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Abstract

This paper presents mixed finite element methods of highasrdor two-body contact problems of linear elasticity.
The discretization is based on a mixed variational formomaproposed by Haslinger et al. which is extended to
higher-order finite elements. The main focus is on the cgarmge of the scheme and on a priori estimates for the
h— and p-method. For this purpose, a discrete inf-sup conditiomésgn which guarantees the stability of the mixed
method. Numerical results confirm the theoretical findings.
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1. Introduction

The aim of this paper is to derive mixed finite element methafdsigher-order for two-body contact problems
in linear elasticity. The discretization approach is basednixed finite elements for contact problems introduced by
Haslinger et al. in [14, 16, 18]. This approach was origindiveloped for low-order finite elements. In this paper,
we extend it to higher-order discretizations and to twoyboohtact problems. The approach relies on a saddle point
formulation. The introduced Lagrange multiplier is defirmerthe surface of one of the bodies in contact and enforces
the geometrical contact condition via a sign condition.

To guarantee the uniqueness of the solution of the mixedhselaad to show its convergence one has to provide a
uniform discrete inf-sup condition which balances the giization spaces of the primal variable and of the Lagrange
multiplier. It is an essential assumption to show the cogwrce of the mixed scheme without regularity assumptions,
to derive a priori estimates and to determine convergernes kmsed on these estimates.

In this work, the higher-order discretization of the primatiable is given via a conforming ansatz using tensor
product polynomials. The discretization space of the digct.agrange multiplier is also based on such tensor prod-
ucts. To include the sign condition, we enforce the disdratgrange multiplier to be positive only in Gauss quadrature
points leading to a non-conforming discretization. Thipraach was already suggested in [7] for frictional contact
problems. We show the convergence of the mixed scheme aodsdisome arguments as proposed by Haslinger
et al. and Lhalouani et al., cf. [5, 14, 15, 16, 22] to detemrinnvergence rates for low-order discretizations of the
Lagrange multiplier. The main result is the derivation ofieergence rates with respect to higher-order discretizati
in both variables. The essential ingredient is to intergiuélize the discretization of the Lagrange multiplieavts
definition in Gauss points. This enables to apply higheeongterpolations as introduced in [3] as well as quadrature
rules for the exact integration of polynomials.

This work also deals with the verification of a uniform diderenf-sup condition. For low-order finite elements
and one-body contact problems, the discrete inf-sup comdi$ proven in [14, 16]. An essential assumption of the
proof is that the discretization of the Lagrange multipleedefined on boundary meshes with &elient mesh size
than that of the primal variable. We show that in the high&ieo approach, this assumption can, in principle, be
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avoided using dferent polynomial degrees. In the proof of the discrete uf-sondition, we use approximation
results of thep-method of finite elements and some inverse estimates ftvehigrder polynomials, cf. [2, 11]. In
particular, we adapt the proof of the discrete inf-sup cthodifor frictional one-body contact problems as described
in [25].

Higher-order discretization schemes for contact problanesrarely studied in literature, especially for mixed
variational formulations. We refer to [21] for finite elemeliscretizations based on primal, non-mixed formulatjons
to [7] for mixed methods using a mortar approach and to [2dbfmundary element methods. Mixed methods with
guadratic finite elements are described in [17, 19].

The paper is organized as follows: In Section 2, the two-bmmhtact problem and its mixed variational formula-
tion are introduced. The convergence of the mixed schemganeral a priori estimates are discussed in Section 3.
In Section 4 the discretization of higher-order is preseénits convergence is proven and convergence rates are de-
termined. A uniform discrete inf-sup condition is provenSection 5. Finally, numerical results confirming the
theoretical findings are discussed in Section 6.

2. Two-body contact problem and its mixed variational formulation

We consider the deformation of two bodies being in contadieyTare represented by the domadlsc RX,
k € {2,3}, | € {1, 2}, with suficiently smooth boundarigs := 9Q' and are clamped at some boundary parts which
are represented by the closed sl@[;sc I'" with positive measure. The boundary parts of the bodies evtrer bodies

possibly get in contact are described by open Egtwhere we assum_ElC ¢ '"\I'y andry, := I\, U l_"lc). Volume
and surface forces act on the bodies. They are describednigjidos f' € L2(Q';R¥) andd' € L%(T};R¥). The
resulting deformation is described by displacement fields H(Q'; R¥) with the linearized strain tense(v) :=

3(Vv + (VVv))T. The stress tensor describing the linear-elastic matieniais defined as™ (v)ij := Cj;,&(V)u, where
C!jk{’ € L=(Q) with C!jk[ = C'ji[k = CL/ij andC:jk[Tika[ > KTiZJ- for all + € L%(Q; R®¥) with 7;; = 7 and a constant
k> 0. We setH}(Q') := {ve HY(Q; R¥) | y:rlD(vi) =0, i=1,...,k for the trace operator € L(H*(Q'), L2(")) and
define g,(V))i := o, (V)n, Vi, := vinl, oy (V) 1= o, (V)ninl, (V) 1= 0, (V) = (V)N with outer normah' of T
For a bijective, sficiently smooth mapping : It — I'Z andx € I'Z, we define

D(x)—
A = | P x# 009,
nt(x) = -N?(x), x=d(X)
and the gap functiog(x) := [x — ®(X)|. Furthermore, we set{, v?]a(x) := v}(x)f — vA(®(x))ifii for functionsv! and
vZonI'% andI'Z, respectively. The two-body contact problem is thus to fiispldcement fields! andu? such that
—dive') = flinQ',
u' = 0 onr,
oh(U) =q onTy,
oh(u) = 0 onTg,
[ul» u2]ﬁ < g’ O-%ﬁ(ul) < 0’ O-%ﬁ(ul)([uls uz]ﬁ - g) = 0 Onré

In this paper, the following notational conventions aredus&€he space-l‘1/2(1"é) denotes the topological dual
space oHY2(I'%) with norms]| - I_1/2rs @ndll-lly 2, respectively. Let(-)o, and ¢, -)or be the usual?-scalar prod-
ucts onw c R¥andI™ c I'g, respectively. Fov € HE(Q') andw € LA(I”), we defing|vi2 ., = (Vi, Vi)oor andlIWif3 ., :=
(W, W)or~. Furthermore, the usu#l-norm onHZ (Q') is denoted by - [l . We definey), € L(HL(Q), LA, R¥))
asy\(v)i = yl'r, (i) andHp = HE(Q') x HE(Q?), which is a Hilbert space with the norimiZ := ¥_1, V12, for

y ,
v € Hp. We setycr € L(Hp, HYA(TL)) asyca(v) := [¥&(V1), ¥2(v3)]s which is surjective due to the assumptions on
I'L, cf. [8]. Finally, we introduce some interpolation spae&s?(Q') andH~Y/2*(I') for 6 > 0 which are defined via
HY(Q') := [HYQ'), H2(Q)]p2 andHY2(Ig) = [HY2(0E), HY2(TE))]g2 with norms|| - [l @ndll - [1-12.0r2
respectively, cf. [23, 26].
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It is well-known, that the solution of the two-body contacbplemu € Hp is also a solutiom € K := {v e Hp |
ven(V) < g} of the variational inequality
a(u,v—u) = {(v-u)
for all v e K, wherea(u,v) := Y1 2(cij(U), &j(V))o and £(v) := Yi_12 ((fi',v:)o + (qg,Yk(\’l)i)o,r‘N)- The inequality
above is fulfilled if and only ifu is a minimizer of the functionaE(v) := %a(v, V) — {(v) in K. Due to Cauchy’s and
Korn’s inequalitiesa is continuous andHp-elliptic, i.e., there exist constantg andv;, so that

a(u,v) < vollulllvilz,  vollVII? < a(v, v) (2.1)

for all u,v € Hp. Therefore, the functiondt is strictly convex, continuous and coercive. This implies &xistence
of a unique minimizeu due to the convexity and closednesofGiven the Lagrange functiond(v, i) := E(v) +
(i yca(v) — @) onHp x H;Y*(TL), the Hahn-Banach theorem yields

E(uy = inf  sup L(v,u) (2.2)
Y pen ()
for HY/2(TL) := (w e HY2(TL) | w > O} andH;Y4(TL) := {u € HVA(IL) | vw e HYA(TL) : (u,w) > 0}. Note that

we assume € H1/2(l"(1:). Thus,u is a minimizer ofE, whenever ¢, 1) € Hp x H;"/*(I'%) is a saddle point of.. The
existence of a unique saddle point is guaranteed, if theéstsex constant > 0 such that

allullgzre < sup - {u, yen(v) (2.3)

VeHDp, |IVl1=1

forallyu e H- 1/2(1“ ), cf. [10]. In fact, it follows from the closed range theoremd the surjectivity ofcs, that (2.3)

is valid. Due to the stationarity conditiony,1) € Hp x H;Y?(I'c) is a saddle point of’ if and only if it fulfills the

mixed variational formulation

a(u,v) = (V) — (A, yca(V)), (2.4)
u—=2A,yca(u) -9 <0

for all v e Hp andu € H;Y*(TL).

3. Discretization of the mixed variational for mulation

Let Sf and M}, be finite dimensional subspaces®#f, andH-Y2(I'}), respectively. Furthermore, Ie4t}, , be
a convex and closed subset Mq Here, h, H, p, andq denote some parameters specifying the f|n|te element
discretizations as introduced in Section 5. The discretdlsgpoint problem of the two-body contact problem is to
find a discrete saddle point, 1)) € Sy x Mj, ,, such that

Ly, A = inf - sup L), ). (3.1)

VieS, hyHeMH+
Again, by the stationarity condition, we conclude that tisekbte saddle point is equivalently characterized by
aup, vp) = £(vp) = (A yea(vi)ors

(1 = A vea(UR) = oz < 0

for all vf € S and allu}, € M}, .. Itis easy to see that the first component of the discretelsaint is the unique
minimizer of the minimization problem

(3.2)

E(uf) = min, E(v)
h hH
with KP3 1= () € SP | Vi € ML, 0 (i ven(V) — <0.L M P fulfill
b uyy Ho b ver(Vy) g)o,rl < 0}. Moreover,u; fulfills
a(up, v —uf) > ¢(vf - uf) (3.3)

for all v € KP1. To guarantee the existence of a saddle point, a discre®imtondition onSf x M, has to be
satisfied.



Theorem 3.1. If there is a constant > 0 such that

C¥||I~lﬁ|||71/2,r<1: < sup (k) ,YCﬁ(VE))o,ré (3.4)

VheSE, Ivflli=1
for all qu € M,‘l, then there exists a unique discrete saddle point of thelt@dy contact probler(3.1).
Proof. Using (3.4), we conclude by standard arguments (e.g. [20, 1322]), that

M3 sup—L(vP, 1)

p_gP
VhESH

is coercive. The assertion follows from the closedness amyaxity of MﬂH and [10, Prop IV.2.3 and Remark
IV.2.1]. The uniqueness is a direct consequence of (3.4). O

Remark3.2 We call the discretization scheme (3.2) stable, if therstexd unique discrete saddle point independently
of the discretization level. In other words, to guaranteediscretization schemes (3.2) to be stable, (3.4) has to be
uniformly fulfilled, i.e. the constant in (3.4) has to be independentiafH, p andg.

The convergence of the mixed method can be stated withouegijarity assumptions using standard techniques
of convex analysis. Only the coercivity afand the approximation properties b‘ﬁ and M, are used. Here, we
present a modification of Theorem 1.1.5.3in [18]. In thedwihg, a sequenc{elﬁ} with vﬁ € S;, converges to € Hp
if vﬁ — vash — 0 for a fixedp or asp — o for a fixedh. Similarly, the convergence of a sequerﬁp%} with
py, € MY}, is defined. Moreover, we omiit H — 0 andp, g — co using the usual lim-notation.

Theorem 3.3. Let condition(3.4) be fulfilled. Moreover, assume that
(i) forall v e Hp, there exists a sequen()zﬁ} with vﬁ € Sﬁ which strongly converges to v,
(iiy forall u e H;/2(I}) there exists a sequenge} with 1, € My, which strongly converges jo
(iii) for all sequencegyy} with f, € M}, , weakly converging tp € H-Y2(I%), there holdg: € H;Y3(r2),
(iv) there exists a bounded sequeiigl with v € SP and (i}, yca(Vp) - @)orz < Ofor all 4} € M, ..

Then, the sequenQaﬁ} strongly converges to u and the sequence of discrete Lagrangtipliers{d,‘f'} weakly con-
verges tol.

Proof. Sincevf € K1, we obtain from (3.3) that
vallufl < a(uf, uf) < a(uP, vP) — ¢(W — uf) < (ol VPll + EMNUP Il + NIl IVl

Thus, we havgiuf|l; < vi*(vollvEllL + 11€l)) + (7 el VRNl Y2 and, therefore, the sequenies} is bounded. From (3.4)
and (3.2), we obtain

Al gzrs < sup (A vea(vi)ors < valluflla + 1€,
vheSE, IVhlli=1

which implies that{/lﬂ} is also bounded. Due to the reflexivity ¢fp and H‘l/z(l“(l:), there exist subsequences
{ur) c {uf) and{/lqﬂ} c {4},} which weakly converge ta* € Hp anda* € H-Y2(T'%), respectively. From (iii), we have
A e HIYA(TL). Let (v} and{ujl} strongly converge to € Hp andu € H;V*(T'L), respectively, as assumed in (i)
and (ii). Itis easy to see thafur, v2), (13, vca(U)ors and @, yea(Vi))ors converge ta(u”,v), (4, yca(u*))ors and
. ! . h. L . H h - C e

(/l*,’}/cﬁ(V))O,r(lz, respectively. Passing to the limit in ?3.2) yields

au’,v) = €(v) - (", yca(V))orss (3.5)

(. yer(U) — Qorz < iminf(A%, yea(ul) — G - (3.6)
Sincev — a(v, V) is convex and continuous and, therefore, weakly lower samtinuous, we obtain from (3.2), that

a(u', u) + iminf(A%, yea(U))orz < liminf (a(ul, uf) + (AL, yea(UD))or ) = liminf £(uf) = £(u").
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Hence, using (3.5) witk := u* and (3.6), we find

(1 yen () = Doy < iminf(Ad,yea(Ud) - Gors = €U - AU, 1) — (", ors = (' ye(U) ~ Doz (3.7)

Since {, ) is arbitrarily chosen, (3.5) and (3.7) imply that'(1*) is a saddle point. Due to the uniqueness, we
conclude ¢*, 2*) = (u, 2) and, additionally, that the entire sequer{l(loﬁ, /lﬁ')} converges toy, 1) weakly. To show
that{uﬁ} converges ta strongly, we consider

0<a(u-ul,u-uP) = a(u,u) - 2a(u, u) + £(u) — (A} ,'ycﬁ(uﬁ))o’ré
= a(u, u) — 2a(u, uf) + €(uf) — (47, Dorz — —au, u) + £(u) - (1, yca(W) + (A, yer(u) — 9) = 0.
O

Remark3.4. Obviously, condition (iv) in Theorem 3.3 is fulfilled & € ’)/Cﬁ(SE), and, in particular, i = 0. We refer
to Section 5 for the verification of the conditions (i)-(¥ijith respect to a given discretization.

In the following, we discuss some general a priori estimsi@dar to those introduced in [5, 14, 15, 16, 22]. The
important assumption is given by the discrete inf-sup daoml(3.4). For notational simplicityS abbreviates up to
a positive constant which is independem&ﬁfandMqH.

Lemma3.5. There holds

= uplE < = UgllaQiu = Vills + 112 = gl ay2r) + 112 = A1 a2z U = Vplla + €2 = 1, ven(u) - 9)
+ (A4 = yvea(U) - 9)
forall vf € SP, ufy € M}, andu € H;Y3(T).
Proof. We find
A = 4,9-yeaud)) < (. 9 yeaUd)) — (49— yea(Ud)) = (2 — g, ven(U) — @) + (A — iy, yor(uf — u)).
Thus, we obtain
(A = L yea(u=uR)) < (u— A9 = yea(Up)) + (A = yea(u - up))

= (A = 4.9 - yea(UR)) + (i — A, 9 — yea(u))
< (A= yea(U) = @) + (A — i, vea(ulh — u)y + (e — A%, 9= yea(u)).
Due to (2.1), there holds
lu—ufllf < au-ul,u-vh)+au-uf, v —u)
=a(u—ub,u— V) + (A — 4, yca(vh — u)) + (A — 4, yea(u — uf))
Sl = ufllaliu = ills + 114 = A l-gzpa iU = VElla + U = Upllalld = g llgjzrs + €4 = 1y, ven(U) — 9)

+ (A = yca(u) - ).

Similar to [18, Theorem 1.1.5.1], we conclude the followangriori estimation.

Theorem 3.6. Assume conditio(B.4)to be fulfilled. Then,

2
[

lu =PI + 1= A3 s S 0= VR + 112 = {12 5 s+ €4 = g yen(W) = @) + () — 1. 7en(W) - O)

for all v{ € SP andy, € M}, , as well as all € H;Y*(TE).
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Proof. From condition (3.4), we obtain
i = All-vory © ) SUB G = A yen() = SUP ki, yen(VE)) + lUR, i) = (0)
VheSE, Iviih=1 vheSh, Ivhlli=1

= sup (,uH A, nd(vh)>+a(uh u, vh) <A - lel 12t +lu-u ||1.
vheSP, Ivhlli=1
Thus,
11— /1qH||_1/2,rg: <4 —lqu”_l/z,ré + ||,UH /1q Il 121t X Slia- ,UH” 121t t+ lu- Uh||1 (3.8)

From Lemma 3.5 and (3.8) as well as Young's inequaléi 2 ea’ + e 1b? for a, b, e > 0, we obtain
lu = Pl < ellu = UfliE + (€7 + 1/2)(Iu = VI + 14 = 112y 5 ) + €4 = s ven(U) = @) + (A — 1. yen(W) - 9.

Choosing a suitable > 0 together with (3.8) yields the assertion. 0

4. Higher-order discretizations

In this section, we propose a higher-order finite elememtrditzation and verify the assumptions of Theorem 3.3
to show its convergence. Moreover, we derive convergertes Gf the mixed scheme. Here and in the following
sections, we assume that the domahsre Lipschitz and polygonal. The discretization is basedjussi-uniform
finite element mesheg' and§ of parallelograms or parallelepipeds which decomp@bandl‘é with mesh size$,
andH, respectively. Le®! : [-1, 1] > T e 7', ®¢ : [-1,1]“! - E € & be dfine transformations and Igf, q € N.
Using the polynomial tensor product sp&ggof orderr on the reference element], 1]%, we define

8P = {v: (V) eHp | VT eT': v o P eSP, I = 1,2}
with h := (hy, hy) andp := (p1, p2). Furthermore, we define
My ={uel’((Y) | VE€&: peodeeS) ).

To complete the discretization of the mixed formulation, lieee to specify the subsﬁﬂqH&. This is done in the
following way,
MG, = {ufy e My 1 VE€&: ¥xeCq: pe(@e(x) 2 0} (4.1)

with the finite setCq c [-1,1]< of the @ + 1)! Gauss-quadrature points. We note that polynonrfeats order
2qg+1lon[-1, 1]« are exactly integrated by the resulting quadrature ridewith some weightss > 0, there holds
f 1 P(X)dX = X e asP(X). Furthermore, for polynomialB on E € € we have

[-1,1] Cq

[ Poaax= 3 pPec(®) (4.2)
XeCq
with S5 = ay| detVde(X)" VOe(X)| > 0, X € Cy,.
To show Conditions (i)-(iv) of Theorem 3.3, we introduce ihterpolation operatorﬂ anth which map contin-
uous functions mto'\/(q andSﬁ, respectively. The operatd)H is defined via the transformed Gauss guadrature points
De(X), X € Cq, ON eackE € & whereas]’ uses transformed Gauss-Lobatto-Points. There holds

IV =15 Mllorz < H™ 2 /(q+ 1)Vl s, (4.3)
= 3Pl < " AN Wl (4.4)
1=1,2

for all v e HY(IL) with 6 > (k- 1)/2, cf. [3, Thm 3.4, Thm. 5.2], and alV = (W', w?) € Hp with w e H*4(Q'),
6 > 1/2, cf. [3, Thm. 5.9]. Moreover, we make use of the inversenesi?

ax{l i
I lajzars S ——— il -/are (4.5)

for all i, € M, cf. [11, Thm. 3.5, Thm 3.9].



Lemma4.1. Let{u] h ) with MH € Mq be a bounded sequence |rTf|-4F(1" ) and ve HY(I'Y) with @ > (k- 1)/2. For
g > 1, it holds ‘
1 v = T W)Yol S HMMEO42 (g4 1l s

Proof. From Cauchy’s inequality and the inverse estimate (4.5)alkas the interpolation estimate (4.3), we have
Iy, v =15 D)ors) < ludllora IV = 13 Mllors, S H™F29712)(q + 1My pa Il /25 -

Since the sequendgy, } is assumed to be boundedHiTY/%(I'L), we obtain the assertion. O

Theorem 4.2. Let the discrete inf-sup conditiof8.4) be valid. Moreover, let ge yCH(Sp) Then, {uh} strongly
convergestou andiq } weakly converges to.

Proof. Obviously, Condition (i) is fulfilled due to (4.4) and the ity of H*(Q") in HY(Q", 6, > 1/2. Also
Condition (iv) is valid due to the assumption gncf. Remark 3.4. To show Condition (ii), lgt e H;Y*(I'L) and

e > 0. Due to the density df’(T'%) in H-Y2(T'%) with 6 > (k — 1)/2, there exists a functiogn. € HG(Fl) NH; 1/Z(F )
with ||u — ,uE||_1/231-(1: < e. For a fixedq there exists amd so that||u. — Iq(,u )||or1 <e DeflneyH = Iq(,ue) then

pyy € M, and
It = pillajars < k= pellajrs + ke = il oajors S €
The same holds for a fixdd, so that Condition (ii) is proven.

To show Condition (jii), let the sequend¢g,} weakly converge ta € H-Y2(I'L) andv € HY2(TL) N HY*(IL)
with 8 > 0. There holds

1y T WDora = 1< 10y V= TR (D)ora ] + Kee V) = Gy ora - (4.6)

Due to the weak convergence @Iﬂ} the last summand in (4.6) tends to zero. The sequ@r&:bis bounded in
H-Y2(rl). Due to Lemma 4.1 also the first summand tends to zero. Atege\, Iﬂ(v))o,ré converges tdu, vy and
we obtain from (4.2)

vy = limQu, 1 W)ors = lim 7" B (Pe(RV@E(R) > 0.

Ee& XeCq

SinceH™(I'L) is dense iHY2(I'L), there holdg: € H;Y*(TL). O

Remark4.3. In principle, we can also apply other finite s€t$o approximatively ensure the sign condition in (4.1).
In Section 6 we discuss the use of Chebychev points by someneahexperiments. For the justification of this ap-
proach, we refer to [9], where some bounds of polynomialsarsidered fulfilling pointwise restrictions in Cheby-
chev points.

Remark4.4. Note that the discretiziation given by (4.1) is non-conforgnfor q > 2, i.e.,M ¢ H‘l/z(l" ). The
conforming definition ofM{, , by {1} € M} | VE € &1 e > 0} C H;Y2(rL) may seem to be more natural.
However, ensuring higher-order finite element functionisean this set is not obvious fay > 2.

To obtain convergence rates using Theorem 3.6, we have tosdigshe expressionad — pﬁ,,ycﬁ(u) - gy and
(/qu — u,yca(u) — 9), which dominate the overall error estimations. First, wasider the casg = 0 and discuss

some arguments similar to those introduced in [22]. In tlise¢ there holdzi/(q c HI 1/2(F ) and, in particular,
(A} = w,yen(u) — @) = O settingu = /lq e H;Y4(rL). In the following, we assuma' e H*(Q), 1 e HY(TY)
andyca(u) — g € H"(I‘ ) with 0 < < 1and§ > 1/2. Forq = 0, we havelly(1) € MH’+ wherelly is

piecewisely given by the mtegral mean value (i.e., tReprojection onto piecewise constant functions). Due to
4= T Dllow S H9||/l||(,r1 forae H*’(r ), cf. [4], as well as Cauchy’s inequality we obtain

~

(A =TIu(A), yca(u) — 9) = ]1:1 (1 = T () (vea(U) — g — T (yea(U) — g)) ds < H*.
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Furthermore, the definition of the dual norm yields

1= T (Dll-y/2rz = P f (A = Ty ())(W = (W) ds < H#Y2,

WeHY2(TE). Iy 51 =1

Assuming condition (3.4), we obtain from (4.4) and Theoref) 3

lu = Ul + 114 = 311 ml<H<"+">/2+th'”“’"")/ (4.7)
1=1

An alternative approach is proposed in [14, 15, 16Ker 2, where the set of points &f in whichycs(u) — g changes
from negative to zero is assumed to be finite. The number (DerBgSS c &which contains such points is, therefore,
bounded independently ¢1. Assumingé, > 1, we have either G —owr(U) = A = TT4(4) or yca(u) — g = 0 on
E € E\&. Provided thaycu(u) — g € WE(E), E € &, we havd|yci(u) - gllee < HIIV(yca(u) - 9)llo.e and obtain by
Cauchy’s inequality

(A= T (), yer(W) = @) < > 11 = T (o ellyen() - dllo gHY?
Eeé

1/2
< HY2)4 = Ty (Q)llo s [Z Ihyea(u) - gui,,E] < H#S2
Eeé

and, therefore,

||U u ”l + ”/l ﬂq ” 1/2F1 < H6+l/2 + H9/2+3/4 + Z hmln(p| H|)/p (48)
=1
Remark4.5. For p = 1 andd = 1/2, (4.8) corresponds to the resdlth + H) as shown in [16] for the Signorini
problem. In [22], the order of convergence is statediflg®4) whereh = H andp, = 1 is assumed. We obtain the
same result fof = 1/2 andd = 6, = 1 with respect to (4.7). These regularity assumptions apidgitly assumed in
[22].

Forqg > 1, we may proceed as follows.

Theorem 4.6. Let the discrete inf-sup conditidB.4) be uniformly fulfilled. Furthermore, let 8 > (k—1)/2, 6, > 1/2
and g= 1. Then,

2
lu- Uh||1 A - /lq I yort Hmln(q+1,0)/2/(q 4 1)9/2 4 Hmln(q+1,(9)/2—1/4/(q T 1)9/2—1/2 " Z hlmm(p|,9|)/pl9|.
=1

Proof. Obviously, there hold!;ﬂ(/l) € /\/(C‘H+ and, therefore,
(=15 yea() - 9) S 1A= 15l S H™E /(g + 1),

We conclude from Theorem 4.2 that the seque{r)l(ﬁg weakly converges and is, therefore, bounded-l'rﬁ/z(l"é).
Thus, we obtain from Lemma 4.1 and (4.2)

(A vea(U) = 9) < I, yea(u) — g = 13 (vea(u) = 9ol + (A, 15 (rea(W) — Dors
SHMEEO2 /(g + 24 DY A (@e(®)(ren(W) - O(Pe(R). (4.9)

Ee& ReC
Since/lqH (Yc(X)) > 0 andBs > 0 for X € C as well asyca(u) — g < 0 onTg, the sum in (4.9) is non-positive and can,
therefore, be omitted. Theorem 3.6 together with (4.4)dg¢he assertion. O

Remark4.7. The convergence rates stated in Theorem 4.6 may seem to bptisnél due to the use of the inverse
estimate in Lemma 4.1 and due to the fact tlf@ts not an orthogonal projection (in contrastlig;). We refer to

the numerical experiments in Section 6, where considefalyer convergence rates can be observed. Furthermore,
positive rates with respect tprequire high regularity assumptions g (u) — g with 6 > 1.
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5. Thediscreteinf-sup condition

To show the discrete inf-sup condition (3.4) to be uniforrullfilled, we follow the proof of Lemma 3.1 in [16],
where this condition is derived for low-order discretipatschemes for a simplified Signorini problem. Moreover, we
adapt the proof of the discrete inf-sup condition for a foical contact problem given in [25].

Lemma5.1. Foru € H™Y(I}), there exists a functiontu= (U, w*?) € Hp, such that

D (e (), & ()0 + (W, Vo = (. yen(v) (5.2)

1=1,2
for all v = (v1,v?) € Hp. Additionally, there holds Qlull_1/2r. < [JWl; for a constant G > 0.
Proof. See [25, Lemma 2]. O

Obviously, the variational problem (5.1) is equivalent to

(i (U, & (VH))o + (U1 Vo = (i, yer(Vh 0)),

(&ij (U*2), &i; (V))o + (U2, VP)o = {u, yca(0, V7))
for all V' € HL(Q'"). We call the variational problem (5.1) regularpif' € H*%(Q'), 0< ¢ < 1, and

U 1.0 < Callull_g/214.r2 (5.2)

for all u € H=Y/2* (L) with a constan€; > 0.

Theorem 5.2. Assume the variational proble(d.1)to be regular forg, < 1/2 and let h, H, p, g be chosen such that

2
m(h, H, p,a) = > (WH™ max1, qp !
1=1

is syficiently small, ther{3.4) holds for a constant > 0 independent of h, H, p and q.

q q q
Proof. Foruf, e MY, letu*P = (U™, f*P?) ¢ SP be uniquely determined by
Jhepd p Pl e q p
D ™), & (o + (U™ vEDo = G ven(V)or
1=1,2

for all v} = (vp’l,vﬁ‘z) € 8. Forv e Hp, define the normivilz = 3-12(ij(V), &ij(V))oo + ||v'||§7QI which is
equivalent to thed1-norm|| - ||;. In particular, there exists a constgnt 0 such thatjv{l|; < B|IVilx.

Using the same arguments as in [2, Section 4.2], (4.4) holgsfor the solutionwn € HL+ Q" of (5.1) with
0< 6 <1/2. Thus, applying the Galerkin orthogonality and the regiylassumption as well as the inverse estimate
(4.5), we obtain

q
M — Py < e = IRl < D (/P IR g S D (/D) e llgyzea s < TICD H. @l -y ors.
1=1,2 1=1,2

Therefore, for a sfticiently small value ofI(h, H, p, ), we obtain

q q’ —
I = Pl < (Cr = B )1z

C

(5.3)
with 0 < @ < BC;. From Lemma 5.1, we obtain
q
(i yon(ory (4 ver(U™ors
heSP\(0) ||VE||1 ||d‘hﬂ*p||1

q q a q a.
> Bl Il — Bl — Pl > Bl I-1/2re — BlIUS = U Pllly > allulll-y2re.
O

q
N
> BlIu Pl
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Figure 1: (a) Configuration of the first exampléb) resulting diplacements in y-direction of the first examgg,
configuration of the second examp{d) maximum displacement,.
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Figure 2: Lagrange multipliea) p=2,g=0,H=h,(b)p=2,g=1,H=h,(c)p=2,9g=1,H=2h,(d) p=2,
q=2,H = 4h.

Remark5.3. From the practical point of view, the result of Theorem 5.2slaot seem to be satisfactory as it is not
clear whentl(h, H, p, g) is small enough such that (5.3) holds. Nevertheless, Hmedr.2 justifies the modification
of the discretization scheme by coarsening the né&si by decreasing the polynomial degrg¢o obtain a stable
scheme. In Section 6, numerical results confirm this theadetbservation.

Remark5.4. To verify the variational problem (5.1) to be regular, we nzgply some regularity results on elliptic
boundary value problems with natural boundary conditioffs.refer to [6, 12] and, in particular, to [13, Ch. 9] for
more details.

6. Numerical results

In this section, we consider some numerical experimentdésuiliss the theoretical findings. In the first experi-
ment, we study the stability properties of the mixed schefvestated in Theorem 5.2, the discrete inf-sup condition
is uniformly fulfilled if the numbeiI(h, H, p, g) is suficiently small. To reducé&l(h, H, p, g), we can varyh andH or
p andq or both. It is noted that varyiniyandH implies that the Lagrange multiplier is possibly defined aoarser
mesh which may lead to a high implementational complexitging a surface mes#i, which is inherited from the
interior mesh7™, the implementationalfort is essentially smaller. However, in this case we Hajté = 1 and can
only vary p andq to keepIl(h, H, p, g) small.

To illustrate the relations betwedn H, p andqg, we consider the contact of two linear elastic bodies whieh a
represented by, = [-3,3] x [4,8] andQ, = [-3, 3] x [0,4.005], cf. Figure 1(a). The bod®; is subjected to
Neumann boundary conditions given Iy = (1,0) on its left side and byf; = (1,0.5) on its right side. Young’s
moduli are set tde; = E; = 500 and Poisson’s ratios t@ = v, = 0.4. Figure 1(b) shows the resulting displacements
in y-direction. Note that the domaiig¥' andQ? overlap which leads to the contact of the domains.

In Figure 2, Lagrange multipliers are depicted for= 2, g = 0,1, 2 and diferent quotients of the mesh sizes
h = h! = h? andH. We observe that the Lagrange multiplier in Figure 2(b) wite: 2, q = 1 andH = h seems
to oscillate when using this configuration. This oscillatiphenomenon may be interpreted as a one-dimensional
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Figure 3: Lagrange multipliea) p=4,9g=3,H=h,(b) p=4,9g=3,H=2h,(¢c) p=5,g=4,H=h,(d) p=5,
g=4,H =2h.
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Figure 4: Lagrange multipliea) p=2,q=6,H =8h,(b) p=2,9=6,H = 4h.

checkerboard instability, which suggests that the Laggangltiplier is not unique. In this case, it is not a reasoeabl
approximation of contact forces and is, therefore, phylsicaeaningless. For other configurations, the value of
I1(h, H, p, g) is reduced and the Lagrange multiplier does not oscill@te mixed scheme seems to be stable. In this
example we use meshes which match for both domains.

For higher-order spaces with> 3, we obtain similar results. In particular, we observe thatp — 1 andH = 2h
lead to a stable dicretization. We refer to Figure 3(a),t0)df = 4,9 = 3, H = handH = 2h as well as to Figure
3(c),(d) forp=5,qg=4,H = handH = 2h, respectively.

We also test configurations with> p and observe that such configurations result in a stableatization ifH is
chosen sfiiciently coarse. This is illustrated in Figure 4, wherandq are set tp = 2 andq = 6. ChoosingH = 8h
we obtain a stable discretization without oscillations, Efgure 4(a), whereas fdi = 4h the Lagrange multiplier
oscillates, cf. Figure 4(b). In the experiments we use Gaosgts as well as Chebychev points to define theCset
Both approaches yield the same stability results.

In the second experiment, we use non-matching meshes andslithe stability properties. Moreover, we study
the convergence rates. Here, the two linear elastic bodéesepresented b2, = [0, 10] x [9.9995 19.9995] and
Q, = [0,10] x [0,10]. The configuration is shown in Figure 1(c). Young's moduk set toE; = 1.5 10° and
E, = 2- 10, Poisson’s ratios te; = 0.2 andv, = 0.4, respectively. On the left and right side @6 Neumann

boundary conditions withf = (£0.5,-5) are prescribed. In Figure 1(d) the resulting maximum ldisgment is
shown.

Table 1: Error of the displacement variabigin the energy norm and convergence rates

DoF p=1,0=0 rates gl,0=1 rates
124 2.17E-04 - - -

456 1.01E-04 1.09 1.11E-04 -
1744 5.65E-05 0.84 5.73E-05 0.95
6816 2.99E-05 0.92 3.06E-05 0.90
26944 1.58E-05 0.91 1.58E-05 0.95
107136 8.13E-06 0.95 8.12E-06 0.95
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Figure 5: Lagrange multiplier@) p = 1,q = 0,H = min{h%,h?}, (b) p=1,9=0,H = 2maxh’,h?}, (c) p= 2,9 =
1L, H = minth!,h?}, d) p= 2,9 = LH = 2maxh',h?}, () p = 4, = 3,H = min{h’,h?}, () p=4,q = 3,H
2 maxh?, h?}.

Table 2:L2-error of Lagrange multipliey and convergence rates

DoF p=1,0=0 rates gl,0=1 rates

2 5.60 - - -

4 2.40 1.22 2.28 -

8 2.13 0.16 2.36 -0.04
16 0.90 1.24 1.21 0.95
32 0.53 0.75 0.26 2.20
64 0.30 0.83 0.14 0.85
128 0.11 1.33 0.11 0.37

As in the first experiment, we studyftérent discretizations of the primal variable and the Lageamultiplier.

In Figure 5, the discrete Lagrange multiplier is depictedvarious polynomial degrees and mesh sizes. Again, we
observe that the choicg = q— 1 andH = min{h%, h?} lead to an unstable discretization, where the coarsening
of the surface mesB via H = 2 min{h!, h?} stabilizes the scheme. Note that the non-conforming ptgmérthe
discretization can be seen in Figure 5(e) and (f) where therelie Lagrange multiplier is partly negative.

To study the convergence of the mixed scheme, we calculfgeree solutions on meshes which are given by at
least one additional uniform refinement of the meshes atniestfievel. For instance, in the cgse: 1, the reference
solution is determined with more thar25 - 10° degrees of freedom (DoF) d®, and with more than.18- 10" DoF
on Q. In the case = 2, we use more than®4 - 10° DoF onQ; and more than .86- 10° DoF onQ,. We measure
the error of the displacement variable in the energy normtia@error of the Lagrange multiplier in thé-Norm.

In Tables 1, 2, 3 and 4, the discretization errors of the disgrhent variable and the Lagrange multiplier are shown.
Moreover, the convergence rates are depicted, which isuhdark with |ju — U,ﬁ’lll = O(h*) and||1 - /lﬁ'||o = o(hY),
respectively. We observe that the convergence of the moteehse withp = 1 andq = 0 is nearly 1 which corresponds
to the results in (4.7) and (4.8). The convergence rateseoL#igrange multiplier vary more or less near to 1. Note
that the discretization error of the Lagrange multipliedétermined in thé.>-norm and not in théd~Y/2-norm. For
p = 2 andq = 1 we obtain almost the same convergence rates. The reasoberthg lack of regularity ofi and
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Table 3: Error of the displacement variabigin the energy norm and convergence rates

DoF p=2,0=1 rates g2,0=0 rates
352 7.81E-05 0 5.96E-05 -
1328 3.67E-05 1.09 3.39E-05 0.81
5152 1.86E-05 0.97 1.72E-05 0.97
20288 9.04E-06 1.04 9.13E-06 0.91
80512 4.75E-06 0.92 4.77E-06 0.93

Table 4:L2-error of Lagrange multipliely and convergence rates

DoF p=2,0=1 rates Eg2,0=0 rates
4 2.28 0 2.37 -

8 2.32 -0.02 1.97 0.26
16 1.13 1.03 0.88 1.15
32 0.25 2.16 0.52 0.75
64 0.13 0.86 0.29 0.84
128 0.10 0.43 0.12 1.23

A. However, the constant in the convergence study seems tmakes which may suggest the use of higher-order
schemes in the sense of thanmethod, cf. Figure 6(a) and (b). It is noted that these tesuk comparable with the
results in [19] where similar experiments are studied indibvetext of a mixed scheme with lowest and second order
Lagrange multipliers. In Table 5, we consider thanethod of the mixed scheme, i.e., the mesh sizaadH are
fixed and the polynomial degregsandq are increased. The polynomial degree for the Lagrange mpliattiis set
toq = p- 1 and the mesh size td = 2h to ensure the stability of the scheme. Again, we use Gausaspand
Chebychev points to ensure the sign condition of the Lagramgjtipliers in the definition oMﬂH. The convergence
rates are determined lay= In(|lel1/ll&jll1)/ In(N;/N;) wheres is the error and\; the number of unknowns in theth

row in Table 5. Note that the numerical findings indicate thata priori results in Theorem 4.6 may be suboptimal.
Indeed, we do not expegtr(u) — g to be stificiently regular in realistic problems so that the determiocenvergence
rates will match with the computational results. Figure) 8tmows the convergence of theand thep-method with
respect to the number of degrees of freedom. We observehtbatanvergence rate of themethod seems to be
slightly better than that of thie-method.

To illustrate the mixed scheme to be applicable to real wayplplications, we finally consider a 3D contact problem
which is taken from a grinding simulation, cf. [1]. In Figuréa), a workpiece with a mounted point in front is
depicted. In this simulation, we discretize the displacemariable with trilinear finite elements. The Lagrange
multiplier is discretized with piecewise constant funosaand is defined on the surface mesh of the mounted point.
In the simulation, B < H is assumed. To achieve a suitable resolution, the mesh ofdHeiece and the mesh of the
mounted point are adaptively refined in their contact zombs. deformation of the workpiece and the mounted point

Table 5: Error of the displacement variablgin the energy norm and convergence rates using Gauss- amy ey
points

DoF Gauss rates Chebychev rates
1744 5.18E-5 - 5.18E-5 -

5152 1.74E-5 1.00 1.74E-5 1.00
8560 1.61E-5 0.14 1.61E-5 0.14
13632 1.03E-5 0.96 1.06E-5 0.90
20368 7.56E-6 0.78 7.71E-6 0.80
28768 6.02E-6 0.65 5.98E-6 0.73
38832 4.81E-6 0.75 - -
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Figure 7:(a) workpiece with mounted point in frontp) deformation of the workpiecéc) deformation of the mounted
point, (d) Lagrange multiplier without checkerboard patteii@swith checkerboard patterns.

is depicted in Figure 7(b)-(c). The adaptively resolvedtdite Lagrange multiplier in the contact zone is shown in
Figure 7(d). It does not have oscillations or checkerboaittepns due tot2 < H. In this case, the discrete Lagrange
multiplier can be interpreted as a contact force which isasfipular interest in this simulation to control the gringi
process. In Figure 7(e), the Lagrange multiplier wite H is depicted. We observe undesired checkerboard patterns
which indicate that the discrete Lagrange multiplier is uaijue.

7. Conclusion

In this paper, a mixed method of higher-order for two-bodgtact problems is proposed. It relies on a saddle
point formulation where a Lagrange multiplier, defined oa slurface of one of the bodies, captures the geometrical
contact condition. The main results are given by the correrg of the scheme and a uniform discrete inf-sup
condition which is an essential assumption to prove theilgjand convergence of the mixed method. It is shown
that the discrete inf-sup condition is uniformly fulfillefithe quotients of the mesh sizes and the polynomial degrees
are stficiently small. It can be observed in numerical experimehnit the variation of these quotients may avoid
instability efects. Another aspect of this paper is the provision of cayemre rates with respect to a higher-order
discretization. The essential ingredient is to enforcesiga condition in Gauss points enabling to use higher-order
interpolation and to exploit the weak convergence of therdige Lagrange multiplier.
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