1
, (4.26)

β′2l,m =
4ν̂l,m

∆yl,m+1/2∆yl,m
, (4.27)

β′3l,m =
ν̂l+1/2,m+1/2

∆xl,m+1/2∆xl+1/2,m+1/2
, (4.28)

β′4l,m =
ν̂l−1/2,m+1/2

∆xl,m+1/2∆xl−1/2,m+1/2
, (4.29)

β5
l,m =− 2ν̂l,m+1

∆yl,m+1/2∆xl,m+1
−

ν̂l−1/2,m+1/2

∆xl,m+1/2∆yl−1/2,m+1/2
, (4.30)

β6
l,m =

2ν̂l,m

∆yl,m+1/2∆xl,m
+

ν̂l−1/2,m+1/2

∆xl,m+1/2∆yl−1/2,m+1/2
, (4.31)

β7
l,m =

2ν̂l,m+1

∆yl,m+1/2∆xl,m+1
+

ν̂l+1/2,m+1/2

∆xl,m+1/2∆yl+1/2,m+1/2
, (4.32)

β8
l,m =− 2ν̂l,m

∆yl,m+1/2∆xl,m
+

ν̂l+1/2,m+1/2

∆xl,m+1/2∆yl+1/2,m+1/2
(4.33)

with the abbreviation

ν̂l̃m̃ = νl̃m̃Hl̃m̃, l̃ = l − 1/2, l, l + 1/2, l + 1, m̃ = m− 1/2, m, m + 1/2, m + 1.

Further, the components of the right-hand side column vector read

fl,m =ρgHl+1/2,m(
hl+1,m − hl,m

∆xl+1/2,m
), (4.34)

f ′l,m =ρgHl,m+1/2(
hl,m+1 − hl,m

∆yl,m+1/2
) (4.35)

The first method which we use to solve the system is the Jacobi (total-step itera-
tion) method as described in (3.6). Applied to our problem, we construct the following
algorithm:
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vi
l,m+1/2 = (1− ω)vi−1

l,m+1/2 +
ω

β′0l,m

[
f ′l,m − β′1l,mvi−1

l+1,m+1/2 − β′2l,mvi−1
l−1,m+1/2

− β′3l,mvi−1
l,m+3/2 − β′4l,mvi−1

l,m−1/2 − β5
l,mui−1

l−1/2,m+1 − β6
l,mui−1

l−1/2,m

− β7
l,mui−1

l+1/2,m+1 − β8
l,mui−1

l+1/2,m

]
, (4.36)

ui
l+1/2,m = (1− ω)ui−1

l+1/2,m +
ω

β0
l,m

[
fl,m − β1

l,mui−1
l+3/2,m − β2

l,mui−1
l−1/2,m

− β3
l,mui−1

l+1/2,m+1 − β4
l,mui−1

l+1/2,m−1 − β′5l,mvi−1
l,m+1/2 − β′6l,mvi−1

l,m−1/2

− β′7l,mvi−1
l+1,m+1/2 − β′8l,mvi−1

l+1,m−1/2

]
(4.37)

with m = 1, ...,My − 1, l = 1, ...,Mx − 1.
A appropriate value for weight ω will be found via testing (section ??).
For the second method, we apply the SOR algorithm to solve the system. Ac-

cording to (3.7) we obtain the component-wise iteration steps for u and v:

vi
l,m+1/2 = (1− ω)vi−1

l,m+1/2 +
ω

β′0l,m

[
fl,m − β′1l,mvi−1

l+1,m+1/2 − β′2l,mvi
l−1,m+1/2

− β′3l,mvi−1
l,m+3/2 − β′4l,mvi

l,m−1/2 − β5
l,mui−1

l−1/2,m+1 − β6
l,mui−1

l−1/2,m

− β7
l,mui

l+1/2,m+1 − β8
l,mui

l+1/2,m

]
, (4.38)

ui
l+1/2,m = (1− ω)ui−1

l+1/2,m +
ω

β0
l,m

[
fl,m − β1

l,mui−1
l+3/2,m − β2

l,mui
l−1/2,m

− β3
l,mui−1

l+1/2,m+1 − β4
l,mui

l+1/2,m−1 − β′5l,mvi−1
l,m+1/2 − β′6l,mvi−1

l,m−1/2

− β′7l,mvi
l+1,m+1/2 − β′8l,mvi

l+1,m−1/2

]
(4.39)

with m = 1, ...,My − 1, l = 1, ...,Mx − 1.
For both of the methods, the stop criterion is given as:

max
l,m

(|ul+1/2,m,i+1 − ul+1/2,m,i|, |vl+1/2,m,i+1 − vl+1/2,m,i|) ≤ err (4.40)

for all l,m, where err is a given bound, e.g. err = 10−3. Later on, we will give a
concrete value for err.

We will use both with appropriate modifications in our splitting schemes described
in the next section.

4.2. Two side iterative schemes. Two side iterative schemes have the ben-
efit in balancing between the different operators. Such that we obtain a predictor-
corrector scheme that is taken into account to improve a previous solution.

Here the eigenvalues are also computed by the Rayleigh coefficient, means we
compute the maximal and minimal eigenvalues of A1 and B. Then we propose to
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apply a pre-conditioner or the iterative splitting scheme, that iterates over the larger
conditioned matrix.

That is split into the following schemes, where the operators A1 and B are treated
separately in each iterative step (so called two side iterative scheme):

We start with i = 1 and u0 = v0 = 0.
The steps are given for i > 1:

First step (respecting A1)

A1(νi−1)(ui, vi)t + A2(h) + B(ui−1, vi−1)(ui−1, vi−1)t = 0 (4.41)
if max(||ui − ui−1||, ||vi − vi−1||) ≤ err then go to step 2, (4.42)
else go to step 1 again (4.43)

where νi−1 is given with ui−1, vi−1 for the previous solution.
Second step (respecting B)

A1(νi)(ui, vi)t + A2(h) + B(ui, vi)(ui+1, vi+1)t = 0 (4.44)
if max(||ui+1 − ui||, ||vi+1 − vi||) ≤ err then go to step 1, (4.45)
else go to step 2 again (4.46)

where νi is given with ui, vi in the last step (i-th iterative step) and err ∈ IR+ is a
predefined error bound.

Remark 4.1. The equations (4.41) and (4.44) can be solved alternatively, if we
assume the stopping criteria are fulfilled. Otherwise we solve each equation with more
iterations to obtain the given error bound.

Here from the point of computational time, it makes sense, that we have one
dominant equation, e.g. (4.41), such that the main part of the iterative steps are
taken via this equation.

Alternation between each iterative scheme is expensive and we should reduce it to
less changes, e.g. 5 − 6 iterative steps with (4.41), while only one iterative step with
(4.44).

While the spectrum of the operators are often not the same, it makes sense to
investigate more iteration steps over the larger spectrum (means stiffer part), see
[19].

And we obtain the next solution ui+1, vi+1 which is used to iterative the solution
of ui+2, vi+2

The iterative scheme ends with the stop criterion:

max(|ui+1 − ui|, |vi+1 − vi|) ≤ err (4.47)

where err is a given bound, e.g. err = 10−3.
Substitution of the operators yields for the first step

∂

∂x

(
2νi−1H

(
2
∂ui

∂x
+

∂vi

∂y

))
+

∂

∂y

(
νi−1H

(
∂ui

∂y
+

∂vi

∂x

))
− ρgH

∂h

∂x
− µi−1ui−1 = 0

(4.48)

∂

∂y

(
2νi−1H

(
2
∂vi

∂y
+

∂ui

∂x

))
+

∂

∂x

(
νi−1H

(
∂ui

∂y
+

∂vi

∂x

))
− ρgH

∂h

∂y
− µi−1vi−1 = 0

(4.49)
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and for the second step

∂

∂x

(
2νiH

(
2
∂ui

∂x
+

∂vi

∂y

))
+

∂

∂y

(
νiH

(
∂ui

∂y
+

∂vi

∂x

))
− ρgH

∂h

∂x
− µiui+1 = 0

(4.50)

∂

∂y

(
2νiH

(
2
∂vi

∂y
+

∂ui

∂x

))
+

∂

∂x

(
νiH

(
∂ui

∂y
+

∂vi

∂x

))
− ρgH

∂h

∂y
− µivi+1 = 0

(4.51)

Now we will develop the splitting step in A1. As for the one side scheme (Equa-
tions (4.7) and (4.8), one can iterate Equations (4.48), (4.49) using the weighted
Jacobi scheme or, alternatively, utilizing the SOR scheme; but the terms µi−1ui−1

and µi−1vi−1 remain explicite in this splitting step.
Redefinition of equations (4.16) and (4.25) yields

β0
l,m =− µl+1/2,m, (4.52)

β′0l,m =− µl,m+1/2. (4.53)

Additionally, we introduce the new coefficients

β9
l,m =− 4ν̂l+1,m

∆xl+1/2,m∆xl+1,m
− 4ν̂l,m

∆xl+1/2,m∆xl,m

−
ν̂l+1/2,m+1/2

∆yl+1/2,m∆yl+1/2,m+1/2
−

ν̂l+1/2,m−1/2

∆yl+1/2,m∆yl+1/2,m−1/2
, (4.54)

β′9l,m =− 4ν̂l,m+1

∆yl,m+1/2∆yl,m+1
− 4ν̂l,m

∆yl,m+1/2∆yl,m

−
ν̂l+1/2,m+1/2

∆xl,m+1/2∆xl+1/2,m+1/2
−

ν̂l−1/2,m+1/2

∆xl,m+1/2∆xl−1/2,m+1/2
. (4.55)

For the splitting step in A1 we use the SOR algorithm which is proven to be faster
than the Jacobi procedure.

vi
l,m+1/2 = (1− ω)vi−1

l,m+1/2 +
ω

β′0l,m

[
fl,m − β′1l,mvi−1

l+1,m+1/2 − β′2l,mvi
l−1,m+1/2

− β′3l,mvi−1
l,m+3/2 − β′4l,mvi

l,m−1/2 − β5
l,mui−1

l−1/2,m+1 − β6
l,mui−1

l−1/2,m,

− β7
l,mui

l+1/2,m+1 − β8
l,mui

l+1/2,m − β′9l,mvi−1
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]
(4.56)

ui
l+1/2,m = (1− ω)ui−1

l+1/2,m +
ω

β0
l,m

[
fl,m − β1

l,mui−1
l+3/2,m − β2

l,mui
l−1/2,m

− β3
l,mui−1

l+1/2,m+1 − β4
l,mui

l+1/2,m−1 − β′5l,mvi−1
l,m+1/2 − β′6l,mvi−1
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− β′7l,mvi
l+1,m+1/2 − β′8l,mvi

l+1,m−1/2 − β9
l,mui−1

l+1/2,m

]
(4.57)

with m = 1, ...,My − 1, l = 1, ...,Mx − 1.
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Together with the coefficients β9
l,m and β′9l,m, the central velocities ul+1/2,m and

vl,m+1/2 are additional terms in equations (4.56) and (4.57) compared to equations
(4.38) (4.39) and by the definition of the splitting step in A1 they are taken from the
previous iteration step i− 1.

The splitting step in B can be expressed straightforwardly by solving equations
(4.50), (4.51)

ul+1/2,m,i+1 =
1

µl,m+1/2,i

[
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+
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, (4.58)
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(
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(
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∂vi
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))
− ρgH

∂h
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]
. (4.59)

Equations (4.58) and (4.59) describes an application of the ordinary Jacobi scheme,
which is the weighted Jacobi scheme with ω = 1. In principle, weighting of the ve-
locities at the iteration step i and at the iteration step i + 1 by equations (4.58) and
(4.59) in discretised form would lead to a solution with the weighted Jacobi scheme.
Here, we will express the weighted Jacobi algorithm applied to the splitting in B in
the framework of the coefficients of the velocities, because equations (4.12) and (4.13)
are already discretised.

Again we redefine the coefficients β0
l,m and β′0l,m in equations (4.16) and (4.25)

β0
l,m =− 4ν̂l+1,m

∆xl+1/2,m∆xl+1,m
− 4ν̂l,m

∆xl+1/2,m∆xl,m

−
ν̂l+1/2,m+1/2

∆yl+1/2,m∆yl+1/2,m+1/2
−

ν̂l+1/2,m−1/2

∆yl+1/2,m∆yl+1/2,m−1/2
, (4.60)

β′0l,m =− 4ν̂l,m+1

∆yl,m+1/2∆yl,m+1
− 4ν̂l,m

∆yl,m+1/2∆yl,m

−
ν̂l+1/2,m+1/2

∆xl,m+1/2∆xl+1/2,m+1/2
−

ν̂l−1/2,m+1/2

∆xl,m+1/2∆xl−1/2,m+1/2
(4.61)

and we redefine the coefficients β9
l,m and β′9l,m from equations (4.54) and (4.55)

and find

β9
l,m =− µl+1/2,m, (4.62)

β′9l,m =− µl,m+1/2. (4.63)

The redefinitions expressed by equations (4.60) to (4.63) are complementary to
the redefinitions and new-definitions in equations (4.52) to (4.55).

Reformulation of the equations (4.36) and (4.37) leads to a weighted Jacobi algo-
rithm with the additional terms in β9

l,m and β′9l,m
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vi
l,m+1/2 = (1− ω)vi−1

l,m+1/2 +
ω

β′0l,m

[
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]
ui

l+1/2,m = (1− ω)ui−1
l+1/2,m +
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[
fl,m − β1

l,mui−1
l+3/2,m − β2

l,mui−1
l−1/2,m

− β3
l,mui−1

l+1/2,m+1 − β4
l,mui−1

l+1/2,m−1 − β′5l,mvi−1
l,m+1/2 − β′6l,mvi−1

l,m−1/2

− β′7l,mvi−1
l+1,m+1/2 − β′8l,mvi−1

l+1,m−1/2 − β9
l,mui−1

l+1/2,m

]
with m = 1, ...,My − 1, l = 1, ...,Mx − 1.
Separation of A1 into 2 operators
In the next we separate into A1 = A11 + A12, where A11 = diag(A1) or A11 =

trigiag(A1) and the rest matrix A12 = A1−diag(A1) or A12 = A1−trigiag(A1). The
idea is to save computational time in the iterative steps with operator A11, where the
relaxation step when A1 is explicitly given is less computative.

We start with i = 1 and u0 = v0 = 0.
The steps are given for i > 1:

First step (respecting A1)

A11(νi−1)(ui, vi)t + A12(νi−1)(ui−1, vi−1)t

+A2(h) + B(ui−1, vi−1)(ui−1, vi−1)t = 0 (4.64)
if max(||ui − ui−1||, ||vi − vi−1||) ≤ err then go to step 2, (4.65)
else go to step 1 again (4.66)

where νi−1 is given with ui−1, vi−1 for the previous solution.
Second step (respecting B)

A1(νi)(ui, vi)t + A2(h) + B(ui, vi)(ui+1, vi+1)t = 0 (4.67)
if max(||ui+1 − ui||, ||vi+1 − vi||) ≤ err then go to step 1, (4.68)
else go to step 2 again (4.69)

where νi is given with ui, vi in the last step (i-th iterative step) and err ∈ IR+ is a
predefined error bound.

5. Numerical experiments. In the following we start with our numerical ex-
periments.

5.1. Validation of the schemes with the MacAyeal schematic setup. In
most of the literature about ice streams (e.g. [31], [25]), the SSAB equations are part of
inverse modeling of a basal friction parameter from the measured ice surface velocity.
Without knowledge of the basal friction, a validation of our model via measured
velocities would be difficult. Here, we will not perform a strong model validation in
the sense that we assess the modeling errors by giving numbers. We rather make use
of the schematic setup for the ice topography and basal friction (Figure 5.1) by [30], a
tutorial on control methods. As a byproduct, [30] computes the velocity fields and we
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use the plots of these velocities for a comparison with our modeled velocities just by
eye. At this stage of development, it is not our intention to perform a complete model
validation and/or verification as described in [4]. Such an approach would imply the
knowledge of an exact solution of the two dimensional SSAB equations, which is not
available yet.

Instead of the non-linear relation for the basal shear stress in equation (1.4)
(formally p = 0 therein) the linear relation

τx(b) = cs(x, y) u,

τy(b) = cs(x, y) v, (5.1)
cs(x, y) = µ(x, y) > 0

is applied by [30].
As boundary conditions Dirichlet conditions apply, with u = 0, v = 0 at the

lateral boundaries of the stream, u = 0 at the influx and outflux line of the stream.
The velocity v at the influx and outflux line is defined by a linear combination of
sinusoidal functions, which higher velocities at outflux compared to that at influx
line, see [30] for more details.

For the average inverse rate factor B̄ = 1.8× 108 Pa s m−1 applies.
Figure 5.2 shows the velocity fields computed with our weighted Jacobi method.

As is reality, the ice-stream velocity is dominated by its longitudinal component. Its
magnitude increase towards the middle of the ice stream as well as in its downstream
direction. The different signs of the traverse velocity component component reflect the
undulations in the surface elevation, brought into via the driving stress which contains
the gradient of the surface elevation. Our simulated surface velocities compare well
with those in former publications. When we used a plot on (sufficient transparent)
paper with the same scale and orientation as in [30], we were able to match our isolines
with those in the printed publication by that worker. The respective fields yielded
with the SOR or the splitting method are not displayed explicitely here, because they
are almost identical with those found with the weighted Jacobi method.

In summary, our simulated velocity fields compare excellent with those by [30].
Therefore, we trust our code and will use it for further studies hereafter.

Remark 5.1. We could find the right ω for Jacobi (as promised above) and
SOR in numerical examples. Here the condition of matrix A1 is important, while this
matrix is stiffer than B, see Figure 5.3. Such problems can be solved by investigating
a finer spatial resolution. Here e have a strong dependence of the convergence on
the spatial resolution and we are motivated to nearer inspect the eigenvalues of the
operator A1 (5.2) which is stiff.

5.2. Eigenvalues of the SSAB equations. We can demonstrated that the
SOR scheme leads to faster convergence and reduced run times compared to the
Jacobi scheme.

Here, we show that equations (4.41) and (4.44) are indeed a reasonable splitting
due to the by far larger condition of the matrix B compared to the matrix A1. We
determine the conditions of the matrices via their maximal and minimal eigenvalues
(equations 2.24, 2.25) with the free software OCTAVE
(http://www.gnu.org/software/octave/). The condition of the respective matrices
show a strong dependence on the iteration steps (Figure 5.3). But the condition of
the matrix A1 is for nearly all iteration steps two orders of magnitude higher that the
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Table 5.1
Performance of the different numerical methods with applied weights of the operators.

Method ωA ωA1 ωB
u ωB

v Run Time (s)
Jacobi 0.7 - - - 8.2
SOR 1.4 - - - 2.5

A1-B splitting - 1.2 0 0.01 1.7

condition of the matrix B; for the very first iteration step the condition of the matrix
A1 is still about a factor of 20 higher compared to that of matrix B. These very clear
results motivate a stronger iteration on the matrix A1 that on the matrix B with
fixed iteration steps for the splittings; i.e., for now we assume that the dominance of
matrix A1 in condition will never change.

Remark 5.2. The improvement can be done with the A1-B splitting, while we
taken into account more iteration steps to operator A1 per splitting step. Such more
investigation to smooth the resolution of operator A1 can also be improved by an
optimal ω.

5.3. Performance studies for weighed Jacobi, SOR and the A1-B split-
ting. The computations were performed an the IBM iDataPlex Cluster (IPLEX).
Table 5.1 shows the run time yielded with the weights which we found before. To
avoid interference with different nodes of the machine all nodes which share the same
memory except for one are switched off. We checked the accuracy of the run time
with the same numerical method for different nodes on the IPLEX and found that
the run times compares by far as accurate the two significant digits given in table 5.1.

The Figure 5.4 presents the iteration steps, that are needed to have convergent
results. The best results are obtained with the proposed weighted iterative schemes.

6. Conclusions and discussions. We present an iterative operator-splitting
method to solve partial differential equations with respect to their underlying time
scales. The correct splitting into the underlying operators of the equations is im-
portant to reduce the splitting error and contribute an efficient method. Here the
eigenvalues of each operators are an indicator for their stiffness in the scheme. We
have embed the computation of the eigenvalues and investigate more iterative steps
over the stiffer operators. Thus, we balance with a weighting factor in the solver
scheme the optimal conditions of the operators. Therefore we present an embedded
eigenvalue solver and accelerate with a weighted scheme. First numerical results can
validate the correct splitting and the efficiency. Optimal results are obtained with
an optimal balance of sufficient iterative steps and the weighting factor in the solver
scheme. In future it will be important to have efficient eigenvalue methods, which can
be embedded into the splitting methods, to contribute the operator-splitting methods
as efficient solver methods for large evolution equations.

Acknowledgments. R. Calov and T. Recknagel are funded by the Deutsche
Forschungsgemeinschaft RA 977/6-1.



26 7. APPENDIX: RUNGE-KUTTA, BDF AND IMEX METHODS

7. Appendix: Runge-Kutta, BDF and IMEX methods. For the time-
discretization of the split equation, the combination of accurate methods, that will fit
in the higher-order context of the iterative operator-splitting methods, is important.

Based on the iterative methods the start solution for the first iteration step is
important to obtain higher-order results. For the next iteration steps the order has
to increase until the proposed order of the time-discretization is achieved.

Therefore we propose the Runge-Kutta and BDF methods as adapted time-
discretization methods to reach higher-order results.

For the time-discretization we use the following higher-order discretization meth-
ods.

7.1. Runge-Kutta method. We use the implicit trapezoidal rule:

0
1 1

2
1
2

1
2

1
2

. (7.1)

Furthermore we use the following Gauß-Runge-Kutta method:
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1
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. (7.2)

To use these Runge-Kutta methods with our operator-splitting method we have to
take into account that we solve in each iteration step equations of the form ∂tui =
Aui + b, where b = Bui−1 is a discrete function, as we only have a discrete solution
for ui−1.

For the implicit trapezoidal rule this is no problem, because we do not need the
values at any sub-points. However, for the Gauß method we need to now the values
of b at the sub-points t0 + c1h and t0 + c2h with c = ( 1

2 −
√

3
6 , 1

2 +
√

3
6 )T . Therefore

we must interpolate b. On that account we choose the cubic spline functions.
Numerical experiments show that this works properly with non-stiff problems,

but not very well with stiff problems.

7.2. BDF method. Because the higher-order Gauß-Runge-Kutta method com-
bined with cubic spline interpolation does not work properly with stiff problems, we
use the following BDF method of order three, which does not need any sub-points
and therefore no interpolation is needed.

The BDF3 method is defined by

1
k

(
11
6

un+2 − 3un+1 +
3
2
un − 1

3
un−1 = A(un+3). (7.3)

For the pre-stepping, i.e. to obtain u1, u2, we use the implicit trapezoidal rule (7.1).

7.3. Implicit-explicit methods. The implicit-explicit (IMEX) schemes have
been widely used for time integration of spatial discretised partial differential equa-
tions of diffusion-convection type. These methods are applied to decouple the implicit
and explicit terms. Treating the convection-diffusion equation for example, one can
use the explicit part for the convection and the implicit part for the diffusion term.
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In our application we divide between the stiff and non-stiff term, so we apply the
implicit part for the stiff operators and the explicit part for the non-stiff operators.

7.3.1. FSRK method. We propose the A-stable fractional-stepping Runge-
Kutta (FSRK) scheme, see [6], of first and second order for our applications.
The tableau in the Butcher form is given as

1 1 0
1 1 0 0 1
4
9 − 88

45 0 12
5 0 0 5

9 0
1
3 − 407

75 0 − 144
25 0 0 − 31

15 0 12
5

order1 1 0 0 0 0 1 0 0
order2 1

10 0 9
10 0 0 1

4 0 3
4

. (7.4)

To obtain second-order convergence in numerical examples it is important to split the
operator in the right way as we will show later.

7.3.2. SBDF Method. We use the following stiff backward differential formula
(SBDF) method, which is a modification of the third-order backward differential for-
mula (BDF3) method.
As pre-stepping method we use again the implicit trapezoidal rule.

1
k

(
11
6

un+1 − 3un +
3
2
un−1 − 1

3
un−2) (7.5)

= 3A(un)− 3A(un−1) + A(un−2) + B(un+1).

Again it is important to split the operator in the right way.
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Fig. 5.1. MacAyeal’s schematic model setup. (a) shading plot of basal friction parameter
cs(x, y) in Pa a m−1, isolines of (b) ice surface elevation in m and (c) ice thickness in m.
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Fig. 5.2. Simulated velocity. (a) traverse velocity u and (b) longitudinal velocity v in m/a.

Fig. 5.3. Conditions of A1 and B of the SSAB equation.
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Fig. 5.4. Convergence of the schemes with respect to the iterative steps. The weighted schemes
(green and blue) are faster.


