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Abstract: We review the constructions and tests of the dilatation operator and of the
spectrum of composite operators in the flavour SU(2) subsector of N = 4 SYM in the
planar limit by explicit Feynman graph calculations with emphasis on analyses beyond
one loop. From four loops on, the dilatation operator determines the spectrum only in
the asymptotic regime, i.e. to a loop order which is strictly smaller than the number of
elementary fields of the composite operators. We review also the calculations which take
a first step beyond this limitation by including the leading wrapping corrections.
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1 Introduction

In the context of the AdS/CFT correspondence [1, 7, 18], the discovery of integrability
is a key ingredient towards finding the exact spectrum of strings in AdS5 × S5 and of
composite operators in N = 4 SYM theory with gauge group SU(N) in the planar limit,
i.e. for N →∞. As reviewed in chapters [II.1] and [II.2], on the string side of the duality
the spectrum is accessible order by order as a strong coupling expansion in terms of the ’t
Hooft coupling by a (semi)classical analysis of string states with large quantized charges.
It is also described in terms of respective string Bethe ansätze which are reviewed in
chapter [III.1].

In the N = 4 SYM theory, the weak coupling expansion of the planar spectrum, i.e.
the conformal dimensions of composite operators, can be obtained by direct perturba-
tive calculations of various correlation functions. The appearing UV divergences require
renormalization, which then leads to a mixing among operators with the same bare con-
formal dimension. The eigenvalues of the new eigenstates under conformal rescalings
are given as the sum of the bare scaling dimension and an individual anomalous dimen-
sion. The operator mixing can be extracted e.g. from the correlation functions involving
two composite operators. Alternatively, one can directly calculate the diagrams which
contribute to the renormalization of these operators. This directly allows to obtain an
expression for the dilatation operator, whose eigenvalues are the anomalous dimensions.

Direct perturbative calculations become very cumbersome at high loop orders and can
be avoided, if the observed integrability at one loop, which is reviewed in chapter [I.1],
also persists to higher loop orders. The dilatation operator can then be determined,
using some very general structural information from the underlying Feynman graphs
only and some data from the gauge Bethe ansätze. The respective details are reviewed
in chapter [I.3]. Direct Feynman graph calculations of the dilatation operator in the
flavour SU(2) subsector to three loops and of some of its eigenvalues and of parts of the
Bethe ansätze also to higher loops provide important checks for the assumed integrability.

Even if integrability holds to all loop orders, the respective Bethe ansätze and planar
dilatation operator can only be applied to compute the anomalous dimension in the
asymptotic regime. In this regime, the loop order of the result is constrained to be strictly
smaller than the length (the number of elementary fields) of the shortest composite
operator involved. At loop orders which are equal to or exceed this number, the so called
wrapping interactions [28, 37] have to be considered. They are corrections due to the
finite size of the composite operators and have their origin in the neglected higher genus
contributions to the dilatation operator [45]. In the dual string theory the counterparts
of the wrapping interactions are corrections due to the finite circumference of the closed
string worldsheet cylinder [55]. Their analyses are reviewed in chapters [III.5] and [III.6].

In this chapter we review the explicit Feynman graph calculations in N = 4 SYM
theory in the planar limit beyond one loop. It is organized as follows:

In section 2 we give with a short summary of how composite operators are renormal-
ized, and how the dilatation operator is defined in terms of the renormalization constants.

In section 3 we then review the explicit calculations and tests of the dilatation oper-
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ator with particular focus on calculations beyond the first order in perturbation theory.1

Only the flavour SU(2) subsector will be considered, since most higher loop calculations
are performed within this subsector. As examples we recalculate in detail the respective
one- and two-loop dilatation operator in N = 1 superfield formalism. This approach is
much more efficient than the originally used component formalism, and it yields more
direct relations between the dilatation operator and the underlying Feynman graphs.
We then display the result of a three-loop computation and also summarize the existing
checks of the magnon dispersion relation, of the structure of the dilatation operator and
of some of its eigenvalues in the asymptotic regime beyond at three and higher loops.

In section 4, we review the perturbative calculations which consider the first wrapping
corrections and hence yield results beyond the asymptotic regime. The general strategy
of these calculations will be explained at the example of the four-loop calculation for
the length four Konishi descendant in the flavour SU(2) subsector. Further results for
different operators and for the terms of highest transcendentality are then summarized
briefly.

In section 5 we give a concluding summary, and in two appendices we present the ex-
plicit D-algebra manipulations for the one- and two-loop calculation and the expressions
for the relevant integrals.

2 Renormalization of composite operators

The dilatation operator and anomalous dimensions can be obtained from a perturbative
calculation of the correlation functions which involve the composite operatorsOa, where a
labels the different operators. The encountered UV divergences require a renormalization
of the composite operators as

Oa,ren(φi,ren) = Zab(λ, ε)Ob,bare(φi,bare) , φi,ren = Z1/2
i φi,bare (2.1)

where in an appropriate basis Z = 1 + δZ, and the matrix δZ is of order O(λ) in the
renormalized coupling constant λ. It also depends on the regulator ε and is in general
non-diagonal and thus leads to mixing between the different composite operators. The
matrix element δZab is given by the negative of the sum of the overall UV divergences of
the Feynman diagrams in which the vertices of the theory lead to interactions between
the elementary fields of operator Ob, such that the resulting external field flavour and
ordering coincide with the ones of the operator Oa. One also has to consider contribu-
tions from wave function renormalization of the elementary fields φi the operators are
composed of. Respective factors Z1/2

i are included within Z.
N = 4 SYM theory can be regularized by supersymmetric dimensional reduction [59]

in D = 4 − 2ε dimensions. The coupling constant gYM is then accompanied by the
’t Hooft mass µ in the combination gYMµ

ε to restore the mass dimension of the loop
integrals. The coupling constant itself is not renormalized and hence does not explicitly
depend on µ, such that superconformal invariance is preserved. This was explicitly found
to three loops by computing the vanishing of the β-function in an N = 1 superfield

1The one-loop results are reviewed in chapter [I.1].
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formulation [60, 2]. The finiteness of N = 4 SYM theory was then later shown to all
orders [3]. A first argument was given in [4]. Wave function renormalization of the

superfields is hence finite, i.e. Z1/2
i is trivial.2 In the planar limit, where the coupling

constant is λ = g2
YMN , the dilatation operator is then extracted from the renormalization

constant of the composite operators in (2.1) as

D = µ
d

dµ
lnZ(λµ2ε, ε) = lim

ε→0

[
2ελ

d

dλ
lnZ(λ, ε)

]
. (2.2)

The logarithm of Z = 1 + δZ has to be understood as a formal series in powers of δZ.
All poles of higher order in ε must cancel in lnZ, such that it only contains simple 1

ε

poles. In effect, the above description extracts the coefficient of the 1
ε

pole of Z, and at a
given loop order K multiplies it by a factor 2K. This then yields the dilatation operator
as a power series

D =
∑
k≥1

g2kDk , g =

√
λ

4π
, (2.3)

where for later convenience we have absorbed powers of 4π into the definition of a new
coupling constant g.

3 Dilatation operator in the SU(2) subsector

N = 4 SYM theory contains six real scalar fields which can be complexified and combined
together with the fermions into three chiral and antichiral N = 1 superfields φi and φ̄i,
i = 1, 2, 3, respectively. The remaining gauge field and fermion are combined into an
N = 1 vector multiplet V . In the following, we denote the three flavours by (φ, ψ, Z).
They are transformed into each other by an SU(3) subgroup of the SU(4) R-symmetry
group. All fields are in the adjoint representation of the gauge group SU(N). Our
superspace conventions are as in [5]. In particular, we use the Feynman rules in which
the Wick rotation is included. They can be found e.g. in [6].

The flavour SU(2) subsector contains operators which are composed of only two of
the three chiral superfields, e.g. φ and Z. Their color indices are all contracted with
each other to yield a gauge invariant object. This in general leads to multiple traces of
products of the elementary fields, but in the planar limit only operators where all fields
appear within a single trace are relevant. It suffices to consider operators which contain
a number of fields φ which does not exceed the number of fields Z, since the results for
the remaining operators follow immediately by an exchange of the role of the two fields.
Usually, the fields φ are then denoted as impurities which appear between fields of type
Z within the single trace over the gauge group. The total number of fields inside the
trace defines the length L of the composite operator.

The composite operators have to be renormalized due to the emergence of UV di-
vergences in the loop integrals of the Feynman diagrams in which the elementary fields
interact via the elementary vertices of the theory. Such interactions can change the

2This holds apart form gauge artefacts that are not relevant here.
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flavour of the elementary fields and even the length of the composite operators. How-
ever, in the flavour SU(2) subsector they can only affect the order in which the two types
of elementary fields appear inside the trace over the gauge group. Since the composite
operators do not contain the adjoint fields (φ̄, ψ̄, Z̄) they are free of flavour subtraces,
i.e. flavour contractions cannot appear. Only the permutation and the identity remain
as relevant operators in flavour space. Mixing then occurs only within subsets of op-
erators with fixed numbers of both types of fields and thus with fixed length L. The
SU(2) subsector itself is closed under renormalization, at least perturbatively [8]. The
operators

tr
(
ZL
)
, tr

(
φZL−1

)
(3.1)

which are the ground state and a state with a single impurity are protected and do not
acquire anomalous dimensions. Operators which contain more than a single impurity φ
undergo non-trivial mixing.

The flavour permutations can be written as products of permutations acting on near-
est neighbour sites. This allows for a representation of the renormalization constant Z
and the dilatation operator D for composite operators of fixed length L in terms of the
permutation structures [9]

{a1, . . . , an} =
L−1∑
r=0

Pa1+r a1+r+1 · · ·Pan+r an+r+1 (3.2)

and the identity {} in flavour space. The structures consider the insertion of the Feynman
subdiagrams in which elementary fields interact, at all possible positions within the single
trace of the composite operator by the summation. Periodicity with period L is thereby
understood. In particular, {} then measures the length L of the composite operator it
is applied to. The range of the interaction in flavour space κ is given by the number of
nearest neighbours on which the permutation structures act. It is extracted from the list
of integers a1, . . . , an as

κ = max
a1,...,an

− min
a1,...,an

+2 . (3.3)

At a given loop order K the relevant Feynman diagrams can only generate the permu-
tation structures which obey the following conditions

n ≤ K , κ ≤ K + 1 . (3.4)

The first inequality considers that each nearest-neighbour permutation is associated with
at least one loop in the underlying Feynman graph. The second condition ensures that
the range of the interaction in flavour space does not exceed the limit on the range of the
Feynman graphs, defined as the number R of elementary fields of the composite operator
which can interact with each other. It is restricted to R ≤ K + 1. Since the summation
in (3.2) runs over all insertion points with periodicity L, the smallest integer entry can
always be fixed e.g. to 1 by shifting all ai by a common integer. Further relations between
the structures (3.2) can be found in [10]. The independent permutation structures which
obey (3.4) then form a basis in which the K-loop dilatation operator can be written
down.
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The basis with elements (3.2) is not the best choice to express the result of an explicit
Feynman diagram calculation, since a single Feynman diagram generates a contribution
which contains several permutation structures (3.2) with fixed relative coefficients. If
instead the generated combinations themselves are used as basis elements, each Feynman
diagram is associated with only one of them [11, 12]. The basis elements obtained from
supergraphs are called chiral functions and are defined as

χ(a1, . . . , an) = {a1, . . . , an}
∣∣
P→P−1 , (3.5)

where P → P−1 denotes a replacement of all permutations in (3.2) by the fixed com-
bination of permutation and identity. The expansion of the resulting products yields χ
in terms of linear combinations of permutation structures. The chiral functions capture
the structure of the chiral and anti-chiral superfield lines of the underlying supergraphs.
Hence, all supergraphs which only differ by the arrangement of the flavour-neutral vector
fields generate contributions with the same chiral function. In particular, at loop order K
the chiral functions χ(a1, . . . , an) with n = K are associated each with a single Feynman
graph since they do not contain any vector fields. Except of χ() = {}, all chiral functions
(3.5) yield zero when they are applied to one of the states in (3.1). The expression of
the dilatation operator in terms of chiral functions should hence not explicitly depend
on χ(). We will come back to this statement at the end of section 3.4.2.

3.1 One-loop dilatation operator

The one-loop calculation in the SU(2) subsector was addressed by Berenstein, Maldacena
and Nastase in [13]. They used component fields to compute the term involving the
permutation structure {1}, which permutes the flavour between two neighboured fields.
It is the maximum shuffling term at one loop, since it shifts the position of the impurity
by the maximum number of one site at this loop order. Its generalization to higher loops
will be discussed in section 3.4.1. The remaining Feynman diagrams all contribute to
the identity operator {} and were not computed explicitly. Instead, their contribution
was reconstructed from the fact that the eigenvalue for the ground state in (3.1) should
be zero.

Using instead N = 1 superfields for the one-loop calculation, only a single Feynman
diagram contains a UV divergence and hence contributes to the renormalization constant
in (2.1). It is evaluated as

= +λI1χ(1) , (3.6)

where the bold horizontal line represents the interacting fields of a composite operator
of arbitrary length L ≥ 2. The D-algebra manipulations are trivial in this case as
explicitly displayed in appendix A. The resulting loop integral is given in appendix
B. The further one-loop diagram of gluon exchange is finite, and the one-loop wave
function renormalization vanishes. This is different from their behaviour in component
formalism, where they have to be considered. According to the description (2.2), the
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R = 1 R = 2 R = 3

χ() 2

χ(1) −

χ(1, 2) − −

Table 1: Diagrams in N = 1 superfields (apart from eventual reflections) which
can in principle contribute to the two-loop dilatation operator. Graphs which
contain the vanishing one-loop self energies are not drawn. It turns out that all
diagrams depicted in gray are also irrelevant. The two-loop chiral self energy is
finite, and the remaining range R ≥ 2 diagrams are irrelevant due to generalized
finiteness conditions [6].

one-loop dilatation operator hence reads

D1 = −2χ(1) . (3.7)

Including also the contributions to the trace operator in flavour space, which extends
the result to the flavour SO(6) subsector, the full one-loop calculation in component fields
was performed in [14], and the result was recognized as the Hamiltonian of a respective
integrable Heisenberg spin chain.

3.2 Two-loop dilatation operator

The two-loop calculation of the dilatation operator was performed in [15] in component
formalism and for composite operators in the SU(2) subsector. As in the one-loop case
[13] only the diagrams which contribute to genuine flavour permutations were explicitly
calculated, and the coefficient of the identity operation was then determined by the
condition of a vanishing eigenvalue of the ground state (3.1).

The relevant diagrams for the complete two-loop computation in terms of N = 1
superfields are given in table 1. The chiral self energy is identically zero at one loop and
finite at higher loops. According to the generalized finiteness conditions derived in [6], all
range R ≥ 2 diagrams, in which all vertices appear in loops are also finite. This concerns
all remaining diagrams in the first line and in the second line the respective first diagram
in the second and third column. The pole parts of the last two diagrams in this line in the
third column cancel against each other [11,12]. This cancellation is based on the fact, that
all spinor derivative Dα have to be kept inside the loops for the divergent contributions
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when the D-algebra is performed. These constraints on the D-algebra manipulations also
follow from the finiteness conditions [6]. All these irrelevant diagrams are depicted in
gray. We only have to compute the remaining diagrams and consider also their reflections
where necessary. The substructures in the relevant range R = 2 diagrams with chiral
function χ(1) combine into the one-loop chiral vertex correction that is explictly given
in (A.2). We then find

1
= + + = −2λ2I2χ(1) , = +λ2I2χ(1, 2) , (3.8)

where we have to consider also the reflection of the last diagram which contributes
with chiral function χ(2, 1). According to the description (2.2), the two-loop dilatation
operator is then obtained by extracting the 1

ε
pole of the sum of these diagrams and

multiplying it by −4. With the pole part of the respective integral I2 given in (B.4) this
then yields

D2 = 4χ(1)− 2[χ(1, 2) + χ(2, 1)] . (3.9)

An explicit demonstration of the cancellation of the double poles in lnZ as mentioned
after (2.2) can be found in [6], where the one- and two-loop calculations were presented
as a demonstration for the efficiency of the used approach.

3.3 Three-loop dilatation operator

At three-loop order a computation of the dilatation operator directly from Feynman
graphs of N = 1 superfields was recently performed in [6]. The result reads

D3 = −4(χ(1, 2, 3) + χ(3, 2, 1)) + 2(χ(2, 1, 3)− χ(1, 3, 2))− 4χ(1, 3)

+ 16(χ(1, 2) + χ(2, 1))− 16χ(1)− 4(χ(1, 2, 1) + χ(2, 1, 2)) .
(3.10)

It determines the planar spectrum in the SU(2) subsector to three loops and hence goes
beyond an earlier test of two eigenvalues [16], which employs Anselmi’s trick [17] to
reduce the calculation to two loops. The three-loop results confirm the prediction from
integrability in [9]. Earlier checks of three-loop eigenvalues are summarized in section
3.4.3.

3.4 Partial tests at higher loops

To three-loop order and also beyond, certain parts of the respective Bethe ansatz and
dilatation operator have been checked by direct Feynman diagram calculations. This
concerns the so-called maximum shuffling terms, which contribute to the dispersion re-
lation of the Bethe ansatz. Moreover, certain terms in the expressions of the dilatation
operator have been tested explicitly.
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3.4.1 Tests of the magnon dispersion relation

Even if explicit expressions for the SU(2) dilatation operator have been obtained only
to the first few loop orders [37], the magnon dispersion relation of the Bethe ansatz is
an all-order expression and directly related to certain Feynman diagrams. For a single
magnon of momentum p it is given by [37]

E(p) =
√

1 + 16g2 sin2 p
2
− 1 , (3.11)

and it is fixed by the underlying symmetry algebra up to an unknown function of the
coupling constant [19], which is trivial here and has already been substituted accord-
ingly.3

At a fixed loop order K in the expansion of the above relation, the momentum
dependence can be expressed as linear combination of the elements cos(k−1)p sin2 p

2
with

1 ≤ k ≤ K. In particular, the term with k = K is generated by the so-called maximum
shuffling diagrams, which include shifts of the position of a single impurity (which is a
magnon in the spin chain notation) by the maximum number of K neighbouring sites.
The relevant diagrams are given by

→ λKIKχ(1, 2, . . . , K − 1, K) (3.12)

and by its reflection. When the resulting sum from the above diagram and from its
reflection are applied to the eigenstate of a single magnon with momentum p, it yields
the eigenvalue λKIK(−8) cos(K − 1)p sin2 p

2
. According to the description (2.2), the 1

ε

pole of this expression has to be multiplied by −2K to obtain its contribution to the
magnon dispersion relation. A comparison with the respective term in the expansion of
(3.11), thereby taking into account the relation (2.3) between the couplings, then makes
a prediction for the 1

ε
pole of the integral IK as

Res0(K R(IK)) =
1

(4π)2K

(2K − 2)!

(K − 1)!K!

1

K
. (3.13)

The explicit expressions for the poles of IK for some K are listed in (B.4). They are
consistent with this result.

In [20] it was shown that at generic loop order the pole structure of the maximum
shuffling diagrams in component fields is in accord with the square root formula of
BMN [13]. This formula follows from the dispersion relation (3.11) for magnon momenta
pj =

2πnj

L
� 1, where L is the length of the operator and nj are mode numbers. The

respective momenta are obtained from the Bethe equations in [37], which are incomplete
since they do not consider the so-called dressing phase [21]. The dressing phase first
appeared at strong coupling [22] but it is important also at weak coupling [23,21], where

3The explicit Feynman diagram computation in [6] confirms that this function is trivial to three
loops. It is non-trivial in the AdS4/CFT3 correspondence that is reviewed in chapter [IV.3].
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it alters the magnon momenta at order O(g6).4 Therefore, the BMN square root formula
fails to describe the anomalous dimensions of two-impurity operators beyond three loops.5

In any case, the dressing phase does not affect the maximum shuffling terms, and hence
the test of the BMN formula in [20] is insensitive to the necessary modification.

An all order derivation of the BMN square root formula employing N = 1 superfield
formalism is presented in [24]. Since it is based on the study of the two-point functions
of operators with a single impurity, it is insensitive to the effects of the dressing phase
which appears in the magnon S-matrix. It would be more appropriate to say that in the
analysis the magnon dispersion relation in the BMN limit is obtained.

The magnon dispersion relation (3.11) describes the free propagation of one magnon.
It it thus built up from all Feynman diagrams with chiral functions that do not yield a
vanishing result when applied to the single magnon momentum eigenstate. The number
of impurities of the composite operator sets an upper bound on the number of bubbles
formed by two neighboured lines of the composite operator inside the Feynman diagrams.
Such a bubble appears for example in the lower right corner of the graph in (3.12), and it
vanishes unless the two involved field flavours are different. The diagrams contributing to
the magnon dispersion relation hence must not contain more than one of these bubbles.
This restrict their chiral functions to χ(1, . . . , k) and χ(k, . . . , 1) after the identities for
the permutation structures (3.2) found in [10] have been used to simplify the chiral
functions, e.g. as χ(1, 2, 1) = χ(2, 1, 2) = χ(1) for the three loop result (3.10). All-
order expressions for the coefficients of these terms in the dilatation operator then follow
directly from the magnon dispersion relation (3.11) and can be found in [6]. It should
be stressed that the above described contributions also yield non-vanishing results when
additional magnons are present outside of the k+ 1 interacting legs. They therefore also
contribute to the magnon S-matrix.

3.4.2 Tests of magnon scattering

The Feynman diagrams that vanish for a single magnon state, but are non-vanishing
if two or more magnons are present within their respective interaction ranges should
exclusively be associated with the magnon S-matrix. Their contributions appear together
with the ones of the above described maximum and non-maximum shuffling terms in
the dilatation operator as constructed from the underlying integrability. In the SU(2)
subsector some of them have been verified by direct Feynman diagram calculations.6

As a concrete example, we consider the four-loop dilatation operator. It can be
determined from the underlying integrability as reviewed in chapter [I.3]. In the basis of

4The dressing phase is reviewed in chapter [III.3].
5This breakdown is independent of the general restriction of the Bethe ansatz to the asymptotic

regime that requires a termination of the expansion at a loop order K ≤ L − 1 to avoid the wrapping
corrections.

6A two-loop test of the S-matrix of the SL(2) subsector can be found in [25].
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the chiral functions (3.5) it reads

D4 = + 200χ(1)− 150[χ(1, 2) + χ(2, 1)] + 8(10 + ε3a)χ(1, 3)− 4χ(1, 4)

+ 60[χ(1, 2, 3) + χ(3, 2, 1)]

+ (8 + 2β + 4ε3a − 4iε3b + 2iε3c − 4iε3d)χ(1, 3, 2)

+ (8 + 2β + 4ε3a + 4iε3b − 2iε3c + 4iε3d)χ(2, 1, 3)

− (4 + 4iε3b + 2iε3c)[χ(1, 2, 4) + χ(1, 4, 3)]

− (4− 4iε3b − 2iε3c)[χ(1, 3, 4) + χ(2, 1, 4)]

− (12 + 2β + 4ε3a)χ(2, 1, 3, 2)

+ (18 + 4ε3a)[χ(1, 3, 2, 4) + χ(2, 1, 4, 3)]

− (8 + 2ε3a + 2iε3b)[χ(1, 2, 4, 3) + χ(1, 4, 3, 2)]

− (8 + 2ε3a − 2iε3b)[χ(2, 1, 3, 4) + χ(3, 2, 1, 4)]

− 10[χ(1, 2, 3, 4) + χ(4, 3, 2, 1)] .

(3.14)

The coefficients εi, i = 3a, 3b, 3c, 3d in the above result are not fixed by the construction.
They correspond to similarity transformations, i.e. changes in the basis of operators
[9, 10], that do not affect the eigenvalues. The coefficient β is the leading term of the
previously mentioned dressing phase. The magnon dispersion relation is encoded in the
first two terms in the first line, the second line and the last line. The further contributions
should be associated with magnon scattering. As the contributions from the maximum
shuffling diagrams (3.12) in the last line, also the other terms in the last four lines have
chiral functions that satisfy both bounds (3.4). They can hence be calculated from
Feynman diagrams as easily as the maximum shuffling terms.

The term in (3.14) with chiral function χ(2, 1, 3, 2) only satisfies the first bound in
(3.4), i.e. the underlying Feynman diagram is chiral but it is not of maximum range. It
involves the leading coefficient β of the dressing phase, which can be determined from
an evaluation of the respective diagram

→ λ4Iβχ(2, 1, 3, 2) (3.15)

if the coefficient ε3a of the similarity transformations is known. One finds ε3a = −4 for
example by computing the diagram which generates χ(1, 3, 2, 4) or χ(2, 1, 4, 3). With the
pole part of the integral Iβ given in (B.5), the leading coefficient of the dressing phase
is then determined as β = 4ζ(3). The result was obtained in [26], using component
formalism. It agrees with one of the proposals in [21] and with the result extracted from
a four-loop calculation of a four-point amplitude in [23].

It is also relatively easy to compute the terms with chiral functions which only satisfy
the second bound of (3.4), i.e. all terms in (3.14) with chiral functions that contain 1 and
4 in their lists of arguments and hence only stem from Feynman diagrams with maximum
interaction range R = 5. This calculation was performed in [11,12] in N = 1 supergraph
formalism in the context of calculating the first wrapping correction to be discussed
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below. The results yield an overdetermined system of equations that uniquely fixes the
coefficients εi and provides non-trivial checks of the remaining coefficients that are fixed
by the underlying integrability. The analogous calculation of the R = 6 diagrams at five
loops can be found in [27].

The expressions (3.7), (3.9), (3.10) and (3.14) do not depend on the identity χ().
This guarantees that the anomalous dimension of the BPS operators (3.1) are zero.
The generalized finiteness conditions in [6] predict this to all orders and relate it to the
finiteness of the chiral self energy, i.e. to the preservation of conformal invariance.

3.4.3 Checks of eigenvalues

To three loops the results (3.7), (3.9) and (3.10) for the dilatation operator have been
obtained by direct Feynman diagram calculations. At higher loops, only the terms that
saturate at least one of the bounds in (3.4) have been tested as describe above. Further
checks involve the eigenvalues of the dilatation operator for some composite operators.
They should match with the anomalous dimensions obtained in direct Feynman diagram
calculations.

Of particular interest is thereby the Konishi supermultiplet. As superconformal pri-
mary it contains the N = 1 Konishi operator [29] that has bare scaling dimension ∆0 = 2
and reads

K = tr
(

e−gYMV φ̄i e
gYMV φi

)
. (3.16)

This operator is not chiral, and hence all its superfield components lie beyond the SU(2)
subsector. However, the Konishi supermultiplet also contains an operator of this subsec-
tor. To find it, one first has to select the level four descendant of bare dimension ∆0 = 4,
which is chiral and pick out the relevant SU(4) R-symmetry component given by

tr
(

[φ,Z] [φ,Z]
)
. (3.17)

It contains as lowest superfield component the respective operator built out of the two
scalar fields of the flavour SU(2) subsector.

All members of a superconformal multiplet acquire the same anomalous dimension.
For the Konishi multiplet it is given to four loops in (4.1). The one- and two-loop
contributions were obtained by explicit Feynman diagram calculations in [30] and [31],
and then also by an OPE analysis in [32], see also [33]. These results are also found in
the special case S = 2 from the conformal dimensions of twist-two operators of general
conformal spin S that belong to the SL(2) subsector. A respective state appears as
component in another level four descendant in the Konishi multiplet. From Feynman
diagrams the result to two loops has been obtained in [34]. At three loops it could be
extracted [35] as the terms with highest transcendentality, i.e. with highest degrees of
the harmonic sums, from the NNLO QCD result for the non-singlet splitting functions of
QCD [36]. The truncation of the QCD result is based on the observation [38] that due to
special properties of the DGLAP and BFKL equations in N = 4 SYM theory a mixing
between functions of different transcendentality degrees does not occur. Specializing to
S = 2, the extracted result yields the three-loop contribution in (4.1). The dilatation
operator (3.7), (3.9) and (3.10) correctly yields the result in (4.1) when applied to the
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state (3.17).7 In fact, the three-loop term was first predicted in [9], where the dilatation
operator is constructed from integrability. Later, an explicit Feynman diagram calcula-
tion [16], which employs Anselmi’s trick [17] to reduce the calculation to two loops led
to the same result. It also immediately follows from the three-loop Feynman diagram
calculation of the dilatation operator in [6] as one of its eigenvalues.

The previously mentioned twist-two operators of the SL(2) sector are very important
for tests of the AdS/CFT correspondence and the underlying integrability. These tests
are reviewed in chapter [III.4]. In particular, the results in the strict S → ∞ limit
are not modified by wrapping interactions. At finite S such modifications occur. The
simplest example is S = 2, i.e. the operator which appears in the Konishi multiplet. Its
anomalous dimension is affected by wrapping interactions at four loops and beyond.

4 Wrapping interactions

In the following we briefly summarize the calculations of the previously mentioned wrap-
ping interactions. A more detailed review is given by [39].

The Bethe ansätze or the dilatation operator yield reliable results for the anomalous
dimensions in the asymptotic limit only. The origin and precise form of this restriction
can be understood by recalling the construction from Feynman diagrams. In section 3
it was argued that at a given loop order K the dilatation operator is determined from
Feynman diagrams with range R ≤ K + 1, which lead to flavour permutations with
range κ ≤ K + 1. For the construction of the diagrams it is thereby implicitly assumed,
that the length L of the involved composite operator is at least as big as the maximal
interaction range K + 1. Therefore, the K-loop dilatation operator can in general only
yield the correct anomalous dimension when it is applied in the asymptotic limit, i.e. to
a state of length L ≥ K + 1.

In order to obtain the spectrum beyond the asymptotic limit, corrections due to the
finite length L of the composite operator have to be considered. In the dilatation opera-
tor, the contributions of all Feynman diagram with range R > L that were constructed
with the assumption of a sufficiently long operator have to be replaced by new diagrams
that contain the operator of lower length L. The new diagrams are called wrapping
diagrams since, due to the insufficient length of the composite operator, the interactions
wrap around it. See figure 4.2 for two examples of such diagrams. This procedure intro-
duces an explicit dependence of the dilatation operator on the length L of the composite
operator it is applied to. More precisely, the coefficients of the chiral functions in the
expression of the dilatation operator become functions of L, while in the asymptotic
limit they are constants, and the dilatation operator depends on the length only via the
permutation structures (3.2).

The appearance of wrapping interactions is closely connected to the truncation of the
genus h expansion of the dilatation operator beyond the planar h = 0 contribution [45].
If in a planar wrapping diagram the composite operator is replaced by a longer operator,
the additional fields lines cannot leave the diagram without crossing any other lines, i.e.

7At four and higher loops this is no longer the case since the wrapping interactions have to be
considered. This will be discussed in section 4.
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it becomes a diagram of genus h = 1. The appearing wrapping diagrams hence come
from certain genus h = 1 contributions to the dilatation operator, which become planar
when it is applied to a sufficiently short composite operator. Wrapping diagrams appear
at all orders in the genus expansion of the dilatation operator. They are of genus h+1 in
the asymptotic regime and encode the finite size effects at genus h. The planar wrapping
diagrams are special since they can be projected out of all genus one contributions by
introducing spectator fields [45]. While in general for higher genus diagrams the notion
of the range of the interaction is not meaningful, it is still well defined for the subset
of genus one diagrams when they become the planar wrapping diagrams. Integrability
seems to persist, even if in general at higher genus its breakdown is expected [9].8

In order to obtain the anomalous dimensions beyond the asymptotic regime, one
should not abandon the dilatation operator of the asymptotic regime and compute all
Feynman diagrams. As mentioned above, the dilatation operator is still useful, since
it can be corrected for an application to the composite operator of shorter length L.
First, at each loop order K all contributions from Feynman graphs of longer range
K+1 ≤ R ≤ L have to be removed. Then, contributions from the wrapping interactions
have to be added. This procedure is particularly powerful at the critical order K = L
where wrapping arises for the first time, since only relatively few Feynman diagrams
of restricted topology have to be computed explicitly. Most diagrams are captured
automatically by those terms in the dilatation operator that are not removed in the
modification process.

This procedure has been first initiated in [11], with the details given in [12] for the
case K = L = 4, i.e. for the four-loop anomalous dimension of the Konishi operator. In
N = 4 SYM theory it is the simplest case where wrapping arises.

One starts from the four-loop asymptotic dilatation operator (3.14) and modifies it
for an application to the length four Konishi descendant (3.17). First, all contributions
from Feynman diagrams which are of range R = 5 have to be identified and removed.
The subtraction of a contribution from a Feynman diagram with R = 5 affects the
coefficients of several permutation structures (3.2) in the dilatation operator.9 The basis
of chiral functions (3.5) was introduced to ensure that this does not happen in the case
R = κ = 5. One still has to remove all contributions from Feynman diagrams with R = 5
but κ ≤ 4. Such Feynman diagrams contain a chiral structure with interaction range κ,
and the remaining R−κ neighboured field lines are connected with it and with each other
only by vector fields. Since the latter are flavour neutral, these R = 5 diagrams appears
to be of lower range κ ≤ 4 and are not captured when all contributions with κ = 5 are
removed. It can be shown [12] that in N = 1 supergraph formalism all these diagrams
are finite or their divergences cancel against each other, and that therefore they do not
contribute to the dilatation operator in the first place. This is also an implication of the
generalized finiteness conditions derived in [6]. In section 3.2 we have already used the
results to argue for the finiteness of the two-loop diagrams in the first two rows of the
last column of table 1. These diagrams have R = 3 but κ ≤ 2 and are the counterparts

8In chapter [IV.1] the analyses of higher genus contributions are reviewed.
9In the context of the BMN matrix model such a subtraction attempt was made in [40]. It does

not lead to the correct result, since the necessary modifications of the contributions with permutation
structures of lower range and the addition of the wrapping diagrams was not performed.
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to some of the four-loop diagrams that appear here.
At critical wrapping order K = L the use of chiral functions and the finiteness

theorem make the subtraction procedure almost trivial: one just has to remove all con-
tributions with chiral functions with range κ = K + 1. The subtraction procedure itself
does not require the calculation of any Feynman diagrams. However, the eigenvalues of
the subtracted dilatation operator are no longer independent of the scheme coefficients εi,
which have to be fixed by calculating at least some of the diagrams with range R = K+1.
If one could compute the wrapping interactions also as functions of εi and add them to
the subtracted dilatation operator, the eigenvalues of this sum should not depend on the
εi. However, the calculation of the wrapping interactions takes place in a fixed scheme
related to the use of N = 1 supergraphs, and therefore the εi in the subtracted dilatation
operator have to assume the respective values.

Applying the modified four-loop dilatation operator to the SU(2) descendant of the
Konishi supermultiplet yields the four-loop anomalous dimension [11,12]. Including also
the lower orders, it reads

γ = 12g2 − 48g4 + 336g6 + (−2496 + 576ζ(3)− 1440ζ(5))g8 , (4.1)

where the full conformal dimension is obtained as ∆ = ∆0 + γ with the naive scal-
ing dimension ∆0 as described in section 3.4.3. The four-loop contribution has also
been obtained from a generalized Lüscher formula [41]. The approach is reviewed in
chapter [III.5]. Furthermore, it was later also found in a computer-based calculation in
component formalism [42]. The matching between the Feynman diagram and Lüscher
based calculations provides the first test of AdS/CFT and the underlying integrability be-
yond the asymptotic limit. It is also reproduced by the recently proposed Y -system [43],
which is derived from the thermodynamic Bethe ansatz (TBA) [44] and is a candidate
to capture the full planar spectrum of N = 4 SYM theory. The TBA and Y-system
are reviewed respectively in chapters [III.6] and [III.7]. Earlier attempts to describe the
wrapping effects are included in chapter [I.3].

In [46] the result (4.1) which also holds for the earlier mentioned twist-two operator
with conformal spin S = 2 has been generalized to arbitrary S. When analytically
continued to S = −1, it yields the correct pole structure as predicted from the BFKL
equation.

A result for the five-loop anomalous dimension of the Konishi operator has been
obtained in impressive calculations on the basis of the generalized Lüscher formula [47]
and the TBA [48]. Also this result has been generalized to arbitrary spin S, and it is
in accord with the pole structure from the BFKL equation [49]. To obtain the five-loop
result for the Konishi multiplet from a Feynman diagram calculation is very difficult,
even with the universal cancellation mechanisms discovered in [6]. Instead, a five-loop
result for the L = 5 operator tr

(
[φ,Z] [φ,Z]Z

)
which is in the same supermultiplet as

certain twist-three operators has been computed [27], and it agrees with results from
the generalized Lüscher formula [50] and the Y -system [51]. The six-loop results for the
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twist-three operators with generic conformal spin S has recently become available [52].

, . (4.2)

Beyond the asymptotic limit the contributions of highest transcendentality, i.e. which
contain the ζ-function with biggest argument, are generated entirely by the wrapping
interactions. In the four loops result in (4.1) this is the term with ζ(5). Its general-
ization to twist-two operators with generic conformal spin S has been obtained from a
Feynman diagram computation in component formalism in [53]. At generic loop and
critical wrapping order K = L the highest transcendentality degree of the wrapping
diagrams is 2K − 3 compared to 2K − 5 of the dressing phase in the asymptotic Bethe
ansatz. A clean setup to study the transcendentality structure without admixtures from
the dressing phase is given by single impurity operators in the β-deformed N = 4 SYM
theory.10 The leading wrapping corrections have been calculated up to 11 loops [54, 56]
and were confirmed in [50, 51]. A clear pattern emerges also for the terms of lower
transcendentality. The diagrams in figure 4.2 are responsible for the highest transcen-
dentality contribution involving ζ(2K − 3). The respective term can be traced back to
a component 1

2
PK in the decomposition of the integrals, where PK is the K-loop cake

integral PK given in (B.6).

5 Conclusions

We have reviewed the explicit Feynman diagram calculations which at small ’t Hooft
coupling determine the planar spectrum of composite operators in the flavour SU(2)
subsector of N = 4 SYM theory and test the underlying integrability. The use of N = 1
superspace techniques and of chiral functions as operators in flavour space allowed for
a direct connection of Feynman diagram calculations and the results from integrabil-
ity. We have presented the calculations up to two-loops in detail, and summarized the
calculations and partial checks at higher loops.

Then we reviewed how a anomalous dimensions beyond the asymptotic limit can
be obtained by computing the leading wrapping corrections and which properties and
interpretation these interactions have. The existing tests in these setups have been
summarized.
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A D-algebra

The propagators and vertices of superfields depend not only on the bosonic, but also on
the fermionic coordinates θα, θ̄α̇ of the superspace and carry covariant spinor derivatives
Dα, D̄α̇. By the D-algebra manipulation which consists of transfers, partial integrations
and the use of (anti)-commutation relations between products of these spinor derivatives,
the underlying expression is transformed, such that the final result is localized at a single
point in the coordinates θα, θ̄α̇. We refer the reader to [5] for our conventions and to [6]
for an explicit presentation of the relevant Feynman rules. Here, we only recall that in
each loop two Dα and two D̄α̇ have to remain to obtain a non-vanishing result. The loop
is then localized in the fermionic coordinates. We indicated this by filling it gray. Also,
we recall the relations D2 D̄2 D2 = 2D2 and D̄2 D2 D̄2 = 2 D̄2, which transform spinor
derivatives into spacetime derivatives 2 = ∂µ∂µ.

The one-loop diagram (3.6) requires no D-algebra manipulations, and one directly
obtains

D̄
2

D̄
2

D
2

D̄
2

D
2

=

D̄
2

D̄
2

D
2

→ −I1 , (A.1)

where we have not considered the non-trivial prefactors of the propagators and vertices
in the final result. They are contained within the color- and flavour factors (chiral
functions) that enter the complete result. There appears an additional factor −1 in front
of I1: we have to transform the full fermionic measure to the chiral measure of the source
term that for the chiral composite operator we have added to the action. This yields
d4θ = d2θ D̄2 with extra derivatives D̄2 that combine with the remaining D2 in the above
diagram to 2, such that the propagator which connects the chiral and antichiral cubic
vertex is cancelled, thereby yielding the factor −1.

The one-loop correction to the chiral vertex that enters (3.8) is easily evaluated as

1

D̄ 2

D̄
2

=
D̄2

D̄ 2
D 2

D
2

D̄ 2

D̄
2

+ · · · =

 2

D̄ 2

D̄
2

+ . . .

 iλgYMεijk , (A.2)

where the ellipsis denote the remaining two diagrams obtained by cyclic permutations
of the external legs, and we have omitted the color trace but included the other color
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and flavour factors. Also in this case the 2 is produced after reducing the full fermionic
measure to the chiral measure as mentioned above. When 2 cancels the propagator a
factor −1 is produced.

The D-algebra manipulations for the diagrams (3.8) contributing to the two-loop
dilatation operator are

D̄
2

D̄
2

D
2

D̄
2

D
2 1

=

D̄
2

D̄
2

D
2

D̄
2

D
2

2

+
D̄

2

D̄
2

D
2

D̄
2

D
2 2

+

D̄
2

D̄
2

2

D
2

D̄
2

D
2

= 2

D̄
2

D̄
2

D
2

2

→ 2I2 ,

D̄
2

D̄
2

D
2

D̄
2

D
2

D̄
2

D̄
2

D
2

D̄
2

D
2

=

D̄
2

D̄
2

D
2

2

D̄
2

→ I2

(A.3)

where equalities hold up to disregarded finite contributions, and the final expressions in
terms of the integral I2 consider the factor −1 discussed above.

B Integrals

Using the scalar G-function defined as

G(α, β) =
Γ(D

2
− α)Γ(D

2
− β)Γ(α + β − D

2
)

(4π)
D
2 Γ(α)Γ(β)Γ(D − α− β)

, (B.1)

in D-dimensional Euclidean space, the following integrals can be found exactly to all
loop orders

IK = 3

K K−1

21

=
K−1∏
k=0

G(1− (D
2
− 2)k, 1) . (B.2)

They are logarithmically divergent in D = 4 − 2ε dimensions, and their overall UV
divergence is obtained with the operations K to extract the pole part and R to subtract
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subdivergences as

K R(IK) = K
(
IK −

K−1∑
k=1

K R(Ik)IK−k

)
. (B.3)

To the first few loop orders, one finds

K R(I1) =
1

(4π)2

1

ε
,

K R(I2) =
1

(4π)4

(
− 1

2ε2
+

1

2ε

)
,

K R(I3) =
1

(4π)6

( 1

6ε3
− 1

2ε2
+

2

3ε

)
,

K R(I4) =
1

(4π)8

(
− 1

24ε4
+

1

4ε3
− 19

24ε2
+

5

4ε

)
,

K R(I5) =
1

(4π)10

( 1

120ε5
− 1

12ε4
+

11

24ε3
− 19

12ε2
+

14

5ε

)
,

K R(I6) =
1

(4π)12

(
− 1

720ε6
+

1

48ε5
− 25

144ε4
+

47

48ε3
− 1313

360ε2
+

7

ε

)
.

(B.4)

The pole parts of the integrals which determine the four-loop dressing phase or come
from the wrapping interactions at critical wrapping order can very efficiently be com-
puted by using a modified and extended version of the Gegenbauer polynomial x-space
technique [57,12]. The integral of the simplest contribution that allows to determine the
leading four-loop coefficient of the dressing phase reads

Iβ = , K R(Iβ) =
1

(4π)8

(
− 1

12ε4
+

1

3ε3
− 5

12ε2
− 1

ε

(1

2
− ζ(3)

))
. (B.5)

The terms of highest transcendentality from wrapping corrections at critical order
are determined by the cake integral. This integral is logarithmically divergent for K ≥ 4
loops and reads

PK = K 3

K−1 4

21

, K(PK) =
1

(4π)2K

1

ε

2

K

(
2K − 3

K − 1

)
ζ(2K − 3) , (B.6)

where the pole part has been obtained in [58] at generic loop order.
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