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Abstract

In this article a new approach is considered for implementing operator splitting methods
for transport problems, influenced by eletric fields. Our motivation came to model PE-CVD
(plasma-enhanced chemical vapor deposition) processes, means the flow of species to a gas-
phase, which are influenced by an electric field. We consider a convection-diffusion equation and
a Lorence force in the electrostatic case.

The iterative splitting schemes is given as an embedded coupling method and we apply such
a scheme as a fast solver. The decomposition analysis is discussed for the nonlinear case. Nu-
merical experiments are given with respect to explicit Adam-Bashforth schemes. We discuss the
convergence behavior in time and space for the iterative schemes.

Key words: numerical analysis, iterative solver method, Adam-Bashforth methods, nonlinear
convergence.
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1. Introduction

In the field of numerical modeling and simulation of transport problems, the influence
of electrical fields are of interest.

We consider a coupled model of a convection-diffusion equation with a electrostatic
field.

While the underlying equations are coupled nonlinear and linear equations, we propose
iterative schemes to solve such schemes.

We deal with the following model equations:
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∂u

∂t
=−v · ∇u + ∇ · D∇u, (1)

∂v

∂t
=−

∂u
∂t

u
v +

ν

µ
E, (2)

u(x, t0) = u0(x), (3)

v(x, t0) = v0(x), (4)

where u is the density of the ion concentrations, v is the velocity field, E is the electric
field and ν, µ are parameters. We consider Neumann boundary conditions.

The iterative splitting scheme is considered after the spatial discretization and we
obtain the following nonlinear ordinary differential equation system:

∂u

∂t
= A1(v)u + B(v)u, (5)

∂v

∂t
= A2(

∂u

∂t
, u)v + f , (6)

where A1, A2, B are given of the spatial discretization. f = ν
µ
E.

Here we deal with a iterative scheme to solve the nonlinear equation.

2. Mathematical Model

We motivate our study by simulating a growth rate of a deposition process that can be
done by PE-CVD (plasma enhanced chemical vapor deposition) processes, see [1] and [2].
A gas exposed to an electric field in low pressure conditions (< 5 Torr) results in a non-
equilibrium plasma, see [3] and [4]. Such ionized media, known as ”cold” plasma or glow
discharges, are powerful surface-modification tools in Material Science and Technology.
Low-pressure plasmas allow to modify the surface chemistry and properties of materials
compatible with low-medium vacuum, through a PE-CVD process, see applications [4].
Here a porous media model with permeable layers is an attractive simulation models.
The transport, chemical and sorption processes in a homogeneous media can be used to
simulate species transport in a plasma enhanced environment, controlled by pressure, by
temperature and by additional electric fields.

We concentrate on a far-field model and assume a continuum flow, and that the trans-
port equations can be treated with a convection-diffusion-reaction equation, due to a
constant velocity field, see:

∂u

∂t
+ ∇Fu = 0, in Ω × [0, t] (7)

F = v − D∇,

c(x, t) = c0(x), on Ω, (8)

∂c(x, t)

∂n
= 0, on ∂Ω × [0, t], (9)

where c is the particle density of the ionized species. F the flux of the species. v is the flux
velocity through the chamber and porous substrate which is influenced by the electric
field. D is the diffusion matrix. The initial value is given as c0 and we assume a Neumann
boundary condition.
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2.) Electric Field (Distribution)
To model the influence of the electric field on the concentration we use a pointwise

approach that means we assume that the concentration in a point x ∈ Ω behaves like
a point-charge of mass m = µu, µ ∈ R

+ and charge q = νu ν ∈ R. We also assume
that there is no interaction between these point-charges. (This interaction is already
considered in the convection-diffusion equation). In general the Lorentz force in this case
can be written as F = q(E + v × B). So that the Lorentz force in our electrostatic case
is given as: F = νuE.
We can write the equation of motion as follows:

∂p

∂t
= µuE

∂m

∂t
v + m

∂v

∂t
= νuE

∂v

∂t
+

∂u
∂t

u
v =

ν

µ
E (10)

3. Discretization Methods

3.1. Discretization methods of the Convection-Diffusion equation

For the 3 dimensional convection-diffusion equation we apply a second order finite
difference scheme in space and a higher order discretization scheme in time.

∂u

∂t
=−v∇u + D∆u,

=−vx

∂u

∂x
− vy

∂u

∂y
− vz

∂u

∂z
+ D

∂2u

∂x2
+ D

∂2u

∂y2
+ D

∂2u

∂z2
,

u(x, t0) = u0(x),

We apply dimensional splitting to our problem

∂u

∂t
= Axu + Ayu + Azu

where

Ax =−vx

∂u

∂x
+ D

∂2u

∂x2
.

We use a 1st order upwind scheme for ∂
∂x

and a 2nd order central difference scheme for
∂2

∂x2 . By introducing the artificial diffusion constant Dx = D − vx∆x
2 we achieve a 2nd

order finite difference scheme

Lxu(x) =−vx

u(x) − u(x − ∆x)

∆x
+ Dx

u(x + ∆x) − 2u(x) + u(x − ∆x)

∆x2
.

because the new diffusion constant eliminates the first order error (i.e. the numerical
viscosity) of the Taylor expansion of the upwind scheme. Lyu and Lzu are derived in the
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same way.
For the discretization in time we use several explicit Runge-Kutta and Adam-Bashforth
methods, this leads to restrictions of the step-size in time but on the other hand the cost
of implicit methods is much to high in this 3-dimensional case.

3.2. Analytical solution of the Electrostatic field

Equation (10) is a linear ODE. We have to solve it at every time-step with the initial
condition v(tn) = vn. It has the following analytical solution:

v(t) = vn

un

u(t)
+

ν

µ
E

1

u(t)

∫ t

tn

u(t)dt (11)

Under the assumption of constant coefficients (that means it holds u(t) = u(tn) =
un ∀t ∈ [tn, tn+1), u̇(t) = u̇(tn) = u̇n ∀t ∈ [tn, tn+1)) we get a solution that is ab-
solutely explicit:

v(t) =

(

vn −
νun

µu̇n

E

)

exp

(

−
u̇n

un

t

)

+
νun

µu̇n

E. (12)

Remark 1 The analytical solution is only given for theoretical analysis, for practical
computations, we have to derive a numerical scheme. The schemes are discussed in the
following parts.

Iterative computation of the electrostatic field

We apply successive approximation to the computation of the electrostatic field:

vi(t) = vn

un

ui−1(t)
+

ν

µ
E

1

ui−1(t)

∫ t

tn

ui−1(t)dt, for i = 1, 2, 3, . . . ., t ∈ [tn, tn+1], (13)

where we assume ui−1(t) is given from previous computations and vi(t
n) = v(tn).

The stopping criterion is given as:

||vi(t) − vi−1(t)|| = err1, ||ui(t) − ui−1(t)|| = err2, max{err1, err2} ≤ err, (14)

where err is a given error-bound.
The integral in (13) is computed as:
1.) Trapezoidal rule:

∫ t

tn

ui−1(s)ds ≈
1

2
(t − tn)(ui−1(t) + ui−1(t

n)) , (15)

where we obtain a second order scheme.
2.) Taylor expansion around tn

∫ t

tn

ui−1(s)ds ≈ (t − tn)ui−1(t
n) +

1

2
(t − tn)

dui−1

dt
(tn) , (16)

where we have a also a second order scheme and dui−1

dt
(tn) is given as:

dui−1

dt
(tn) = Aui−1(t

n) + Bui−1(t
n) , (17)

Remark 2 We assume to have sufficient smoothness of the solution ui−1. Further the
computation of the derivation is given with the matrix operators.
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3.3. Apriori error estimates: CFL Conditions

In the following we describe the error estimates:
Lemma 1 We assume to deal with finite difference discretization in space and Euler
explicit time discretization. Then the time error estimate for the equation (1) is given as:

∆tAdv ≤
∆x

3v(∆tAdv)
, (18)

v(t) = ||v(t)|| =

(

vn −
νun

µu̇n

||E||

)

exp

(

−
u̇n

un

t

)

+
νun

µu̇n

||E|| (19)

∆tDiff ≤=
∆x2

6D
, (20)

∆tmax = min(∆tAdv, ∆tDiff ); (21)

where ||·|| is the Euclidian norm for the vectors and equation (18) is a nonlinear equation
solved with Newton’s method.

Proof 1

un+1
i − un

i

∆t
= 3||v||

un
i+1 − un

i

∆x
+ 3D

un
i+1 − 2un

i + un
i−1

∆x2
(22)

where i are the spatial grid points and v is given analytically in equation (11).
We obtain the stability criterion for a stable discretization scheme:

un+1
i ≤ (1 − 3

||v||∆t

∆x
− 6

D∆t

∆x2
)un

i + 3
||v||∆t

∆x
un

i+1 + 3
D∆t

∆x2
)(un

i+1 + un
i−1) (23)

where the CFL condition is given as:

(1 − 3
||v||∆t

∆x
− 6

D∆t

∆x2
) > 0 (24)

we deal with the stronger restriction:

1 − 3
||v||∆t

∆x
> 0 (25)

1 − 6
D∆t

∆x2
) > 0 (26)

Then the CLF conditions are given as

∆tAdv ≤
∆x

3v(∆tAdv)
, (27)

v(t) = ||v(t)|| =

(

vn −
νun

µu̇n

||E||

)

exp

(

−
u̇n

un

t

)

+
νun

µu̇n

||E|| (28)

∆tDiff ≤=
∆x2

6D
, (29)

∆tmax = min(∆tAdv, ∆tDiff ); (30)

where || · || is the Euclidian norm for the vectors and the analytical solution of the velocity
is given as:
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3∆tAdv

(

vn −
νun

µu̇n

||E||

)

exp

(

−
u̇n

un

∆tAdv

)

+ 3∆tAdv

νun

µu̇n

||E|| ≤ ∆x, (31)

F (∆tAdv) − ∆x ≤ 0 (32)

and equation (32) is a real-valued function, where the roots are solved by Newton’s method.

4. Splitting methods to couple Electrostatic and Convection Diffusion

equation

We concentrate on the splitting methods, which can be classified as classical and iter-
ative splitting methods.

We propose iterative splitting methods by discussing the additive iterative splitting
methods, see [5] and [6].

We consider the following the nonlinear problem

∂u

∂t
= A1(v)u + B(v)u, (33)

∂v

∂t
= A2(

∂u

∂t
, u)v + f , (34)

where the initial conditions are un = u(tn),vn = v(tn). The operators A1 and A2 are
spatially discretized operators, e.g. they correspond in space to the discretized convection
and diffusion operators (matrices). Hence, they can be considered as bounded operators
with a sufficient large spatial step ∆x > 0.

4.1. Iterative splitting methods

The following algorithm is based on the iteration with fixed splitting discretization step
size τ . On the time interval [tn, tn+1] we solve the following subproblems consecutively
for i = 1, 3, . . . 2m + 1, cf. [5] and [6].

∂ui(t)

∂t
= A1(αvi−1(t) + (1 − α)vi−1(t

n))ui(t) (35)

+ B(αvi−1(t) + (1 − α)vi−1(t
n))ui−1(t),

with ui(t
n) = un,vi−1(t

n) = vn,

∂vi(t)

∂t
= A2(α(

∂ui

∂t
, ui) + (1 − α)(

∂u

∂t
(tn), u(tn)))vi(t) + f , (36)

with ui(t
n) = un,vi(t

n) = vn,

where u0 ≡ un,v0 ≡ vn are the known split approximation at time level t = tn. The split
approximation at time level t = tn+1 is defined as un+1 = ui(t

n+1),vn+1 ≡ vi(t
n+1).

While α ∈ [0, 1] is the weighting factor and α = 0 is purely explicit and we are done
in i = 1, α = 1 is pure implicit and we have approximate the last solutions.
Remark 3 The stop criterion of the iterative splitting scheme is given as:
– We stop after a fixed number of iterative steps, e.g. i = 3
– or we stop after an error bound is reached, we assume that there exists an i with:
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max{||ui(t) − ui−1(t)||, ||vi(t) − vi−1(t)||} ≤ err, (37)

where || · || i a given vector norm, e.g. Euklidian norm and err ∈ IR+ is a given error
bound, e.g. err = 10−4.

5. Error Analysis: Coupling Methods

For a simpler notation, we define c = (u,v)t as a new variable, including the concen-
tration and velocity field.

Based on this, we deal with nonlinear differential equations of the following type:

dc

dt
= A(c(t))c(t) + B(c(t))c(t), with c(tn) = cn, (38)

where c = (u,v)t, with v is the velocity field (including the electrostatic field in a
analytical version) and u is the concentration of the species.

The main idea is to bound the operators A(c(t)) and B(c(t)) in the discretized equation
to satisfy a stable method.

A first idea is the fix-point scheme, that is discussed in the following subsection.

5.1. Consistency and stability analysis

In the sequel we demonstrate the error analysis for the linear and nonlinear decomposition
methods. In this section we designate as ei(t) := c(t)− ci(t) the error between the exact
solution and the approximated solution after i iterations.
Here we discuss the linearization techniques and their approximations.
Theorem 1 Let us consider the following problem

∂tc(t) = A(c(t))c(t) + B(c(t))c(t), 0 < t ≤ T ,

c(0) = c0 ,

where A, B are nonlinear differentiable bounded operators A, B in a Banach space X.
Linearizing the nonlinear operators yields the linearized equation

∂tc(t) = Ãc(t) + B̃c(t) + R(cĩ)cĩ, 0 < t ≤ T ,

Ã = A(cĩ) +
∂A(c

ĩ
)

∂c
cĩ , B̃ = B(cĩ) +

∂B(c
ĩ
)

∂c
cĩ ,

R(cĩ) =
∂A(c

ĩ
)

∂c
cĩ +

∂B(c
ĩ
)

∂c
cĩ ,

c(0) = c0 ,

(39)

where Ã, B̃, Ã + B̃ :X → X are given, linear bounded operators being generators of the
C0-semigroup and c0 ∈ X is a given element. The linearization is of the form A(c)c ≈

A(cĩ)cĩ + (
∂A(c

ĩ
)

∂c
cĩ)(c − cĩ) where cĩ ∈ X is a linearized solution, we further assume

7



(
∂A(c

ĩ
)

∂c
)cĩ is a constant Jacobian matrix.

We assume that the iteration process (??)–(??) is convergent and the convergence is of
second order.
It holds

‖ei‖ = Kτn‖ei−1‖ + O(τ2
n), (40)

where K is an estimation of the residual ||R(c̃)|| ≤ Rmax ∈ IR+ for all c̃ ∈ X and
||B̃|| ≤ K̃.

One could also obtain the result with Lipschitz-constants.
We now prove the argument using the semi-group theory.

Proof 2 Let us consider the iteration (??)–(??) in the sub-interval [tn, tn+1].
The linearized splitting method is given as :

∂ci(t)

∂t
= Ãci(t) + B̃ci−1(t) + R(ci−1)ci−1(t), (41)

with ci(t
n) = cn (42)

c0(t
n) = cn , c−1 = 0,

∂ci+1(t)

∂t
= Ãci(t) + B̃ci+1(t) + R(ci−1)ci−1(t), (43)

with ci+1(t
n) = cn ,

where cn is the known split approximation at the time level t = tn. We solve the subprob-
lems consecutively for i = 0, 2, . . . , 2m.

For the error function ei(t) = c(t) − ci(t) we have the relations

∂tei(t) = Ã(ei(t)) + B̃(ei−1(t)) + R(ei−1)ei−1(t), t ∈ (tn, tn+1],

ei(t
n) = 0 ,

(44)

and

∂tei+1(t) = Ã(ei(t)) + B̃(ei+1(t)) + R(ei−1)ei−1(t), t ∈ (tn, tn+1],

ei+1(t
n) = 0 ,

(45)

for m = 0, 2, 4, . . . , with e0(0) = 0 and e−1(t) = c(t) and

Ã = A(ei−1) + ∂A(ei−1)
∂c

ei−1 , B̃ = B(ei−1) + ∂B(ei−1)
∂c

ei−1 ,

R(ei−1) = ∂A(ei−1)
∂c

ei−1 + ∂B(ei−1)
∂c

ei−1.

In the following we derive the linearized equations. We use the notation X2 for the
product space X × X enabled with the norm ‖(u, v)‖ = max{‖u‖, ‖v‖} (u, v ∈ X). The
elements Ei(t), Fi(t) ∈ X2 and the linear operator A : X2 → X2 are defined as follows

Ei(t) =





ei(t)

ei+1(t)



 ; A =





Ã 0

Ã B̃



 , (46)
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Fi(t) =





R(ei−1)ei−1 + B̃ei−1

R(ei−1)ei−1



 . (47)

where have the bounded and linearized operators Ã, B̃ and R(ei−1.
Using notation (18) and (46), the relations (44)–(45) can be written in the form

∂tEi(t) = AEi(t) + Fi(t), t ∈ (tn, tn+1],

Ei(t
n) = 0.

(48)

Due to our assumptions that A and B are bounded and differentiable and that we have
a Lipschitzian domain, A is a generator of the one-parameter C0 semigroup (A(t))t≥0.
We also assume the estimate of our term Fi(t) with the growth conditions.

We can estimate the right hand side Fi(t) with help of Lemma 1 presented after this
proof. Hence, using the variations of constants formula, the solution of the abstract
Cauchy problem (48) with homogeneous initial condition can be written as (cf. e.g. [7])

Ei(t) =

∫ t

tn

exp(A(t − s))Fi(s)ds, t ∈ [tn, tn+1]. (49)

Hence, using the denotation

‖Ei‖∞ = supt∈[tn,tn+1] ‖Ei(t)‖ , (50)

and taking into account Lemma 1, we have

‖Ei(t)‖∞ ≤ ‖Fi‖∞

∫ t

tn

‖exp(A(t − s))‖ds

≤ C ‖ei−1(t)‖

∫ t

tn

‖exp(A(t − s))‖ds, t ∈ [tn, tn+1].

(51)

Since (A(t))t≥0 is a semigroup, the so called growth estimate is

‖ exp(At)‖ ≤ K exp(ωt) , t ≥ 0 , (52)

with some numbers K ≥ 0 and ω ∈ IR (see [7]).
– Assume that (A(t))t≥0 is a bounded or exponentially stable semigroup, i.e. that (52)

holds with some ω ≤ 0. Then obviously the inequality

‖ exp(At)‖ ≤ K; t ≥ 0 , (53)

holds, and hence from (51), we have

‖Ei(t)‖∞ ≤ Kτn‖ei−1(t)‖, t ∈ (0, τn). (54)

– Assume that (A(t))t≥0 has exponential growth with some ω > 0. From (52) we have

∫ tn+1

tn

‖exp(A(t − s))‖ds ≤ Kω(t), t ∈ [tn, tn+1], (55)
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where

Kω(t) =
K

ω
(exp(ω(t − tn)) − 1) , t ∈ [tn, tn+1] , (56)

and hence

Kω(t) ≤
K

ω
(exp(ωτn) − 1) = Kτn + O(τ2

n) , (57)

where τn = tn+1 − tn. The estimations (54) and (57) result in

‖Ei‖∞ = Kτn‖ei−1‖ + O(τ2
n). (58)

Taking into the account the definition of Ei and the norm ‖ · ‖∞, that results to have the
estimation ||ei+1|| ≤ ||ei||, we obtain

‖ei‖ = Kτn‖ei−1‖ + O(τ2
n),

which proves our statement. �

Lemma 2 The term Fi(t) given by (47) can be estimated as

||Fi(t)|| ≤ C||ei−1|| . (59)

where we assume the boundedness of R(ei−1) and B̃, see Theorem 1.
Proof 3 We have the norm ||Fi(t)|| = max{Fi1(t),Fi2(t)}.
Each term can be bounded as follows.

||Fi1(t)|| ≤ ||(R(ei−1(t)) + B̃)ei−1(t)||

≤ (Rmax + K̃)||ei−1(t)|| , (60)

||Fi2(t)|| ≤ ||R(ei−1(t))ei−1(t)||

≤Rmax||ei−1(t)|| . (61)

where Rmax and K̃ are constants and defined in Theorem 1.
So we obtain the estimate

||Fi(t)|| ≤ C||ei−1(t)||,

where C = Rmax + K̃. �

5.2. Iterative operator-splitting method as a fix-point scheme

The iterative operator-splitting method is used as a fix-point scheme to linearize the
nonlinear operators, see [8] and [6].

We restrict our attention to time-dependent partial differential equations of the form:

du

dt
= A(u(t))u(t) + B(u(t))u(t), with u(tn) = cn, (62)

where A(u), B(u) : X → X are linear and densely defined in the real Banach space X,
involving only spatial derivatives of c, see [9]. In the following we discuss the standard
iterative operator-splitting methods as a fix-point iteration method to linearize the op-
erators.
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We split our nonlinear differential equation (62) by applying:

dui(t)

dt
= A(ui−1(t))ui(t) + B(ui−1(t))ui−1(t), with ui(t

n) = cn, (63)

dui+1(t)

dt
= A(ui−1(t))ui(t) + B(ui−1(t))ui+1, with ui+1(t

n) = cn, (64)

where the time step is τ = tn+1 − tn. The iterations are i = 1, 3, . . . , 2m + 1. u0(t) = cn

is the starting solution, where we assume the solution cn+1 is near cn, or u0(t) = 0. So
we have to solve the local fix-point problem. cn is the known split approximation at the
time level t = tn.
The split approximation at time level t = tn+1 is defined as cn+1 = u2m+2(t

n+1). We
assume the operators A(ui−1), B(ui−1) :X → X to be linear and densely defined on the
real Banach space X, for i = 1, 3, . . . , 2m + 1.
Here the linearization is done with respect to the iterations, such that A(ui−1), B(ui−1)
are at least non-dependent operators in the iterative equations, and we can apply the
linear theory.
The linearization is at least in the first equation A(ui−1) ≈ A(ui), and in the second
equation B(ui−1) ≈ B(ui+1)
We have

||A(ui−1(t
n+1))ui(t

n+1) − A(un+1)u(tn+1)|| ≤ ǫ,
with sufficient iterations i = {1, 3, . . . , 2m + 1}.
Remark 4 The linearization with the fix-point scheme can be used for smooth or weak
nonlinear operators, otherwise we loose the convergence behavior, while we did not con-
verge to the local fix-point, see [6].

6. Experiments

We deal with the following coupled transport and flow-field equations:

∂u

∂t
=−v · ∇u + ∇ · D∇u, (65)

∂v

∂t
=−

∂u
∂t

u
v +

ν

µ
E, (66)

u(x, t0) = u0(x), (67)

v(x, t0) = v0(x), (68)

where we have Neumann boundary conditions.
We deal with several methods and have the following general setting. Let Ω = [0, 1]×

[0, 1]× [0, 1], the unit cube. There we set up the initial concentration

ut0(x) = 2 exp

(

−(x − a)2)

0.02

)

∀x ∈ Ω (69)

with a = (0.5, 0.5, 0.5)T (70)

which is just the analytical solution
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ua(x, t) =
1

t
exp

(

−(x − vt)2

4Dt

)

(71)

with v = 1 and D = 0.01 at t = t0 = 0.5 on Ω.
During the following experiments we will set v = 0 and consider an equidistant lat-
tice of N3 points (∆x = ∆y = ∆z = ∆ = 1

N−1 ). We set ∆0 = 1
60 , ∆t0 = 1

4∆0 and

tend = 1.50416̄ (tend = t0 + 241 · ∆t0).

To calculate the error we will use a reference solution which is generated with Kutta’s
fourth order method where N = 241 so that ∆ = 1

240 and ∆t = 1
48∆.

In the following tabular (Kutta fourth order) all values have the dimension 1 · 10−3.

∆t0
1
2∆t0

1
3∆t0

1
4∆t0

1
5∆t0

1
6∆t0

1
7∆t0

1
8∆t0

1
9∆t0

1
10∆t0

1
11∆t0

1
12∆t0

∆0 0.9195 0.9600 0.9735 0.9803 0.9843 0.9870 0.9889 0.9904 0.9915 0.9924 0.9931 0.9938

1
2∆0 ∞ ∞ 0.3427 0.3498 0.3540 0.3568 0.3589 0.3604 0.3615 0.3625 0.3633 0.3639

1
3∆0 ∞ ∞ ∞ ∞ ∞ 0.1179 0.1200 0.1215 0.1227 0.1236 0.1244 0.1251

1
4∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0

The last value is zero because this was the reference solution. The result is graphically
shown in figure 1.

In the following tabular (Heun third order) all values have the dimension 1 · 10−3.

∆t0
1
2∆t0

1
3∆t0

1
4∆t0

1
5∆t0

1
6∆t0

1
7∆t0

1
8∆t0

1
9∆t0

1
10∆t0

1
11∆t0

1
12∆t0

∆0 0.9195 0.9600 0.9735 0.9803 0.9843 0.9870 0.9889 0.9904 0.9915 0.9924 0.9931 0.9938

1
2∆0 ∞ ∞ 0.3427 0.3498 0.3540 0.3568 0.3589 0.3604 0.3615 0.3625 0.3633 0.3639

1
3∆0 ∞ ∞ ∞ ∞ ∞ ∞ 0.1200 0.1215 0.1227 0.1236 0.1244 0.1251

1
4∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 8 · 10−9

The result is graphically shown in figure 2.

In the following tabular (Adam-Bashforth second order) all values have the dimension
1 · 10−3.

∆t0
1
2∆t0

1
3∆t0

1
4∆t0

1
5∆t0

1
6∆t0

1
7∆t0

1
8∆t0

1
9∆t0

1
10∆t0

1
11∆t0

1
12∆t0

∆0 ∞ 0.9599 0.9735 0.9802 0.9843 0.9870 0.9889 0.9904 0.9915 0.9924 0.9931 0.9938

1
2∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0.3604 0.3615 0.3625 0.3632 0.3639

1
3∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

1
4∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

The result is graphically shown in figure 3.

In the following tabular (Adam-Bashforth third order) all values have the dimension
1 · 10−3.
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∆t0
1
2∆t0

1
3∆t0

1
4∆t0

1
5∆t0

1
6∆t0

1
7∆t0

1
8∆t0

1
9∆t0

1
10∆t0

1
11∆t0

1
12∆t0

∆0 ∞ ∞ ∞ 0.9803 0.9843 0.9870 0.9889 0.9904 0.9915 0.9924 0.9931 0.9938

1
2∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

1
3∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

1
4∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

The result is graphically shown in figure 4.

In the following tabular (Adam-Bashforth fourth order) all values have the dimension
1 · 10−3.

∆t0
1
2∆t0

1
3∆t0

1
4∆t0

1
5∆t0

1
6∆t0

1
7∆t0

1
8∆t0

1
9∆t0

1
10∆t0

1
11∆t0

1
12∆t0

∆0 ∞ ∞ ∞ ∞ ∞ 0.9870 0.9889 0.9904 0.9915 0.9924 0.9931 0.9938

1
2∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

1
3∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

1
4∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

The result is graphically shown in figure 5.

In the following tabular (Adam-Bashforth fifth order) all values have the dimension
1 · 10−3.

∆t0
1
2∆t0

1
3∆t0

1
4∆t0

1
5∆t0

1
6∆t0

1
7∆t0

1
8∆t0

1
9∆t0

1
10∆t0

1
11∆t0

1
12∆t0

∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0.9931 0.9938

1
2∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

1
3∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

1
4∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

The result is graphically shown in figure 6.

This results show that the quality of all four methods is much more restricted by the
accuracy in space than in time.
Remark 5 We receive convergent results in time and space for the Adam-Bashforth
and iterative splitting solver. The results can be improved by using higher order Adam-
Bashforth methods and more refined grids.

7. Conclusion

We discussed iterative splitting schemes for nonlinear coupled partial differential equa-
tions. The numerical analysis is presented for nonlinear and spatial discretised equations
and we obtain higher order results with more iterative steps. With explicit discretization
schemes as Adam-Bashforth methods, we can accelerate our solver schemes, while we
skip costly implicit methods. A priori error estimates allow to optimize the time steps.
In future we are taken into account a framework to couple partial differential equations
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based on fix-point and iterative schemes.

8. Appendix

8.1. Explicit Time-Integration Methods

To have fast methods, we consider explicit time-integration methods for the coupled
equations.

We consider Adam-Bashforth (AB) and Runge-Kutta (RK) methods.
While the time steps AB1 is ∆t ≈ 1√

50
∆x and AB2 is ∆t ≈ 1√

200
∆x, we apply the

RK schemes with ∆t ≈ 1√
7
∆x.

8.1.1. Adam-Bashforth methods

yn+1 = yn + h

s
∑

j=0

bj f(tn−j , yn−j) (72)

bj =
(−1)j

j!(s − j)!

∫ 1

0

s
∏

i=0,i6=j

(u + i) du, j = 0, . . . , s. (73)

We consider here
s = 2 (second order)

yn+1 = yn + h

(

3

2
f(tn, yn) −

1

2
f(tn−1, yn−1)

)

(74)

and s = 3 (third order)

yn+1 = yn + h

(

23

12
f(tn, yn) −

16

12
f(tn−1, yn−1) +

5

12
f(tn−2, yn−2)

)

(75)

and s = 4 (fourth order)

yn+1 = yn + h
(

55
24f(tn, yn) − 59

24f(tn−1, yn−1) + 37
24f(tn−2, yn−2) −

3
8f(tn − 3, yn − 3)

)

,

(76)
and s = 5 (fifth order)

yn+1 = yn + h
(

1901
720 f(tn, yn) − 1387

360 f(tn−1, yn−1)

+ 109
30 f(tn−2, yn−2) −

637
360f(tn−3, yn−3) + 251

720f(tn − 4, yn − 4)
)

. (77)

8.1.2. Explicit Runge-Kutta methods
In general a s-stage Runge-Kutta method can be written in the following way:

yn+1 = yn + h

s
∑

j=1

bjkj (78)
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where

kj = f

(

tn + hcj , yn + h

s
∑

l=1

ajlkl

)

(79)

We will take into account the following two:
Heun’s third-order

0 0 0 0

1
3

1
3 0 0

2
3 0 2

3 0

1
4 0 3

4

=
c A

bT
(80)

and
Kutta’s classical fourth-order

0 0 0 0 0

1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0

1
6

1
3

1
3

1
3

=
c A

bT
(81)

8.2. Matrix Exponential Methods

Another way of computing fast explicit schemes of ODE systems of first order are
matrix exponentials.

We deal with:
dy

dt
= Ay, y(0) = y0, (82)

where we assume A = D + N , D is the diagonal part and N is the nilpotent part of the
matrix A.

We assume also [D, N ] = 0 and we have the solution:

y(t) = exp(Dt) exp(Nt)y0, (83)

where exp(Dt) can be computed just exponentiating every entry on the main diagonal
and

exp(Nt) ≈ I + N t + N2 t2

2
+ N3 t3

3
, (84)

where N is the nilpotent matrix and N ·N is only a shift of the to the next higher upper
or lower diagonal.
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Fig. 1. Maximum error Kutta’s fourth
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Fig. 2. Maximum error Heun’s third
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Fig. 3. Maximum error Adam-Bashforth second
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Fig. 4. Maximum error Adam-Bashforth third
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Fig. 5. Maximum error Adam-Bashforth fourth
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Fig. 6. Maximum error Adam-Bashforth fifth
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