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Abstract. We show in a rather general setting that Hoelder and Lipschitz stability properties of5
solutions to variational problems can be characterized by convergence of more or less abstract iteration6
schemes. Depending on the principle of convergence, new and intrinsic stability conditions can be7
derived. Our most abstract models are (multi-) functions on complete metric spaces. The relevance8
of this approach is illustrated by deriving both classical and new results on existence and optimality9
conditions, stability of feasible and solution sets and convergence behavior of solution procedures.10
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1 Introduction14

In this paper, we shall throughout suppose that15

X, P are metric spaces and X is complete. (1.1)

We study local stability properties of solution sets to inclusions16

p ∈ F (x) where F : X ⇒ P is closed (i.e., has a closed graph) (1.2)

or, in other words, of the inverse mapping S as17

S(p) := F−1(p) = {x ∈ X | p ∈ F (x)} (1.3)

near some (p̄, x̄) ∈ gph S.18
By local stability we mean here that given some (p, x) ∈ gphS near (p̄, x̄) and some π near p̄,19

there exists a solution ξ ∈ S(π) satisfying d(ξ, x) ≤ Ld(π, p)q (q > 0) for some L > 0. Additional20
requirements to p, x and π will specify the type of stability.21

A particular and important special case of (1.3) is given by the level set mapping22

S(p) = Sf (p) := {x ∈ X | f(x) ≤ p} where f : X → IR∞ := IR ∪ {∞} is l.s.c. (1.4)

There are many further applications of the model (1.2), (1.3) known, in particular, for standard23
nonlinear programs, in describing equilibria of games, in several types of bi- or multi-level programs,24
including MPECs, semi-in�nite programs and stochastic models. To see how to link the general model25
with the special ones, we refer e.g. to [1�3,5, 11,20,26,29].26

In many applications, F = f is a function and S = f−1 is its multivalued inverse. But the model27
(1.2), (1.3) describes not only classical right-hand side perturbations of inclusions or equations since28
S(p) may be de�ned implicitly. Consider, for instance,29
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Model 1. Given Φ : X × P1 ⇒ P2 put P = P1 × P2 and30

S(p) = {x ∈ X | p2 ∈ Φ(x, p1)}, F (x) = {p | p2 ∈ Φ(x, p1)}, (1.5)

with equations if Φ = f is a function. The mapping Φ can describe �xed points or solutions of (some31
or many) variational problems which depend on x and p1; e.g., the (stationary or KKT-) solutions to32
miny{h(x, y, p1) | w(x, y) ≤ p1}, solutions to equilibrium problems or to other MPEC- type problems.33
More generally, Φ may depend on p2 or other multifunctions, too.34

Model 2. Given h : X × P1 → P2 (a linear normed space) and C ⊂ P2, the mapping35

S(p) = {x ∈ X | p2 + h(x, p1) ∈ C}, p ∈ P1 × P2 (1.6)

describes set-constraints (or solution sets) in parametric optimization models. With any analytical36
description c ∈ C ⇔ g(x) ≤ 0, this leads to usual inequality constraints G(x, p) := g(p2+h(x, p1)) ≤ 0,37
see section 3.3 for polyhedra C. Further, with Φ(x, p) = C − h(x, p1), system (1.6) is (1.5), even if C38
depends on p1, too.39

The main intention of this paper is to show how basic convergence principles can be used to study40
the connections between local stability, approximate solutions and iterative solution procedures by41
a uni�ed approach in the general setting of inclusions in complete metric spaces. In this way, we42
continue and extend the research presented in [14, 22, 23]. Applications to special cases like level set43
mappings and approximate minimizers are discussed.44

In our general approach, we avoid preparations via Ekeland's variational principle [9]. The latter45
can be done since we do not aim at using the close relations between stability and injectivity of certain46
generalized derivatives (which do not hold in general spaces). For approaches studying these relations,47
we refer the reader e.g. to the monographs [1, 3, 8, 11, 20, 26, 29]. However, we also link di�erent view48
points and approaches, and do this for several relevant special cases of the abstract model.49

Primal space approaches to stability, which avoid the use of generalized derivatives, have been50
already presented in the �rst part of Io�e's work [17]. There, Ekeland's principle is applied in several51
skillful ways. The message of our paper is that primal space stability conditions can be characterized52
by certain convergence principles and the same few convergence principles characterize both calmness53
and the Aubin property in a uni�ed way.54

The paper is organized as follows. Section 2 is devoted to some convergence principles which are55
basic for the rest of the paper. A �rst illustration how to use them is given by deriving (known)56
convergence properties of cyclic projection and proximal point methods.57

In Section 3, we �rst introduce and discuss some known notions of local stability, in particular,58
the Aubin property, Lipschitz l.s.c. and calmness and their Hoelder rate equivalents. Then, as a59
main result of the paper, we present two versions of a theorem on invariance of the Aubin property60
under Lipschitz perturbations, including concrete estimates between the solutions of two perturbed61
mappings. The proofs are based on one of the basic convergence principles of Section 2, the results62
are closely related to [4, 6, 7, 17,18,20].63

In order to point out speci�c features of di�erent local stability properties, we then study standard64
systems of C1 equations and inequalities. This complements recent studies via di�erent approaches,65
given e.g. in [8, 10, 15, 16, 19, 22, 23]. We also show how to include set constraints h(x) ∈ C with a66
polyhedral set C in these standard schemes. In the last subsection of Section 3, we discuss various67
view points about the use of generalized derivatives when deriving optimality and stability criteria in68
nonsmooth settings. In particular, the case of empty subdi�erentials is considered.69

Section 4 is devoted to connections between stability properties and descent conditions for func-70
tionals. This is in particular applied to characterizations of Hoelder calmness of the level set map of71
a functional, in the standard calmness case this is related to recent results in [10, 17, 23]. Further, it72
is shown that the main theorem of this section, Theorem 4.1, is equivalent to Ekeland's principle and73
also leads to a monotonicity criteria for the Aubin (Hoelder-type) property.74

In Section 5, stability for general closed multifunctions F : X ⇒ P is studied. If P is even lin-75
ear normed, the stability characterizations of Section 4 are applied by utilizing the so-called strong76
closedness of suitable intersection maps. In contrast, if P is a metric space, we need an approach inde-77
pendent on strongly closedness and Ekeland's principle. It turns out that one of our basic (and simple)78
convergence principles, presented in Lemma 2.4, leads directly to a characterization of (Hoelder-type)79
calmness and Aubin property in terms of applicability and well-de�ned convergence behavior of some80
proper descent method. This new approach and result will be related to results in [17,21,22].81
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82
Notation83
We write IR∞ for IR ∪ {∞} and use the symbol d for both the metric in X and P if the space84
under consideration is evident. Throughout, we have x, x′, ξ ∈ X, p, p′, π ∈ P. If F is single-valued85
F (x) = {f(x)} we identify F and f . We say that some property holds near x̄ if it holds for all86
x in some neighborhood of x̄. By o = o(t) we denote a quantity of the type o(t)/t → 0 if t ↓ 0,87
and B(x̄, ε) = {x ∈ X | d(x, x̄) ≤ ε} denotes the closed ε-ball around x̄. For real r, r+ stands as88
usual for max{r, 0}. We write dim X < ∞ in order to say that X is a �nite dimensional space, and89
locLip (IRn, IRm) denotes the space of locally Lipschitz functions f : IRn → IRm. We write f ∈ C1,190
if (Fréchet-) derivatives exist and are locally Lipschitz. Our hypotheses of di�erentiability, continuity91
or closedness have to hold near the reference points only.92

2 Some principles of convergence93

2.1 Convergence of particular sequences94

Below, we will apply the following simple statements on convergence.95

Lemma 2.1. Let g, h : X → IR∞, g be l.s.c., and let certain xk, k = 1, 2, . . ., satisfy

g(xk+1) ≤ g(xk) and g(xk+1) ≤ h(xk) + εk; εk ↓ 0.

Then for any their accumulation point ξ, it holds g(ξ) ≤ lim infk→∞ h(xk).96

Proof. Obviously, if the sequence xk has an accumulation point ξ then, by monotonicity, the whole97
sequence g(xk) is convergent and g(ξ) ≤ limk→∞ g(xk+1) ≤ lim infk→∞ [ h(xk) + εk ] =98
lim infk→∞ h(xk).99

If h is u.s.c. (in our applications it is going to be globally Lipschitz) then the Lemma yields

g(ξ) ≤ h(ξ).

The Lemma is one of many possible variations of the well-known Weierstrass theorem for the existence100
of a minimum where h(x) ≡ infX g is constant and the existence of ξ is ensured by compactness.101
Evidently, the particular type of the involved functions is essential and depends on the applications102
we are aiming at. The number of such applications is big, and they may be quite di�erent.103

An important setting appears in the context of Ekeland's principle as follows.104
Let λ > 0, g : X → IR∞ and let g(x0) ∈ IR for some x0 ∈ X. De�ne105

h(u) = inf
x∈X

[ g(x) + λ d(x, u) ] u ∈ X. (2.1)

Lemma 2.2. It holds h ≤ g, and either h(u) is �nite for all u or h(u) = −∞ ∀u. In the �rst case, h106
is Lipschitz (with rank λ). Furthermore, h is �nite if107

cr := inf
x∈B(x0,r)

g(x) > −∞ ∀r > 0 and lim inf
d(x,x0)→∞

g(x)/d(x, x0) > −λ. (2.2)

Proof. The inequality h ≤ g is obvious. We also have h(u) ≤ g(x0) + λ d(x0, u) < ∞. For any
u1, u2, x ∈ X it holds

h(u1) ≤ g(x) + λd(x, u1) ≤ g(x) + λ(d(x, u2) + d(u1, u2)).

Taking the in�mum over x ∈ X we obtain h(u1) ≤ h(u2) + λd(u1, u2). Therefore, h(u2) is �nite if
so is h(u1). Since u1, u2 are arbitrary, we derive: All h(u) are �nite and h is (globally) Lipschitz
with rank λ if h(u) is �nite for some u. Next assume that h(u) = −∞. Then there are xn such that
g(xn) + λd(xn, u) < −n.
Case 1: If d(xn, x0) ≤ r for some r > 0 then infx∈B(x0,r) g(x) = −∞.
Case 2: If d(xn, x0) →∞, then we have g(xn)/d(xn, u) + λ < −n/d(xn, u) < 0 and consequently

lim inf
d(x,x0)→∞

g(x)
d(x, x0)

≤ lim inf
n→∞

g(xn)
d(xn, x0)

= lim inf
n→∞

g(xn)
d(xn, u)

≤ −λ.

Both these situations are excluded by (2.2).108
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If X is a Banach space, the liminf-condition of (2.2) can be replaced by lim inf‖x‖→∞
g(x)
‖x‖ > −λ.109

Proposition 2.3. Let g : X → IR∞ be l.s.c., λ > 0, g(x0) < ∞ and suppose (2.2). Then there exist
xk, k = 1, 2, . . ., such that

g(xk) + λ d(xk, xk−1) ≤ g(xk−1) ( ≤ g(x0) ), (2.3)
g(xk) ≤ h(xk−1) + 1/k. (2.4)

For any such sequence, the limit ξ := lim xk exists and ful�lls

λ d(ξ, x0) ≤ g(x0)− g(ξ), (2.5)
g(x) + λd(x, ξ) ≥ g(ξ) ∀x ∈ X. (2.6)

Proof. By Lemma 2.2, h attains only �nite values and is globally Lipschitz. Having xk−1 for k > 0,110
an appropriate xk can be found as follows. If h(xk−1) = g(xk−1) then take xk = xk−1. In this case,111
the sequence remains constant and the proof is trivial. If h(xk−1) < g(xk−1) then there is some xk112
satisfying (2.3) and (2.4) due to de�nition (2.1). Since g(xk) < g(xk−1) we have xk 6= x0. Inequality113
(2.3) yields for any n > 0,114

λd(xn, x0) ≤ λ

n∑

k=1

d(xk, xk−1) ≤
n∑

k=1

[g(xk−1)− g(xk)] = g(x0)− g(xn) (2.7)

and λ ≤ (g(x0) − g(xn)/d(xn, x0). Assumption (2.2) ensures lim supd(x,x0)→∞
g(x0)−g(x)

d(x,x0)
< λ.115

This tells us that d(xn, x0) remains bounded, say xn ∈ B(x0, r). Since cr > −∞ we conclude that116
g(x0) − g(xn) ≤ g(x0) − cr < ∞. Again by (2.7), so also

∑∞
k=1 d(xk, xk−1) is bounded. The latter117

obviously implies that {xk} is a Cauchy sequence. Thus the limit ξ = lim xk exists in the complete118
metric space X. Finally, (2.5) follows from (2.7), while Lemma 2.1 yields g(ξ) ≤ h(ξ), which is exactly119
(2.6).120

Notice that (2.2) holds true if infX g is �nite. Then the existence of ξ is just Ekeland's principle,121
cf. proposition 4.4. If dim X < ∞, the property cr > −∞ follows from compactness and lower122
semi-continuity of g.123

The conclusion of Proposition 2.3 is obviously stable with respect to small Lipschitz perturbations124
of g.125

The next lemma provides another simple convergence tool which will be used in the sequel.126

Lemma 2.4. Let θ ∈ (0, 1), and L = (1− θ)−1. Let certain xk ∈ X, τk ∈ IR+ satisfy, for 0 ≤ k ≤ n,127

d(xk+1, xk) ≤ τk and τk+1 ≤ θτk. (2.8)

Then xk ∈ B(x0, L τ0) for all k ≤ n + 1. If (2.8) holds for all k ≥ 0 then the limit ξ := lim xk exists128
and satis�es ξ ∈ B(x0, L τ0).129

Proof. It holds for 0 ≤ k ≤ n,

τk+1 ≤ θk+1 τ0, d(xk+1, xk) ≤ θkτ0, and
d(xk+1, x0) ≤

∑k
i=0 d(xi+1, xi) ≤

∑k
i=0 θi τ0 ≤ Lτ0.

This proves the �rst estimate. The claimed convergence follows from the boundedness of the sum130 ∑k
i=0 d(xi+1, xi) ≤ Lτ0 for all k. Hence we obtain a Cauchy-sequence and ξ = lim xk exists.131

In section 5.2.2 we shall put τk = d(pk, π)q where pk, assigned to xk, and π are speci�ed elements of132
P and q > 0.133
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2.2 Applications: Convergence via compactness and projections134

In this subsection, the function h in Lemma 2.1 is de�ned by the next iteration point x′ := T (x) of
some procedure as

h(x) := d( T (x), x̄)

where x̄ is a solution we are interested in. The error constants εk are zero. We show how to use135
Lemma 2.1 in deriving two well-known convergence results.136

Cyclic projections137
Given m closed convex subsets ∅ 6= Ci ⊂ IRn we consider the problem of �nding some ξ ∈ D := ∩i Ci138
where we assume that D 6= ∅. Let x̄ ∈ D and πCi(x) denote the Euclidean projection of x ∈ IRn onto139
Ci. The functions πCi are Lipschitz continuous with rank 1 (non-expansive). For any x ∈ IRn, the140
elementary properties of projections yield141

‖πCi(x)− x̄‖ ≤ ‖x− x̄‖ and (2.9)
142

‖πCi(x)− x̄‖ = ‖x− x̄‖ ⇔ πCi(x) = x ⇔ x ∈ Ci. (2.10)
Let x(m) be the result after a cyclic projection of x, i.e., after applying the m projections as

x′ := πC1(x), x′′ := πC2(x′), . . ., x(m) := πCm(x(m−1)).

Put T (x) := x(m), g(x) := d(x, x̄), h(x) := d(T (x), x̄), xk+1 := T (xk)

for any initial point x0. The latter de�nes the procedure of cyclic projections (also known as Feijer143
method). We verify the known result144

Proposition 2.5. The sequence {xk} converges to some ξ ∈ D.145

Proof. Obviously, g, T (as a composition of projections), and h are continuous. Because of (2.9), it146
holds147

h(xk) = g(xk+1) ≤ g(xk), (2.11)
148

‖xk+1 − x̄‖ ≤ ‖xk − x̄‖ ≤ . . . ≤ ‖x0 − x̄‖. (2.12)
Thus the bounded sequence has an accumulation point ξ. Due to (2.11), it follows from Lemma 2.1
that

d(ξ, x̄) ≤ d(T (ξ), x̄) ≤ d(ξ, x̄), hence d(ξ, x̄) = d(T (ξ), x̄).

By (2.9) and (2.10) then ξ remains �xed under all m projections. This ensures ξ ∈ D for all such149
accumulation points. Assume there are two of them, ξ1 and ξ2. Since our estimates hold with any150
x̄ ∈ D, they hold for x̄ = ξ1, too. From (2.12), then ξ2 = ξ1 follows.151

Proximal Points, Moreau-Yosida approximation152

For minimizing a convex function f : IRn → IR which has a minimizer, one may consider the so-called153
Moreau-Yosida approximation Fy(x) = f(x) + 1

2‖x − y‖2. Its minimizer x = x(y) is unique since Fy154
is strongly convex, and is characterized by155

0 ∈ ∂Fy(x) = x− y + ∂f(x). (2.13)
Hence, the solutions x̂ ∈ argmin f are just the �xed points of the function y 7→ x(y). The proximal156
point method generates a sequence by setting xk+1 = T (xk) := argmin Fxk

where x0 is arbitrary.157

Proposition 2.6. If argmin f 6= ∅ then the sequence {xk} converges to a minimizer of f .158

Proof. Every xk+1 is the unique solution to (2.13) for y = xk. Since ∂f is monotone, it holds for
related solutions x and x′ corresponding to y and y′ respectively:

y − x ∈ ∂f(x), y′ − x′ ∈ ∂f(x′),

0 ≤ 〈y′ − x′ − (y − x), x′ − x〉 = 〈y′ − y, x′ − x〉 − ‖x′ − x‖2 ≤ ‖y′ − y‖ ‖x′ − x‖ − ‖x′ − x‖2.
This entails non-expansivity as above, due to

‖x′ − x‖2 ≤ ‖y′ − y‖ ‖x′ − x‖ and ‖x′ − x‖ ≤ ‖y′ − y‖.
Discussing here the equation, it should be evident, that convergence follows in the same manner as159
for the cyclic projections.160

If IRn is replaced by a Hilbert space, one obtains still weak convergence of {xk} by the same proof.161
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3 Hoelder type stability162

3.1 Stability properties163

The following de�nitions describe, for q = 1, typical local Lipschitz properties of the multifunction164
S = F−1 or of level sets for functions f : X → IR, called Aubin property, calmness, and Lipschitz lower165
semi-continuity. In what follows we will speak about the analogue properties with exponent q > 0 and166
add [q] in order to indicate this fact. To avoid the misleading term �Lipschitz lower semi-continuity167
[q]� we write �lower semi-continuity (l.s.c.) [q]�.168

De�nition 1. Let S : P ⇒ X, z̄ = (p̄, x̄) ∈ gph S.169

(D1) S obeys the Aubin property [q] at z̄ if

∃ ε, δ, L > 0 : x ∈ S(p) ∩B(x̄, ε) ⇒ B(x, Ld(p, π)q) ∩ S(π) 6= ∅ ∀p, π ∈ B(p̄, δ).

(D2) S is calm [q] at z̄ if170

∃ ε, δ, L > 0 : x ∈ S(p) ∩B(x̄, ε) ⇒ B(x, Ld(p, p̄)q) ∩ S(p̄) 6= ∅ ∀p ∈ B(p̄, δ). (3.1)

(D3) S is lower semi-continuous [q] ( l.s.c. [q] ) at z̄ if

∃ δ, L > 0 : B(x̄, Ld(p̄, π)q) ∩ S(π) 6= ∅ ∀π ∈ B(p̄, δ).

Conditions (D2) and (D3) correspond to �xing in (D1) π = p̄ and p = p̄, respectively. The171
constant L is called a rank of the related stability.172

Obviously, these requirements correspond to statements of implicit function type for F = S−1173
near (p̄, x̄) along with an appropriate estimate. If F stands for a su�ciently smooth function f , its174
derivative plays a crucial role. Next we mention possible problems for f /∈ C1.175

Example 1. Let 0 < q ≤ 1. The locally Lipschitz function

f(x) =
{

x + x2 sin(1/x) if x 6= 0,
0 if x = 0

is di�erentiable, but Df is discontinuous at 0. Since Df(0) 6= 0, S = Sf is both calm and Lipschitz176
l.s.c. at the origin (0, 0) with the given [q]. At the same time, f has (positive and negative) local177
minimizers xk → 0. Due to Df(xk) = 0 the distances dk(α) := dist(xk, S(f(xk)− α)) cannot satisfy178
a Lipschitz estimate dk(α) ≤ Lαq as α ↓ 0. Hence S is not Lipschitz l.s.c. [q] at (f(xk), xk) and, in179
consequence, the Aubin property [q] at the origin is violated, too.180

Remark 3.1. Calmness (D2) allows S(p) = ∅ and can be written without δ and the requirement
p ∈ B(p̄, δ) in (3.1). It stands for error estimates near x̄: There are positive ε and L such that

dist(x, S(p̄)) ≤ Ld(p, p̄)q ∀x ∈ S(p) ∩B(x̄, ε) ∀p ∈ P.

Proof. If (3.1) holds and p ∈ P \B(p̄, δ) then Ld(p, p̄)q ≥ Lδq. Since dist(x, S(p̄)) ≤ d(x, x̄), it follows181
that dist(x, S(p̄)) ≤ Ld(p, p̄)q ∀x ∈ S(p) ∩B(x̄, ε′) if ε′ ≤ min{ε, Lδq}.182

In consequence, (D2) for Sf is equivalent to the error bound property:

∃ ε, L > 0 : x ∈ B(x̄, ε) ⇒ dist(x, Sf (p̄)) ≤ L((f(x)− f(x̄))+)q.

Using our de�nitions for q = 1, other known stability properties can be de�ned and characterized. We183
recall some relations which are needed below, for details we refer to [20].184

Remark 3.2. Let q = 1.185

(i) S is called locally upper Lipschitz at z̄ if S is calm at z̄ and x̄ is isolated in S(p̄).186

(ii) S is called strongly stable at z̄ if S obeys the Aubin property at z̄ and S(p)∩B(x̄, ε) is single-valued187
for all p ∈ B(p̄, δ).188

(iii) S obeys the Aubin property (equivalently: F = S−1 is metrically regular, S is pseudo-Lipschitz )189
at z̄190
⇔ S is calm at all z ∈ gphS near z̄ with �xed constants ε, δ, L and Lipschitz l.s.c. at z̄191
⇔ S is Lipschitz l.s.c. at all z ∈ gph S near z̄ with �xed constants δ and L.192
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In the strongest case (ii), the mapping S is locally (near z̄) a Lipschitz function, and one also says193
that S is strongly Lipschitz.194

(D1) characterizes, for q = 1, locally the behavior of A−1 for linear, continuous and surjective195
operators A between Banach spaces as well as the topological behavior of solutions in the inverse196
function theorem due to Graves and Lyusternik [13,24].197

Necessary stability conditions198

Remark 3.3. (D1) implies with 0 < λ < L−1,199

For all (p, x) ∈ gph S ∩ [B(p̄, δ)×B(x̄, ε)] and π ∈ B(p̄, δ) \ {p}
there is some (p′, x′) ∈ gph S with d(p′, π)q + λ d(x′, x) < d(p, π)q (3.2)

since we can choose (p′, x′) ∈ gphS with p′ = π. (D2) and (D3) imply the same for π = p̄ and p = p̄,200
respectively.201

Our paper shows that (3.2) is also su�cient for the related stability if some extra supposition is202
imposed which is always satis�ed if F = f is a continuous function or dim P < ∞.203

Our main argument is constructive and quite simple: For initial points (p0, x0) near (p̄, x̄), we204
construct a sequence where (pk+1, xk+1) is just some particular point (p′, x′) which exists for (p, x) =205
(pk, xk) by condition (3.2), and we show that the limit exists and ful�lls the stability requirements.206
This direct approach, which needs only some simple statements about convergence of appropriate207
sequences, has been already used to derive stability characterizations for q = 1 in [21, 22] and, for208
normed spaces P , in [23].209

Composed mappings210

It is important for many applications that the Aubin property of composed mappings is persistent211
and can be simpli�ed by di�erentiation.212

Lemma 3.4. ( [20], Lemma 2.1) Let S = S1◦S2 be a composed mapping, S2 : P ⇒ X1, S1 : X1 ⇒ X.213
Let x̄ ∈ S1(x̄1), x̄1 ∈ S2(p̄). Then the Aubin property holds for S at (p̄, x̄) if it holds for S1 at (x̄1, x̄)214
and S2 at (p̄, x̄1).215

Applications:216
For Banach spaces P, X,X1, linear (continuous) operators F1 : X → X1, F2 : X1 → P and F =217

F2 ◦ F1 with the assigned inverse multifunctions S1, S2, S, the Aubin property simply means that218
the images (ranges) satisfy219

F2 (Im F1) = P (3.3)
since Im F = F2 (Im F1) ⊂ Im F2 ⊂ P and we need just Im F = P (by Banach's inverse mapping220
theorem) for the Aubin property of S = F−1. Hence (3.3) is the crucial condition: F2 has to be221
surjective and the image of the inner map F1 must be �su�ciently large� in X1. Clearly, surjectivity222
of both operators is su�cient.223

If F1, F2 are C1 functions, one may pass to the linearizations F1, lin of F1 at x̄ and F2, lin of F2224

at x̄1 = F1(x̄) and obtains: Slin = [(F2, lin ◦ F1, lin]−1 obeys the Aubin property if and only if (3.3)225

holds for the linearizations (at the related points), i.e.,226

DF2(F1(x̄)) ◦DF1(x̄) maps X onto P. (3.4)

In the next section, we see that (3.4) is equivalent to the Aubin property of the original mapping S227
and that this equivalence can be extended to linearized generalized equations.228

Hence, as long as any composed generalized equation pi ∈ fi(xi, ti) + Fi(xi) can be simpli�ed by229
linearizing involved C1 functions fi (w.r. to xi or both xi and parameter ti), the original solution230
mapping obeys the Aubin property if and only if this holds for the composed linearizations. Of course,231
checking the latter may be still a hard task. For many applications, however, this leads to systems232
of linear equations and inequalities with (if the systems re�ect optimality conditions) or without (if233
they stand for usual constraint sets to variational conditions) complementarity conditions.234
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3.2 Aubin property and small Lipschitzian perturbations235

Let P be a normed space, δh > 0 and h : B(x̄, δh) ⊂ X → P be a Lipschitz function. Let α(h) be the236
smallest Lipschitz rank of h on B(x̄, δh), β(h) = supx∈B(x̄,δh) ‖h(x)‖ and ‖h‖C0,1 = α(h) + β(h).237

Next we consider both238

F : X ⇒ P (1.2) and Fh := h + F : B(x̄, δh) ⊂ X ⇒ P near (x̄, p̄) ∈ gphF

and show, in particular, invariance of the Aubin property for the inverse mappings S, Sh near the239
reference point provided that ‖h‖C0,1 is small enough. Additionally, we estimate solutions xi ∈ Shi

240
for two di�erent functions hi.241

Proposition 3.5. Let S obey the Aubin property with rank LS and constants εS , δS at (p̄, x̄). Let242
hi : B(x̄, δhi

) → P (i = 1, 2) be Lipschitz functions with α := max{α(hi)} < 1/LS. Then there243
is some ρ > 0 such that the following holds under the additional assumptions p1, p2 ∈ B(p̄, ρ) and244
max{β(h1), β(h2)} < ρ.245

(i) If x1 ∈ B(x̄, ρ), p1 ∈ h1(x1)+F (x1) then there is some x2 with p2 ∈ h2(x2)+F (x2) such that

d(x2, x1) ≤ LS

1− αLS
‖(p2 − p1) + (h1(x1)− h2(x1))‖.

(ii) If LS

1−αLS
(‖pi − p̄‖+ β(hi)) ≤ ρ then xi ∈ B(x̄, ρ) satisfying pi ∈ hi(xi) + F (xi) exist.246

(iii) If S is strongly stable, xi under (ii) are unique for possibly smaller positive α and ρ.247

We prove �rst a modi�ed version under the same assumptions on S.248

Proposition 3.6. Let S obey the Aubin property with rank LS and constants εS , δS at (p̄, x̄). Let h :249
B(x̄, δh) → P be a Lipschitz function with α := α(h) < 1/LS, let (p0, x0) ∈ gph S ∩ [B(p̄, γ)×B(x̄, γ)]250
and π ∈ B(p̄, γ). Then there is a solution ξ to π ∈ h(x) + F (x) such that251

d(ξ, x0) ≤ LS

1− αLS
‖π − p0 − h(x0)‖ (3.5)

provided that both the norm r := ‖π − p0 − h(x0)‖ and γ are su�ciently small, namely if252

r

1− θ
+ γ < δS and γ +

LS r

1− θ
< µ where θ = αLS and µ = min{εS , δh}. (3.6)

Moreover, ξ belongs to B(x̄, µ). If, additionally, S is strongly Lipschitz then ξ is unique for possibly253
smaller α, γ and r, namely if254

‖π − p̄− h(x̄)‖+ αµ < δS and ‖π − p̄− h(x̄)‖ < (1− θ)µ L−1
S . (3.7)

Proof. It holds π ∈ h(x) + F (x) ⇐⇒ x ∈ Σπ(x) := S(π − h(x)). Thus, we are looking for a �xed
point of Σπ. For this purpose, we will construct successively a sequence xk ∈ X starting with the
given x0 and the corresponding sequence pk := π − h(xk−1) ∈ P (k > 0) and satisfying for k > 0 the
conditions

xk ∈ Σπ(xk−1), d(xk, xk−1) ≤ LS‖pk − pk−1‖, d(xk, x0) ≤ LS r

1− θ
, ‖pk+1 − p0‖ ≤ r

1− θ
. (3.8)

First notice that if xk and pk+1 satisfy the last two inequalities in (3.8), then, by (3.6), xk ∈ B(x̄, µ)255
and pk+1 ∈ B(x̄, δS).256

Case k = 1. Obviously ‖p1−p0‖ = r, and consequently ‖p1− p̄‖ ≤ ‖p1−p0‖+‖p0− p̄‖ ≤ r+γ < δS .257
The Aubin property ensures the existence of x1 ∈ S(p1) = Σπ(x0) such that d(x1, x0) ≤ LS‖p1 −258
p0‖ = LSr < LSr/(1 − θ). Hence, x1 ∈ B(x̄, µ), and consequently, using the Lipschitzness of h,259
‖p2 − p1‖ = ‖h(x1)− h(x0)‖ ≤ αd(x1, x0) ≤ θr. It follows that ‖p2 − p0‖ ≤ (θ + 1)r < r/(1− θ). So260
x1 and p2 satisfy (3.8).261

Now assume that n > 0 and the points satisfying (3.8) have been constructed for all k ≤ n.262
Case k = n + 1. By the last inequality in (3.8) and case k = 1 above, pk ∈ B(x̄, δS) for all k ≤ n+1.

Hence, there is again some xn+1 ∈ S(pn+1) = Σπ(xn) with d(xn+1, xn) ≤ LS‖pn+1 − pn‖. Since
xk ∈ B(x̄, µ) for all k ≤ n, then, setting τk = d(xk+1, xk), we have

τk ≤ LS‖pk+1 − pk‖ = LS‖h(xk)− h(xk−1)‖ ≤ θτk−1,
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and Lemma 2.4 yields
d(xn+1, x0) ≤ τ0

1− θ
=

d(x1, x0)
1− θ

≤ LS r

1− θ
.

It follows that xn+1 ∈ B(x̄, µ) and ‖pn+2−p0‖ ≤ ‖pn+2−p1‖+‖p1−p0‖ ≤ θr/(1−θ)+r = r/(1−θ).263
So xn+1 and pn+2 satisfy (3.8).264

By Lemma 2.4, we obtain a sequence xn → ξ such that ξ satis�es (3.5), and consequently ξ ∈265
B(x̄, µ). Since Σ is closed and xk+1 ∈ Σπ(xk) we conclude that ξ ∈ Σπ(ξ), i.e., π ∈ h(ξ) + F (ξ).266

Strong stability: By assumption, the mapping p 7→ S(p) ∩ B(x̄, εS) is single-valued and Lipschitz
with modulus LS on B(p̄, δS). Without loss of generality we suppose that S(p) = S(p) ∩ B(x̄, εS) if
p ∈ B(p̄, δS). For x ∈ B(x̄, µ) we have h(x) ∈ B(h(x̄), α‖x− x̄‖), and p := π − h(x) ful�lls by (3.7),

‖p− p̄‖ = ‖π − h(x)− p̄‖ ≤ ‖π − h(x̄)− p̄‖+ α‖x− x̄‖ ≤ ‖π − p̄− h(x̄)‖+ αµ < δS .

Hence Σπ is single-valued and Lipschitz with modulus θ on B(x̄, µ), and x ∈ B(x̄, µ) implies Σπ(x) ∈267
B(Σπ(x̄), θ‖x − x̄‖) ⊂ B(S(π − h(x̄)), θµ). So Σπ is a self-mapping of B(x̄, µ) whenever ‖S(π −268
h(x̄))− x̄‖ < (1− θ)µ. This is true under (3.7). In consequence, the �xed point ξ ∈ B(x̄, µ) of Σπ is269
unique.270

Proof. (of Prop. 3.5). Consider Fi = hi + F with Si = F−1
i and select any (p1, x1) ∈ gph S1. Then

we have, setting p0 = p1 − h1(x0),
(p1, x1) ∈ gph S1 ⇔ p1 ∈ h1(x1) + F (x1) ⇔ p0 ∈ F (x1) ⇔ (p0, x1) ∈ gphS.

Thus, if d(p0, p̄) < γ, Prop. 3.6 can be applied; now with x0 := x1, π := p2 and h := h2. This yields,
under the remaining assumptions: there is a solution ξ (= x2) to π ∈ h2(x) + F (x) such that

d(ξ, x0) ≤ LS

1− αLS
‖π − p0 − h2(x0)‖ =

LS

1− αLS
‖(π − p1) + (h1(x0)− h2(x0))‖.

Assumptions (3.6) of Prop. 3.6 are satis�ed for small ρ in Prop. 3.5. This ensures (i) of Prop. 3.5.271
Solvability (ii) follows by applying (i) to (p1, x1) = (p̄, x̄) ∈ S and h1 ≡ 0. Hence some x2 ful�lls272
p2 ∈ h2(x2) + F (x2) and d(x2, x̄) ≤ LS

1−αLS
‖p2 − p̄ − h2(x1)‖. If LS

1−αLS
(‖p2 − p̄‖ + β(h2)) ≤ ρ so273

x2 ∈ B(x̄, ρ) follows. After changing the role of h1 and h2 this is (ii). Finally, (iii) follows again from274
local contractivity of Σπ since, after decreasing α and ρ if necessary, assumptions (3.7) are satis�ed275
for π = p2 and h = h2.276

Comments:277
With h2 = h1, Prop. 3.5 yields the Aubin property of Sh1 ; with p1 = p2, this is the Aubin property of278
h 7→ S(h) := {x | 0 ∈ h(x)+F (x)} in view of small Lipschitzian perturbation, measured by β(h2−h1),279
provided that α := max{α(h1), α(h2)} < 1

LS
.280

The �rst proof of the fact that the strong Lipschitz property of S is invariant w.r. to adding small281
C1 functions h was given in [27], while [4, 6, 7, 18] present investigations around the invariance of the282
Aubin property for Lipschitz functions. Some estimates in terms of β(h) - less sharp than above, but283
derived in a more general setting - are included in [20].284

The invariance principle is important for Banach spaces X, P .285

(a) Let f ∈ C1(X, P ) and flin x̄(x) = f(x̄)+Df(x̄)(x− x̄) be its linearization at x̄. It follows that
one of the inclusions

p ∈ f(x) + F (x) and p ∈ flin x̄(x) + F (x)

obeys the Aubin (or strong Lipschitz) property if so does the other.286

Indeed, setting h = f − flin x̄ on B(x̄, δh), the Lipschitz rank α(h) vanishes as δh ↓ 0 [apply the287
mean-value theorem to h(x′)− h(x)], while β(h) = o(δh) is obvious.288

(b) If f is only strictly di�erentiable at x̄ (see e.g. [29] for the de�nition), the arguments of (a) still289
hold by de�nition since α and β have the same properties. They also hold for f ∈ C1 and flin x0

290
if ‖x0 − x̄‖ is su�ciently small. Solving the linearized generalized equation and replacing, in291
the next step, x0 by the solution x1, one obtains methods of Newton type.292

(c) In the same manner, one can study variations of the type f(x, t) ∈ F (x) where h = f(·, t)−f(·, t̄)293
and t, t̄ ∈ T , provided (e.g.) that T is a Banach space and f ∈ C1. Replacing also f(·, t̄) by its294
linearization at x̄, is possible due to (a).295

Unfortunately, these propositions fail to hold for calmness (replacing the Aubin property), cf. Exam-296
ple 2 below.297
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3.3 Particular C1 systems for q = 1298

Let X, P be Banach spaces (on IR) and f ∈ C1(X, P ). We suppose q = 1.299

Theorem 3.7. Let S(p) = {x ∈ X | g2(x) = p2, g1(x) − p1 ∈ K}, where p = (p1, p2) ∈ P =300
P1 × P2, P1 and P2 are Banach spaces, K ⊂ P1 is a closed convex cone, intK 6= ∅, x̄ ∈ S(0),301
gi ∈ C1(X, Pi) (i = 1, 2). Then, if302

Dg2(x̄)X = P2 and ∃u ∈ kerDg2(x̄) : g1(x̄) + Dg1(x̄)u ∈ intK (3.9)

the Aubin property of S at (0, x̄) ∈ gphS is ensured.303

The proof can be based on the Robinson-Ursescu open mapping theorem and observation (a) at the304
end of section 3.2, cf. [4]. For non-di�erentiable (multi-) functions gi and necessity of the suppositions305
we refer to the intersection theorem 2.22 in [20].306

Remark 3.8. Under the assumptions of Theorem 3.7, conditions (3.9) are also necessary for the Aubin307
property.308

Proof. By section 3.2, we may consider the linearized system only. The Aubin property (even the309
weaker lower Lipschitz property) then yields, using solvability only:310

For all p2, there is some u such that Dg2(x̄)u = p2. Thus Dg2(x̄)X = P2.311
For p1 ∈ intK and p2 = 0, there is some u such that Dg2(x̄)u = 0 and k := g1(x̄)+Dg1(x̄)u−p1 ∈ K.312

Since K is a convex cone, it follows g1(x̄) + Dg1(x̄)u = p1 + k ∈ intK.313

Lemma 3.9. If S = f−1 is locally upper Lipschitz at (f(x̄), x̄) then Df(x̄) is injective. If dim X < ∞,314
the reverse is also true.315

Proof. Suppose that Df(x̄)u = 0 and u 6= 0. Then x(t) := x̄ + tu ful�lls ‖f(x(t)) − f(x̄)‖ = o(t) ¿316
d(x(t), x̄)), i.e., S is not locally upper Lipschitz. Let dim X < ∞. If Df(x̄) is not locally upper317
Lipschitz, there are xk → x̄ with ‖f(xk)−f(x̄)‖ ¿ d(xk, x̄). Setting now uk = (xk− x̄)/‖xk− x̄‖, one318
obtains Df(x̄)u = 0 for each accumulation point u of {uk}. Since ‖u‖ = 1, Df(x̄) is not injective.319

In the classical case of f ∈ C1(IRn, IRn) and S = f−1, all mentioned stability properties (q = 1),320
except for calmness, coincide with detDf(x̄) 6= 0. Calmness is excepted since it may disappear after321
adding small smooth functions; compare Sf for f ≡ 0 and f(x) = εx2 or322

Example 2. Let q > 0. The function f(x) =
{

e−1/x2 if x 6= 0
0 if x = 0

(known from discussing Taylor's323

theorem) ful�lls f (n)(0) = 0 ∀n, and Sf is not calm [q] at the origin. On the other hand, the level324
set map Sg for g ≡ 0 with the same derivatives is calm [q] everywhere. Hence, even for C∞ functions325
and q = 1, the derivatives of f at the reference point x̄ do not say enough for determining calmness326
of f−1 and the level sets Sf (if Df(x̄) = 0). The unpleasant e�ect comes from a gap of dimensions.327

Proposition 3.10. Let f ∈ C1(X, IR), f(x̄) = 0, d = dim [Df(x̄)X], and for ε > 0, dε = dim [f(B(x̄, ε))∩328
IR+]. Then, S = Sf is calm at (0, x̄) ⇔ ∃ ε0 > 0 such that d = dε ∀ε ∈ (0, ε0).329

The condition also means equivalently: f(B(x̄, ε))∩ IR+ ⊂ Im Df(x̄) ∀ε ∈ (0, ε0) and [ Df(x̄) 6= 0330
or f(x) ≤ 0 for all x near x̄ ], respectively.331

Proof. Notice that dε is constant for small ε > 0 and that f ∈ C1 yields d ≤ dε.332
(⇒) Assume, in contrary, d 6= dε. Then it holds d = 0 < dε = 1 and there are xk → x̄ such that

f(xk) > 0. Using calmness, there are ξk ∈ S(0) such that ‖xk − ξk‖ ≤ Lf(xk) (for large k). Thus
also ξk → x̄ and f(ξk) ≤ 0 hold true. It follows (f(xk) − f(ξk)) ‖xk − ξk‖−1 ≥ L−1. Additionally,
f(xk)−f(ξk) = Df(θk)(xk−ξk) holds with some θk ∈ conv{xk, ξk}. Setting uk = (xk−ξk)/‖xk−ξk‖
and taking θk → x̄ into account, this ensures

Df(θk)uk ≥ L−1, ‖uk‖ = 1 and Df(θk) → Df(x̄) in X∗.

Recalling d = 0 and Df(x̄) = 0, also ‖Df(θk)‖∗ → 0 and Df(θk)uk → 0 are true. This contradiction333
to Df(θk)uk ≥ L−1 proves the �rst part.334
(⇐) If d = dε = 0 then f ≤ 0 holds near x̄ and calmness is trivial. If d = dε = 1, we obtain Df(x̄) 6= 0335
which ensures even the Aubin property.336
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All introduced stability properties can be exactly characterized for �nite dimensional systems of337
equations and inequalities with RHS perturbations. The knowledge of these characterizations is the338
key for understanding all generalizations.339

Let S(p) be given, with P = IRm1+m2 , g ∈ C1(IRn, P ), as340

S(p) = {x ∈ IRn | g1(x) ≤ p1, g2(x) = p2} where p = (p1, p2) ∈ P. (3.10)

These sets have the form as in Theorem 3.7 if K is the closed negative orthant of IRm1 . Without loss341
of generality let g(x̄) = 0 ∈ P (delete non-active inequality constraints). Then, from classical results342
in stability analysis, the necessary and su�cient condition (3.9) for the Aubin property coincides343
with the Mangasarian-Fromowitz constraint quali�cation, while the linear independence constraint344
quali�cation requires stronger Dg(x̄)IRn = P.345

LICQ for set constraints346
Let C ⊂ IRm be a convex, polyhedral cone and347

S(p) = {x ∈ IRn | h(x)− p ∈ C}, h ∈ C1(IRn, IRm), p ∈ IRm. (3.11)

For discussing stability we may assume that p̄ = 0 and h(x̄) = 0. If h(x̄) 6= 0 or C is a polyhedron, one348
can replace C by its (contingent-) tangent cone at h(x̄). Similarly, additional constraints like x ∈ D349

(a polyhedron) can be handled by introducing the function ĥ = h× id where id(x) = x.350
Formally, the stability theory of (3.11) generalizes the related theory for usual systems (3.10) where351

C is some orthant. Thus constraints (3.11) are not less general than the �traditional ones�. On the352
other hand,353

C = {y ∈ IRm | Ay ≤ 0} holds with some (not unique) (µ,m) matrix A. (3.12)

Setting354
G(b) = {x ∈ IRn | g(x) := Ah(x) ≤ b} and b = Ap ∈ IRµ, (3.13)

we thus obtain355

x ∈ S(p) ⇔ A(h(x)− p) ≤ 0 ⇔ x ∈ G(b) with g = A ◦ h and b = Ap. (3.14)

So S is a particular case of the �traditional mapping� G = G(b).356
To see possible di�erences, note that µ > n is possible. Then the µ active gradients Dgi(x̄) =

AiDh(x̄) ∈ IRn are linearly dependent. Hence LICQ (requiring linear independence of the active
gradients) is necessarily violated. This was the main justi�cation for studying set constraints in [28]
without using �classical� results. However, it was nowhere mentioned that all parameters b of interest
belong to the image Im A ⊂ IRµ and that, instead of the formal LICQ with respect to IRµ, one only
needs (for all analytical consequences) that Dg(x̄) maps onto the parameter space in question. Hence
LICQ for (3.13) becomes

(LICQ)A Im A = Im (ADh(x̄)) or equivalently ker(Dh(x̄)T AT ) = kerAT .

This is exactly the point for applying - as usually - the inverse and implicit function theorems with357
the parameters b = Ap of interest. Setting F = F2 ◦ F1; F2 = A and F1 = h, (LICQ)A is condition358
(3.4) for F−1(b) = {x | Ah(x) = b} and the parameter space Im A.359

Let Cver be the set of vertexes in C. Then Cver = ker A, and (LICQ)A follows immediately360
(multiply with A) from the non-degeneracy condition in [28],361

(LICQ)h IRm ⊂ Cver + Im Dh(x̄). (3.15)

Conversely, having (LICQ)A and any y ∈ IRm, there is some u ∈ IRn such that Ay = ADh(x̄)u. With362
v = Dh(x̄)u, this yields y−v ∈ ker A = Cver, v ∈ Im Dh(x̄) and via y = (y−v)+v also (3.15). Thus363
(LICQ)A ⇔ (LICQ)h. Consequently, (LICQ)A is invariant with respect to the choice of A and µ in364
(3.12).365

Calmness for C1 systems
In contrast to the well-known characterization of the Aubin property by MFCQ (which is often hidden
in equivalent, but less intrinsic co-derivative conditions), sharp conditions for calmness of S (3.10),
have been established only recently. Concerning calmness of S and G (3.14) at (0, x̄) one easily shows
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that both conditions coincide, also without restricting b to Im A, since G(b) = ∅ is permitted for
b 6= 0. Writing S as inequality system is now important since it allows a simple description in the
propositions 3.11 and 3.12 below. To formulate them we delete the equations in (3.10) (write two
inequalities instead). Thus we assume

S(p) = {x ∈ IRn | g(x) ≤ p}, p ∈ IRm, g ∈ C1(IRn, IRm).

The next statements from [14, 23] and [22], respectively, are still true if x belongs to a Banach space
X. Put

φ(x) = max
i

gi(x) and I(x) = {i | gi(x) = φ(x)}.

Let φ(x̄) = 0 and Σ be (the possibly empty) family of all index sets J ⊂ {1, ...,m} such that some366
sequence xk → x̄ satis�es φ(xk) > 0 and I(xk) ≡ J . Obviously, J ⊂ I(x̄).367

Proposition 3.11 ( [14, 23]). Under these assumptions, S is calm at (0, x̄) ⇔ for all J ∈ Σ there368
is some u(J) ∈ X such that Dgj(x̄) u(J) < 0 ∀j ∈ J .369

In other words, calmness of S means that MFCQ (or the Aubin property) has to hold for all subsystems
given by J ∈ Σ. An alternative condition can be based on an algorithm for solving g(x) ≤ 0 which
uses the (computable) relative slack

si(x) = (φ(x)− gi(x))/φ(x) if φ(x) > 0.

ALG0: Let x0 ∈ X, λ0 = 1. For k ≥ 0, put xk+1 = xk and λk+1 = λk if φ(xk) ≤ 0. Otherwise
�nd some u ∈ X such that

Dgi(xk)u ≤ si(xk)
λk

− λk ∀i and ‖u‖ = 1.

If a solution exists, put xk+1 = xk + λkφ(xk)u, λk+1 = λk, else xk+1 = xk, λk+1 = 1
2λk.370

Proposition 3.12 ( [22]). S is calm at (0, x̄) ⇔ there are ε, α > 0 such that, for all sequences of371
ALG0 with x0 ∈ B(x̄, ε), it follows λk ≥ α ∀k. Then the sequence xk converges to some ξ ∈ S(0),372
and it holds: φ(xk+1) ≤ (1− β2)φ(xk) whenever 0 < β < α and xk+1 6= xk.373

3.4 Stability and optimality conditions in terms of generalized derivatives374

3.4.1 Stability375

Let X and P be Banach spaces.376
To obtain stability for multifunctions or nonsmooth functions, generalized derivatives are widely used377
in the literature, and there is meanwhile a big collection of such derivatives Dgen, see, e.g., [1,3,12,20,378
25, 26, 29]. However, all these generalizations describe a speci�c behavior of f or F near a reference379
point (x̄, p̄) ∈ gphF , and it depends on our goals (deriving optimality conditions, some stability,380
Newton-type solution methods ... ) whether the application of a particular derivative Dgen makes381
sense at all. In addition, the tools of computing them are far behind the C1-calculus. As the main382
reason, already chain rules for arbitrary Lipschitz functions in �nite (appropriate) dimension usually383
hold - if at all - only in the form of inclusions384

if h(x) = f(g(x)) then Dgenh(x) ⊂ Dgenf(g(x)) ◦Dgeng(x) (3.16)

with a big gap between both sides. The gap can already occur if g ∈ C1 and Dgeng = Dg (namely385
if Dg maps into proper subspaces). Similar e�ects appear for sums, products and for total and386
partial derivatives as well. Hence even if some injectivity/surjectivity or another property of Dgenh(x)387
is crucial for our goal, the replacement of Dgenh(x) by the (often simpler) right-hand side can be388
questionable.389
The exact chain rule (equality in (3.16)) holds for f ∈ C1 and most of the generalized derivatives390
Dgen. For stability of solutions to optimization problems, this implies that the involved functions391
have to be C2. But this is usually violated when one of them is a marginal (or solution) function of a392
second (lower level) optimization problem, i.e., for multilevel problems [5] where solutions are, in the393
best case, unique and locally Lipschitz, and the assigned optimal values are only C1,1.394
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3.4.2 Optimality395

Insu�cient chain rules may have consequences for optimality conditions to x ∈ argminX f if we try396
to write them via sums of non-empty subdi�erentials as in the convex case. To explain the situation,397
we suppose398

X is a closed subset of Z, dim Z < ∞, x̄ ∈ X and f ∈ locLip (Z, IR). (3.17)

With the usual indicator function iX : Z → {0,∞} and h = f + iX then argminX f = argminZ h399
holds globally and locally. Next consider the obvious local optimality condition400

h(x) ≥ h(x̄)− o(d(x, x̄)) (3.18)

for some o-type function o(·). It can be used to de�ne a convex subset ∂F h(x̄) ⊂ (Z)∗, called the401
Fréchet subdi�erential, by writing x∗ ∈ ∂F h(x̄) if h− x∗ ful�lls (3.18). Then we have402

x∗ ∈ ∂F h(x̄) ⇔ 0 ∈ ∂F (h− x∗)(x̄) ⇔ h− x∗ ful�lls (3.18). (3.19)

Furthermore (due to �nite dimension), the convex Fréchet normal cone NF
X (x̄) := ∂F iX(x̄) is polar

to the generally non-convex contingent cone

T cont
X (x̄) = {u | ∃tk ↓ 0, uk → u : x̄ + tkuk ∈ X}; NF

X (x̄) = [T cont
X (x̄)]∗.

Passing from f to h = f + iX implies for the contingent derivative

Ch(x̄)(u) := {v ∈ IR∞ | v = lim t−1
k (h(x̄ + tkuk)− h(x̄)) where tk ↓ 0 and uk → u},

that ∞ ∈ Ch(x̄)(u) i� u ∈ Z \ intT cont
X (x̄) while min Ch(x̄)(u) < ∞ ∀u ∈ T cont

X (x̄).403
In any case, under the assumptions (3.17) the equivalences (3.19) ensure a simple and sharp charac-404
terization of ∂F h and of the optimality condition in terms of the contingent derivative405

0 ∈ ∂F h(x̄) ⇔ min Ch(x̄)(u) ≥ 0 ∀u ∈ Z ⇔ h ful�lls (3.18). (3.20)

Moreover, again by the de�nitions only, we have a (relatively) simple condition for min Ch(x̄)(u) to406
be �nite: ∞ > r ∈ Ch(x̄)(u) ⇔407

∃tk ↓ 0, uk → u : x̄ + tkuk ∈ X and r = lim t−1
k [f(x̄ + tkuk)− f(x̄)]. (3.21)

Generally, this says much more than the obvious consequence408

r ∈ Cf(x̄)(u) + CiX(x̄)(u), (3.22)

where di�erent sequences (tk, uk), (t′k, u′k) are hidden in the limits assigned to Cf and CiX .
If the particular choice of these sequences plays no role, e.g., if directional derivatives f ′(x̄, u) exist or
if X is polyhedral, then both (3.21) and (3.22) coincide with

u ∈ T cont
X (x̄) and f ′(x̄, u) = r,

and C(f + iX) in optimality condition (3.20) satis�es additionally the exact chain rule409

C(f + iX)(x̄)(u) = Cf(x̄)(u) + CiX(x̄)(u). (3.23)

Empty and non-empty subdi�erentials410

The problems begin if we want to have non-empty subdi�erentials or want to use the exact chain rule
in terms of ∂F (like above or in convex optimization) as

∂F (f + iX)(x̄) = ∂fF (x̄) + ∂F iX(x̄)

or in inclusion ⊂ form. The latter (nowhere needed above) may fail while (3.23) holds true.411

Example 3. Put f = min{x, 0} and X = IR+ where 0 ∈ ∂F (f + iX)(0) and ∂F f(0) = ∅.412
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Thus, in contrast to (3.20), condition413

0 ∈ ∂F f(x̄) + ∂F iX(x̄) (3.24)

does not necessarily hold for x̄ ∈ argminX f .414

Remark 3.13. Inclusion (3.24) yields that u = 0 solves the convex problem min{c(u) | u ∈ C} where415
C = conv TF

X (x̄) and c(u) = sup{〈x∗, u〉 | x∗ ∈ ∂F f(x̄)}.416

Proof. Indeed, (3.24) says that some x∗ ∈ ∂F f(x̄) ∩ −NF
X (x̄) exists. Because of C∗ = NF

X (x̄) and417
∂c(0) = ∂F f(x̄) (Minkowski-duality), so 0 ∈ ∂c(0) + C∗ and optimality of u = 0 follow. Having418
∂F f(x̄) 6= ∅ the reverse direction holds similarly.419

Since ∂F f(x̄) = ∅ is possible and ∂F (f + g)(x̄) ⊂ ∂F f(x̄) + ∂F g(x̄) can be violated, limiting
subdi�erentials and limiting normal cones (via iX) are often applied:

x∗ ∈ ∂F
limf(x) if ∃ (x∗k, xk) → (x∗, x) such that x∗k ∈ ∂F f(xk),

x∗ ∈ NF
lim X(x) if ∃ (x∗k, xk) → (x∗, x) such that x∗k ∈ NF

X (xk), xk ∈ X.

Then also420
0 ∈ ∂F

limf(x̄) + NF
lim X(x̄) (3.25)

is a frequently used optimality condition. We study it for f ∈ C1 and polyhedral X.421

Example 4. Let f ∈ C1 and X = {x ∈ IR2 | x1x2 = 0} which is crucial for complementarity problems.422
Then (3.25) requires at x̄ = 0: −Df(0) ∈ X = NF

lim X(0). In other words, (3.25) requires that one423
partial derivative must vanish. With Clarke's [3] normal cone N c

X(x), one even obtains N c
X(0) = IR2.424

So the corresponding necessary optimality condition is satis�ed at the origin for any f ∈ C1.425

426
Notice that ∂F f(x̄) = ∅ provides additional information, namely: x̄ cannot satisfy the necessary427
optimality condition for minZ f even if we change f by adding any linear function.428

Proposition 3.14. Let Z = IRn. It holds ∂F f(x̄) = ∅ ⇔ there are n + 2 directions uν ∈ IRn such429
that430 ∑

ν

uν = 0 and
∑

ν

min Cf(x̄)(uν) = −1. (3.26)

Proof. Let q(u) := min Cf(x̄)(u).
(⇐) Condition (3.26) implies 0 /∈ ∂F f(x̄) since q(uν) < 0 holds for some ν. Take x∗ ∈ Z∗. Considering
f̂ := f − x∗ and using that Cf̂(x̄)(u) = Cf(x̄)(u) − 〈x∗, u〉, (3.26) also holds for f̂ . Thus, it holds
0 /∈ ∂F f̂(x̄) and, equivalently, x∗ /∈ ∂F f(x̄).
(⇒) Let ∂F f(x̄) = ∅. This means by (3.19) and (3.20): ∀x∗ ∃u such that q(u) − 〈x∗, u〉 < 0. Thus
the set H = { x∗ | 〈x∗, u〉 ≤ q(u) ∀u} is empty. Let Q = epi q ⊂ IRn+1, Qc = conv Q. Then
0 ∈ Qc. If 0 /∈ intQc, we obtain a contradiction by separation as follows: Some (x∗, τ∗) 6= 0 ful�lls
〈x∗, u〉 + τ∗t ≤ 0 ∀(u, t) : t ≥ q(u). Since q(u) < ∞ ∀u, then τ∗ ≥ 0 is impossible. Hence τ∗ < 0
and, without loss of generality, τ∗ = −1. But this yields with t = q(u) that x∗ ∈ H, a contradiction.
Hence 0n+1 ∈ intQc. Now (0n,−ε) ∈ Qc holds for some ε > 0 (the subscript shows the dimension).
Using Caratheodory's theorem there are n + 2 elements (uν , tν) ∈ Q ⊂ IRn+1 and λν ≥ 0 such that∑

λν = 1 and
∑

λν(uν , tν) = (0,−ε). Setting u′ν = λνuν , this yields q(u′ν) = λνq(uν) ≤ λνtν as well
as ∑

ν

u′ν = 0 and s :=
∑

ν

q(u′ν) ≤ −ε.

Multiplying all u′ν with 1/|s| yields the assertion.431

Since (3.18) implies that Sh = Sf is not Lipschitz l.s.c. at (f(x̄), x̄), it follows432

x̄ ∈ argminX f ⇒ 0 ∈ ∂F (f + iX)(x̄)
⇒ Sf is not Lipschitz l.s.c. at (f(x̄), x̄)
⇒ Sf violates the Aubin property at (f(x̄), x̄).

(3.27)

Thus optimality also yields that some stability of the mapping (1.4) is violated at a solution. Any433
analytical condition for this fact is a necessary optimality condition.434
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The normal cone435

Calmness, which does not appear in (3.27), comes into the play when NF
X (x̄) or T cont

X (x̄) must be
written in terms of describing functions. For C1 systems

S(p) = {x ∈ IRn | g1(x) ≤ p1, g2(x) = p2}, g ∈ C1(IRn, IRm1+m2) and x̄ ∈ X := S(0),

it is well-known that calmness of S at (0, x̄) yields for the tangents436

u ∈ T cont
X (x̄) ⇔ Dg2(x̄)u = 0 and Dg1,i(x̄)u ≤ 0 if g1,i(x̄) = 0. (3.28)

Then the form of NF
X (x̄) = T cont

X (x̄)∗ follows from LP-duality. The known Abadie constraint quali-437
�cation (weaker than calmness) requires ⇐ in (3.28). But direction (⇒) is trivial by the mean-value438
theorem. So Abadie's condition simply requires (3.28) which says equivalently that439

T cont
X (x̄) does not change if we replace g by

the linearization g lin x̄ at x̄.
(3.29)

Hence, calmness remains the weakest proper condition for ensuring (3.28) and (3.29).440

4 Approximate minimizers and stable level sets441

Above (in section 2.2), the existence of an accumulation point was a consequence of boundedness and442
�nite dimensions, and of g(T (ξ)) = g(ξ) being equivalent to T (ξ) = ξ. Now we are going to ensure443
convergence by using some proper descent condition for functionals.444

4.1 Existence and estimates for solutions445

The next theorem connects stability with some monotonicity.446

Theorem 4.1. Let q > 0, f : X → IR∞ be l.s.c., x̄, x0 ∈ X and c < f(x0) < ∞. Put gc(x) =447
(f(x)− c)+ and suppose that there are positive λ and ε such that448

for all x ∈ B(x̄, ε) with c < f(x) ≤ f(x0)
∃x′ satisfying gc(x′)q − gc(x)q < −λd(x′, x). (4.1)

Additionally, let d(x0, x̄) and f(x0)− c be small enough, such that449

d(x0, x̄) + λ−1(f(x0)− c)q ≤ ε. (4.2)

Then, if y = x0 or, more generally, y ∈ X, d(y, x̄) ≤ d(x0, x̄) and c < f(y) ≤ f(x0), there is some ξy

satisfying
f(ξy) ≤ c and d(ξy, y) ≤ λ−1 [ f(y)− c ]q.

Proof. We consider �rst y = x0 and apply proposition 2.3 to the function g = (gc)q. This ensures, for
the related sequence and the limit ξ = lim xk, inequalities (2.5) and (2.6). The �rst inequality implies
gc(ξ) ≤ gc(x0) and consequently f(ξ) ≤ f(x0). We also obtain from (2.5),

λ d(ξ, x0) ≤ gc(x0)q = [f(x0)− c]q.

Using (4.2), we have

d(ξ, x̄) ≤ d(ξ, x0) + d(x0, x̄) ≤ λ−1 (f(x0)− c)q + d(x0, x̄) ≤ ε.

In consequence, if f(ξ) > c then (4.1) can be applied to ξ but this contradicts (2.6). Hence f(ξ) ≤ c450
and the proof is �nished for y = x0. The general assertion follows simply from the fact, that the451
considered points y satisfy all hypotheses imposed on x0,452

Notice that (theoretically) ξ can be found by the sequence of proposition 2.3 with g = (gc)q.453
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4.2 Remarks, corollaries and interpretations454

We call (4.1) the uniform descent condition.455

Remark 4.2. Condition (4.2) is obviously satis�ed, if [f(x0)− c]q ≤ 1
2λε and x0 ∈ B(x̄, 1

2ε). In some456
situations, we have x0 = x̄. Then, again trivially, [f(x0)− c ]q ≤ λε is su�cient.457

Consequences458
1. Calmness [q]: Let f(x̄) = c < ∞. Then (4.1) implies that S = Sf is calm [q] at (f(x̄), x̄) with459
rank L = λ−1. Conversely, (4.1) is satis�ed if S is calm [q] at (f(x̄), x̄) by Remark 3.3. Hence, with460
c = f(x̄), (4.1) is a necessary and su�cient calmness [q] - condition. This yields461

Corollary 4.3. Let q > 0, f : X → IR∞ be l.s.c. and f(x̄) = 0. The level set map S = Sf is calm462
[q] at (0, x̄) if and only if, with g(x) := f(x)+ , the following condition holds:463

∃λ, δ > 0 such that ∀x ∈ B(x̄, δ) with g(x) > 0
∃x′ satisfying g(x′)q − g(x)q < −λd(x′, x). (4.3)

If g(x)q > λd(x, x̄), the condition is obviously satis�ed for x′ = x̄. Thus, in (4.3), one may additionally464
require that x ful�lls g(x)q ≤ λd(x, x̄) or g(x)q ≤ λδ. In consequence, for q = 1, condition (4.3) can465
be written as466

lim inf
x→x̄, g(x)>0

s1(x) > 0 with s1(x) = sup
x′ 6=x

g(x)− g(x′)
d(x′, x)

, (4.4)

where the convention inf ∅ = ∞ is in use, but equivalently also by the conditions

lim inf
x→x̄, g(x)↓0

s1(x) > 0, (4.5)

lim inf
x→x̄, g(x)/d(x,x̄)↓0

s1(x) > 0.

Condition (4.4) (slightly modi�ed) already appeared in the Basic Lemma of [17] as a su�cient calmness467
condition, the same for condition (4.5) in [10] where the left-hand side is called middle uniform strict468
slope.469

2. Aubin-property [q] at (f(x̄), x̄): Suppose that c < f(x̄) < f(x0) ful�ll the estimate (4.2) and470
that (4.1) holds for all c′ ∈ (c, f(x0)) (with the related function gc′ ≤ gc and the same ε and λ). Then471
the Aubin-property [q] follows from Theorem 4.1, and the required condition (4.1) is necessary by472
Remark 3.3.473

3. Ekeland's principle: Let x̄ = x0, c = infX f, q = 1 and, for any λ > 0,474

ε = λ−1 (f(x0)− inf
X

f). (4.6)

Then (4.2) is satis�ed.475
If (4.1) is violated then there is some x ∈ B(x0, ε) with c < f(x) ≤ f(x0) such that, due to gc(x′) −476
gc(x) = f(x′)− f(x),477

f(x′)− f(x) ≥ −λd(x′, x) ∀x′ ∈ X. (4.7)
If (4.1) holds true then ξ ∈ B(x0, ε) minimizes f , and x = ξ ful�lls (4.7), too. Thus we obtain, in478
both cases,479

Proposition 4.4. Ekeland's principle [9]: Let f : X → IR∞ be l.s.c. and infX f as well as f(x0)480
be �nite. Then, for any λ > 0 and ε given by (4.6), there is some x ∈ B(x0, ε) which ful�lls481
f(x) ≤ f(x0) and (4.7).482

Thus Ekeland's principle, often used for showing stability, is equivalent to Theorem 4.1.483

4.3 Discussion of the calmness condition.484

Let q = 1 in this subsection. We already know that the calmness condition (4.3) of Corollary 4.3, with
g(x) = f(x)+, and the assigned limit conditions can be modi�ed in several ways: the strict inequality
of (4.3) can be replaced by the non-strict one,

g(x′)− g(x) ≤ −λd(x′, x) and x′ 6= x.
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(as in [17] and [23]) or one considers only (the crucial) points x → x̄ such that g(x)/d(x, x̄) ↓ 0 in the485
limit conditions. Accordingly, there are several equivalent conditions of the type (4.4).486

Notice however, that, for a �xed x, the inequality de�ning x′ in (4.3) is NOT a local condition: it
does not require that x′ can be chosen arbitrarily close to x. In other words, the obvious inequality

s0(x) := lim sup
x′→x, x′ 6=x

g(x)− g(x′)
d(x′, x)

≤ s1(x) = sup
x′ 6=x

g(x)− g(x′)
d(x′, x)

can be strict. Replacing, in (4.5) or (4.4) s1(x) by the (possibly smaller) upper limit s0(x) (the slope
of g at x � in [17]) one arrives at a su�cient calmness condition (used, e.g., in [19, Theorem 2.1 (e)]),
which can be far from necessary. Indeed, consider the points xk ↓ 0 of example 1 where s0(xk) vanishes
while lim infx→x̄, g(x)>0 s1(x) = 1. To obtain necessity, an extra condition of the type

s1(x)− s0(x) → 0 as x → x̄, g(x) > 0

must be imposed. It is satis�ed, for instance, if g is convex.487
For locally Lipschitz f , the calmness criterion Coroll. 2 of [22] (applied to g = f+) requires, with488

di�erent λ,489

∃δ, λ > 0 : ∀x ∈ B(x̄, δ) ∃x′ with g(x′)− g(x) ≤ −λ d(x′, x) and d(x′, x) ≥ λg(x). (4.8)

Hence it has the same form as (4.3) while d(x′, x) ≥ λg(x) is a consequence of the Lipschitz property.490
For Banach spaces X, condition (4.8) was used in [22], Theorem 4.491

5 Closed multifunctions492

Following [20,21], where this notion has been introduced for Banach space mappings, we call a closed493
multifunction F : X ⇒ P between metric spaces strongly closed if, for each π ∈ P, the distance494
function f(x) = dist(π, F (x)) obeys the properties495

(P1) If f(x) is �nite then the distance is attained at some p(x) ∈ F (x), and496
(P2) f is l.s.c.497

These properties are satis�ed, for instance, if gph F is closed and dim P < ∞ or F is single-valued and498
continuous. In [20], Lemma 2.13, the reader can �nd other examples, namely: F (x) = φ(x) + Φ(x)499
where φ is continuous and Φ is locally compact or F (x) = φ(x) + K where φ is continuous and K is500
a closed convex subset of a Hilbert space.501

In [21], the application of Ekeland's principle to strongly closed mappings was demonstrated, and502
Theorem 1 therein is our Thm. 5.1 restricted to q = 1 and Banach spaces X, P with modi�ed503
constants. In a similar manner, Ekeland points for strongly closed mappings have been applied in504
order to characterize the Aubin property in [20], Lemma 2.18.505

5.1 P is a linear normed space506

We study the closed mappings F (1.2) and S = F−1 (1.3) �rst in the case of a linear normed space P507
of parameters. Our goal consists in applying Theorem 4.1 and the assigned sequence xk for stability508
characterizations. The next theorem is a modi�ed version of the basic Lemma 2.4 in [23].509

Theorem 5.1. Let q > 0, (p̄, x̄) ∈ P × X, (p0, x0) ∈ gph S, π ∈ P and C = conv{p0, π}. Suppose510
there are positive ε, δ, λ such that511

for all (p, x) ∈ gph S ∩ [ B(p̄, δ)×B(x̄, ε) ] with p ∈ C \ {π}
∃(p′, x′) ∈ gph S with ‖p′ − π‖q + λ d(x′, x) < ‖p− π‖q and p′ ∈ C.

(5.1)

Additionally, let p0, π ∈ B(p̄, 1
3δ) and d(x0, x̄) and ‖p0 − π‖ be small enough such that512

d(x0, x̄) + λ−1‖p0 − π‖q ≤ ε. (5.2)

Then there exists some ξ ∈ S(π) ∩B(x0, λ−1‖p0 − π‖q).513
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Proof. We put FC(x) := F (x) ∩ C, f(x) = dist( π, FC(x) ) and show that Theorem 4.1 can be
applied to f . Since C is compact (we shall not explicitly use that C = conv{p0, π}, but we need
π, p0 ∈ C) and F is closed, it follows that FC is strongly closed. Because of (p0, x0) ∈ gphS it holds
f(x0) ≤ d(π, p0) < ∞. Let f(x0) > 0 (otherwise we may put ξ = x0) and consider any x ∈ B(x̄, ε)
with 0 < f(x) ≤ f(x0). Let p(x) ∈ FC(x) realize the distance f(x). Then we have

0 < f(x) = ‖p(x)− π‖, p(x) ∈ C, (p(x), x) ∈ gph S.

Since (p0, x0) ∈ gph S, p0, π ∈ B(p̄, 1
3δ) and p0, π ∈ C, it holds

‖p(x)− π‖ ≤ f(x0) = ‖p(x0)− π‖ ≤ ‖p0 − π‖ ≤ 2
3
δ,

which yields p(x) ∈ B(p̄, δ). Hence (5.1) may be applied to (p(x), x) and guarantees the existence of
some (p′, x′) ∈ gphS with p′ ∈ C such that

‖p′ − π‖q + λ d(x′, x) < ‖p(x)− π‖q.

Since f(x′) ≤ ‖π − p′‖ and f(x) = ‖p(x)− π‖ we also obtain

f(x′)q − f(x)q < −λd(x′, x).

Summarizing, so all hypotheses of Theorem 4.1 are satis�ed with c = 0 and gc = f . The related point
ξ, assigned to y = x0, now satis�es

f(ξ) ≤ 0 and d(ξ, x0) ≤ λ−1[f(x0)− c]q = λ−1f(x0)q ≤ λ−1 ‖p0 − π‖q.

This yields both ξ ∈ S(π) and the required estimate.514

Remark 5.2. If δ is su�ciently small (compared with ε) such that λ−1 ( 2δ/3 )q ≤ 1
2ε then inequality515

(5.2) holds true whenever p0, π ∈ B(p̄, δ/3) and x0 ∈ B(x̄, 1
2ε).516

Comments:517
Let (p̄, x̄) ∈ gph S in Theorem 5.1. By Remark 3.3, condition (5.1) necessarily holds for π near518

p̄ under the Aubin property [q] of S at (p̄, x̄). The same is true for calmness [q] when π = p̄ is519
�xed. Conversely, if (5.1) holds for all (p0, x0) ∈ gph S near (p̄, x̄) and π near p̄, the existence520
of ξ ∈ S(π) ∩ B(x0, λ−1‖p0 − π‖q) implies the Aubin-property [q] at (p̄, x̄). If (5.1) holds for all521
(p0, x0) ∈ gph S near (p̄, x̄) and �xed π = p̄, then S is calm [q] at (p̄, x̄). Hence, depending on the522
choice of π, condition (5.1) is necessary and su�cient for calmness [q] and the Aubin-property [q] at523
(p̄, x̄).524

Now let (p̄, x̄) /∈ gph S and assume that we are interested in solutions to p̄ ∈ F (x). Setting again525
π = p̄, Theorem 5.1 says: if (p0, x0) ∈ gph S (e.g., a starting point for some algorithm) is su�ciently526
close to (p̄, x̄) and (5.1) is valid, then a solution ξ to p̄ ∈ F (x) exists in B(x0, λ−1‖p0− p̄‖q). Clearly,527
to satisfy the hypotheses, the distance d((p̄, x̄), gph S) has to be small enough.528

5.2 P is a metric space529

Concerning C in the proof of Theorem 5.1, we only used that

π, p0 ∈ C and x 7→ F (x) ∩ C is strongly closed.

This tells us that the theorem remains true when P is a general metric space and C is any set of this530
type. Notice however that, with the simplest setting C = {p0, π}, the descent condition (5.1) implies531
p′ = π, and the whole statement becomes trivial. This makes reasonable de�nitions of C for metric532
spaces di�cult unless F itself is strongly closed and we can put C = P .533

Our setting C = conv{p0, π} for normed P requires the investigation of S on 1-dimensional segments534
of the parameter space P only and seems, thus, su�ciently reasonable. But, without supposing535
strong closedness, we need for metric spaces P , an approach, independent on strong closedness and536
on Ekeland's principle. This will be demonstrated now.537
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5.2.1 Stability in terms of approximate projections538

In this subsection, we suppose that q = 1.
The following approximate projection method of [22] (onto gph S) characterizes �stability� by linear
order of convergence. De�ne, in P ×X, a distance depending on λ > 0 as

dλ((p′, x′), (p, x)) = d(p′, p) + λd(x′, x)

and Hλ(p, x) = distλ((p, x), gph S) = inf
(p′,x′) ∈ gph S

dλ((p′, x′), (p, x)).

We assume that π ∈ P , γ ≥ 0 and λ > 0 are �xed.
Procedure S1: Let (p0, x0) ∈ gph S. Given (pk, xk), k ≥ 0 choose any approximate minimizer
(pk+1, xk+1) ∈ gphS of the distance in the de�nition of Hλ(π, xk) such that

dλ((pk+1, xk+1), (π, xk)) ≤ Hλ(π, xk) + γλ d(pk, π).

Notice that, for any γ > 0, some next iteration points exist. The case γ = 0 can be of interest if gph S539
is locally compact, particularly, if dim X < ∞.540

Theorem 5.3. [22] Let γ > 0.541

(i) The Aubin property of S holds at (p̄, x̄) ⇔ there exist λ > 0 and α > 0 such that, for all initial542
points (p0, x0) ∈ gphS ∩ (B(p̄, α)×B(x̄, α)) and π ∈ B(p̄, α), Procedure S1 generates a sequence543
(pk, xk) satisfying544

dλ((pk+1, xk+1), (π, xk)) ≤ θ d(pk, π) with some �xed θ < 1. (5.3)

(ii) The same statement, with �xed π ≡ p̄, holds in view of calmness of S at (p̄, x̄).545

(iii) These statements remain true if we additionally require that P is a linear normed space and546
pk+1 ∈ conv{pk, π}.547

Note. Explicitly, (5.3) means d(pk+1, π) ≤ θ d(pk, π) −λ d(xk+1, xk), which implies again convergence548
pk → π, xk → ξ ∈ S(π) and d(ξ, x0) ≤ λ−1 d(p0, π). Statement (iii) shows a connection to Theorem 5.1.549

5.2.2 Calmness [q] via proper descent steps550

We study again S (1.3). Let q, ε, δ > 0, λ ∈ (0, 1), π ∈ P , (p̄, x̄) ∈ P ×X and require:551

For all (p, x) ∈ gphS ∩ [ B(p̄, δ)×B(x̄, ε) ], some (p′, x′) ∈ gph S satis�es
(i) λ d(x′, x) ≤ d(p, π)q and (ii) d(p′, π) ≤ (1− λ) d(p, π). (5.4)

In consequence, for q = 1, multiplying (i) by λ/2 and adding it with (ii) we obtain

d(p′, π) + (λ2/2) d(x′, x) ≤ (1− λ/2) d(p, π).

Thus d(p′, π) + β1 d(x′, x) ≤ β2 d(p, π) holds with constants β1, β2 ∈ (0, 1). This (formally weaker)
condition in place of (i) and (ii) has been used to verify calmness and the Aubin property in [17].
There, the proof needs Ekeland's principle whereas the relations between (5.4) and stability are direct
and almost trivial (while (5.4) is still necessary, see below). For comparing with Corollary 4.3 and
level sets S (1.4), put π = 0, (p̄, x̄) = (0, x̄) and f(x̄) = 0. Then condition (5.4) claims

∀x ∈ B(x̄, ε) with 0 < f(x) ≤ δ ∃x′ with λd(x′, x) ≤ f(x)q and f(x′) ≤ (1− λ)f(x).

Next assume q > 0, (p0, x0) ∈ gph S and consider552
Procedure S2: Beginning with k = 0, �nd any (pk+1, xk+1) ∈ gph S such that553

(i) λd(xk+1, xk) ≤ d(pk, π)q and (ii) d(pk+1, π) ≤ (1− λ)d(pk, π). (5.5)

If such points can be found for all k then pk → π holds trivially, and we call S2 applicable.554
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Lemma 5.4. Suppose λ ∈ (0, 1), θ = (1−λ)q, and (5.5) holds true for some sequence (pk, xk), k ≥ 0555
(not necessarily in gph S). Then the limit ξ = lim xk exists and satis�es556

d(ξ, x0) ≤ Ld(p0, π)q with L = [ λ (1− θ) ]−1. (5.6)

Moreover, if ε, δ > 0 and d(x0, x̄), d(π, p̄), and d(p0, π) are small enough such that557

d(x0, x̄) + L d(p0, π)q ≤ ε and d(p0, π) + d(π, p̄) ≤ δ, (5.7)

then xk ∈ B(x̄, ε) and pk ∈ B(p̄, δ) hold for all k ≥ 0.558

Proof. With pk, assigned to xk, we may put τk = λ−1d(pk, π)q and apply Lemma 2.4. This yields
d(xk, x0) ≤ (1 − θ)−1τ0 = L d(p0, π)q and the existence of the limit ξ = lim xk satisfying (5.6). If
(p0, x0) satis�es (5.7), then for any k ≥ 0 we have

d(xk, x̄) ≤ d(x0, x̄) + d(xk, x0) ≤ d(x0, x̄) + L d(p0, π)q ≤ ε,
d(pk, p̄) ≤ d(pk, π) + d(π, p̄) ≤ d(p0, π) + d(π, p̄) ≤ δ.

Hence the lemma is valid.559

Proposition 5.5. For S de�ned by (1.3), suppose that λ ∈ (0, 1), ε, δ > 0 and π ∈ B(p̄, δ) satisfy560
(5.4). Then, if (p0, x0) ∈ gphS and π satisfy (5.7), Procedure S2 is applicable and de�nes a sequence561
{xk} converging to some ξ ∈ S(π) satisfying (5.6).562

Proof. By Lemma 5.4, hypothesis (5.4) is applicable to (p0, x0) and all generated points (pk, xk). Thus563
all (pk, xk) can be chosen in gph S which ensures (pk, xk) → (π, ξ) ∈ gphS.564

As is all step-size algorithms, one can start with �xed λ1 = 1 and put λk+1 := λk/2, xk+1 = xk if565
there is no solution with the current λ. Being applicable now means λk ≥ λ̄ > 0 for all initial points566
(p0, x0) ∈ gph S and π satisfying (5.7). Similarly, one could use varying q, beginning with q1 = 1. The567
estimates then hold with exponent q̄ if also qk ≥ q̄ > 0.568

Again, criteria for calmness and the Aubin property with exponent q can be derived in a uni�ed569
manner.570

Corollary 5.6. Suppose (1.3) and (p̄, x̄) ∈ gphS. Then571
(i) S obeys the Aubin property [q] at (p̄, x̄) ⇔ there are λ ∈ (0, 1) and ε, δ > 0 such that (5.4)572
is satis�ed for all π ∈ B(p̄, δ).573
(ii) With �xed π = p̄, the same holds in view of calmness [q].574

Proof. Necessity (⇒) follows easily from the stability de�nitions while Prop. 5.5 ensures the su�-575
ciency.576

For q=1 and strongly closed mappings acting between Banach spaces, this statement is Theorem 3577
in [21]. By Prop. 5.5 and Corollary 5.6, we may thus summarize578

Theorem 5.7. Suppose (1.3) and (p̄, x̄) ∈ gph S. Then579
(i) S obeys the Aubin property [q] at (p̄, x̄)580
⇐⇒ There exist λ ∈ (0, 1) and ε, δ > 0 such that (5.4) is satis�ed for all π ∈ B(p̄, δ).581
⇐⇒ There are α > 0 and λ ∈ (0, 1) such that iterates (pk+1, xk+1) for procedure S2 exist in each582
step, whenever the initial points satisfy d(x0, x̄) + d(p0, p̄) + d(π, p̄) < α and x0 ∈ S(p0).583
(ii) With �xed π ≡ p̄, the same holds in view of calmness [q].584

For q = 1 and less general spaces, the equivalence between the stability properties and the related585
behavior of S2 is known from [21,22].586

As a consequence of the theorem, conditions (5.4) and (5.1), for C = P and (p̄, x̄) ∈ gph S, are587
equivalent whenever S (1.3) is strongly closed.588
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