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Abstract. This paper discusses higher-order extended finite element methods obtained
from the combination of the standard extended finite element method (XFEM) with higher-

order finite element methods. Here, the focus is on the embedding of the latter into the

partition of unity method, which is the basis of the XFEM. A priori error estimates are dis-
cussed and numerical verification is given for two benchmark problems. Moreover, method-

ological aspects are summarized which are necessary for hp-adaptivity in XFEM and allow

for exponential convergence rates. In particular, the handling of hanging nodes via con-
straint approximation and an hp-adaptive strategy are presented.

1. Introduction

The extended finite element method (XFEM) is a widely studied approach for the modelling
of cracks in linear elastic fracture mechanics. It is based on the partiton of unity method
(PUM) contrived by I. Babuška and J.M. Melenk in [8]. The development of the PUM was
motivated by the need for new techniques for the solution of problems where the classical
FEM fails or is prohibitely expensive. In the PUM a global conforming finite element space
is constructed from a continuous partition of unity and a set of local approximation spaces
which are supposed to approximate the sought solution well. The separation of the issues of
inter-element continuity involved by the finite element method and the local approximability
allows to focus on the retrieval of good local approximation spaces for a given problem. In
the framework of linear elasticity and linear elastic fracture mechanics, i.e., for the modeling
of cracks, these local approximation spaces are chosen such that they are able to approximate
the discontinuities due to crack paths and in particular the singularity due to crack tips well.
The resulting approach – the XFEM – was originally proposed by T. Belytschko and T. Black
in [16] and improved by T. Belytschko, J. Dolbow and N. Moës in [33, 51]. Ever since, there
have been many contributions to the XFEM, see [1, 40, 62] for an overview.

In the XFEM approach, singularities arising from crack tips are directly embedded in the
ansatz space. Therefore, if no other sources for singularities occur, the standard finite element
discretization has to approximate only contributions that exhibit high regularity. At present,
only lower-order finite elements and uniform mesh refinements (h-method) are applied to
reduce the approximation error of the XFEM. This solely leads to algebraic convergence rates
of lower-order. Then again, the high regularity assumptions admit the use of higher-order
polynomials and, in particular, of the p-method on a fixed mesh with increasing polymial
degree. This makes algebraic rates of higher-order and even exponential convergence rates
possible. Only few of the current publications on XFEM focus on higher-order. E.V. Iarve
[47] and F.L. Stazi et al. [63] basically discuss the modeling of curved interfaces/cracks using
higher-order shape functions. In P. Laborde et al. [49], various enhancements for the XFEM
are proposed and their influence on the convergence properties are studied. Particularly, this
is the first publication where optimal algebraic convergence rates are reported for the standard
mode I/II benchmark problems using a higher-order XFEM with fixed polynomial degree p ≤ 3
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and uniform mesh refinement. So far, higher-order approaches with p > 3 in the context of h-
or p-method are not reported in the literature.
Considering general linear elastic problems defined on arbitrary domains, e.g., with reentrant
corners, in the scope of the standard FEM, it is well-known that uniform mesh refinement is
insufficient to obtain optimal algebraic convergence rates. Also, the exponential convergence
of the p-method is lost in the presence of reentrant corners. Indeed, using adaptive mesh
refinements (h-adaptivity) optimal algebraic rates can be recovered for most problems and
even exponential rates are possible if varying polynomial degrees are adopted (hp-adaptivity).

In this paper, the XFEM and standard higher-order FEM are combined and discussed in
terms of the PUM to obtain a higher-order XFEM. Using one-dimensional Lagrange-type
and hierarchical shape functions in combination with tensor products, a partition of unity and
suitable higher-order enrichment sets are defined. Given the partition of unity, the local enrich-
ment sets for the modeling of cracks are introduced using the notation as given by I. Babuška
and J.M. Melenk in [8]. Moreover, an assortment of essential methodological aspects for h-
and hp-adaptivity in XFEM are presented.
To define an adaptive scheme with automatic mesh refinement based on error control, suitable
refinement strategies are needed to detect mesh elements to be refined and, additionally, ele-
ments whose polynomial degree has to be increased in h- and hp-adaptivity, respectively. In
this paper, some basic h-adaptive strategies and a specific hp-adaptive strategy based on the
estimation of local regularity are presented. Using local refinement of mesh elements, hang-
ing nodes resulting from the refinement of mesh elements without the refinement of adjacent
elements are generally inevitable devoid of sophisticated refinement strategies. For conform
finite element schemes, the continuity of the finite element solution has to be ensured, e.g., by
the constraint of degrees of freedom associated to hanging nodes. Using tensor product shape
functions this can be done by constraint approximation which is also presented in this work.
Finally, integration methods for higher-order XFEM are summarized.
Numerical experiments show that optimal algebraic and even exponential convergence rates
are obtainable in the extended finite element method. A standard mode I benchmark problem
with known solution is considered to show the desired rates for the h- and p-method. Also
the combination of the higher-order XFEM with h- and hp-adaptivity is discussed through
the study of a domain with reentrant corners. As an essential result of this paper, optimal
algebraic and exponential convergence rates are obtained.

This paper is structured as follows: Section 2 commemorates the variational formulation and
its discretization for a linear elastic model problem. In Section 3, the embedding of the XFEM
into the PUM is discussed with focus on higher-order methods. The following Sections 4
and 5 define the partition of unity as well as some (higher-order) approximations sets via
Lagrange-type and hierarchical shape functions, respectively. Sections 6 and 7 discuss some
approximability results and methodological aspects for the higher-order XFEM. In Section 8
numerical results are presented. Section 9 concludes this paper.

2. Preliminaries

Consider the boundary value problem to find a displacement field ũ ∈ H1(Ω \ ΓC ; R2) in
the presence of a (not necessarily traction-free) crack ΓC ⊂ Ω, that satisfies

Ω

ΓN

ΓD ΓC

(1)

div σ(ũ) + f = 0 in Ω,

ũ = uD on ΓD,

σ(ũ) · n = g on ΓN ,

σ(ũ) · n = g on ΓC ,

where Ω is an open subset of R2. Furthermore, σ(ũ) = C ε(ũ) = λ tr ε(ũ) I + 2µ ε(ũ) is the
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Cauchy stress tensor, C is the fourth-order material tensor in generalization of Hooke’s law,
λ, µ are the Lamé constants and ε(ũ) = 1

2 (∇ũ +∇ũT ) is the linearized Green strain tensor.

Moreover, assume that f ∈ L2(Ω \ ΓC ; R2), uD ∈ H1(Ω \ ΓC ; R2) and g ∈ L2(ΓN ∪ ΓC ; R2),
where L2, H1 denote the usual Lebesgue and Sobolev spaces, respectively.

Given ũ = u+ uD, the variational formulation for the boundary value problem above is to
find u ∈ V := H1

D(Ω \ ΓC ; R2) :=
{
v ∈ H1(Ω \ ΓC ; R2)

∣∣ γ(u) = 0 on ΓD
}

with trace operator
γ, such that

(2) a(u, v) = b(v)− a(uD, v)

for all v ∈ V with

a(u, v) :=

∫
Ω

σ(u) : ε(v) dx,

b(v) :=

∫
Ω

f · v dx+

∫
ΓN∪ΓC

g · γ(v) ds.

The existence of a unique solution to this variational problem is a consequence of Korn’s
inequality and the Lax Milgram Lemma, cf. [26].

In order to find an approximation uh of u, the space V is replaced by some finite dimensional
space Vh ⊂ V. Hence, the discretized version of the variational problem (2) is to find uh ∈ Vh
such that

(3) a(uh, vh) = b(vh)− a(uD, vh)

for all vh ∈ Vh. Given some basis {ηk} of Vh, the approximation uh is given by

uh =
∑
k

xk ηk,

where x is the solution vector of the linear system of equations Ax = d for the stiffness matrix
A with Ak` := a(ηk, η`) and the load vector d with dk = b(ηk) − a(uD, ηk). The following
sections discuss the construction of an appropriate basis {ηk} for the definition of a higher-
order finite dimensional space Vh based on the Partition of Unity Method.

3. Higher-order Extended Finite Element Method — A Partition of Unity
Method

In accordance with the partition of unity method (PUM) as proposed in [8], let {Ωi}i∈M
be an open cover of Ω ⊂ R2 such that there exists a constant M ∈ N satisfying the overlap
condition

(4) card{i : x ∈ Ωi} ≤M
for all x ∈ Ω. Furthermore, let {ϕi}i∈M be a Lipschitz continuous partition of unity subordi-
nate to {Ωi}i∈M with

∑
i∈M ϕi ≡ 1 on Ω, as well as

suppϕi ⊂ Ωi, ‖ϕi‖L∞(R2) ≤ C∞, ‖∇ϕi‖L∞(R2) ≤
CG

diam Ωi
(5)

for all i ∈ M and some constants CG, C∞ ∈ R. Here, L∞ denotes the Lebesgue space of
measurable functions bounded in the usual essential supremum norm. Thus, a higher-order
extended finite element space may be defined as

Vh = span
k

ηk := span
i∈M,
j∈{0,1}

{
v ϕi ej

∣∣ v ∈ Vi} ⊂ V(6)

for the standard Euclidian basis {ej}j∈{0,1} of R2 and some local approximation sets {Vi}i∈M,
to be defined below.

Following the usual enrichment strategy for the modeling of cracks in the XFEM, cf. [51],
let J ⊂M be the set of indices whose associated patches {Ωj}j∈J are entirely cut by the crack
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ΓC . Furthermore, let K0,K1 ⊂M be the sets of indices whose associated patches are close to
the two individual crack tips P0, P1 of ΓC for some distance function d : R2 × R2 → R+

0 , i.e.,

(7) K` :=
{
i ∈M

∣∣ ∃x ∈ Ωi : d(x, P`) ≤ δ
}
,

for some δ ∈ R+
0 and ` = 0, 1. Thus, the local approximation sets can be defined as

Vi :=


V Ri ∪ V Hi , i ∈ J,
V Ri ∪ VW0 , i ∈ K0,

V Ri ∪ VW1 , i ∈ K1,

V Ri , otherwise

(8)

for some sets of higher-order polynomials V Ri and

V Hi :=
{
vH

∣∣ v ∈ V Ri , supp v ∩ ΓC 6= ∅
}
,

VW0 :=
{
−χ0 (v ◦Ψ0)

∣∣ v ∈W},
VW1 :=

{
χ1 (v ◦Ψ1)

∣∣ v ∈W}.
Here, Ψ0,Ψ1 denote translations and/or rotations of the usual crack tip functions,

(9) W :=
{√

r sin
θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

}
,

to match the individual crack tips of ΓC . Moreover, χ` ∈ W 2,∞(R2; [0, 1]), ` = 0, 1 are
so-called cut-off or ramp functions satisfying

χ`(x) =

{
1, d(x, P`) ≤ r0,

0, d(x, P`) ≥ r1

(10)

for some r0, r1 ∈ R+
0 with r0 < r1, see also [24, 25, 39, 49, 70, 73]. As usual in XFEM,

the Heaviside function H is aligned with the crack ΓC , so that it is capable of continuously
modeling the possible displacement jump along the crack path in accordance with the crack
tip functions. This may be achieved using the levelset method or the vector levelset method
proposed in [64, 66] and [21, 72], respectively.

So far, the definition of the extended finite element space (6) is custom-tailored to match the
linear elastic boundary value problem (1), but lacks an appropriate definition of the partition
of unity functions ϕi and those sets of (higher-order) polynomials V Ri for every patch Ωi,
i ∈ M. To resolve this, the following Sections 4 and 5 will consider standard higher-order
finite element methods based on Lagrange-type and hierarchical shape functions, respectively.
In these methods, the shape functions for every element T of a quadrilateral-based mesh T of
Ω are defined via bijective mappings ΦT : Tref → T ∈ T of a set of shape functions ξ defined on
a reference element Tref := [−1, 1]2. The set ξ yields a partition of unity as well as polynomial
approximation sets on Tref. Hence, the mapped sets ξ ◦ Φ−1

T yield local partitions of unity
along with some local polynomial approximation sets for every T of T . The usual ‘aggregation
of matching’ shape functions thus generates a global partition of unity {ϕi} along with some
polynomial approximation sets {V Ri }. The bijective mappings used for the transformation
from the reference element may for instance be given by the polynomial

(11)
ΦT (x̂0, x̂1) :=

1

4

(
(1− x̂0)(1− x̂1)PT,0 + (1 + x̂0)(1− x̂1)PT,1+

(1 + x̂0)(1 + x̂1)PT,2 + (1− x̂0)(1 + x̂1)PT,3

)
for the vertices PT,j of T in anti-clockwise order, as depicted in Figure 1.

Obviously, the definition of the partition of unity and the polynomial approximations sets
may be done for standard higher-order shape functions defined on triangle-based meshes as
well, see for instance [49]. However, this paper focuses on quadrilateral-based meshes as this
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x̂0

x̂1

Tref

(−1,−1)

ΦT

x0

x1

PT,2

PT,3

PT,0 = ΦT (−1,−1)

PT,1

T

Figure 1. Bilinear mapping ΦT from the reference element Tref = [−1, 1]2

to a element T ∈ T .

allows for an easy definiton of shape functions of ‘arbitrary’ polynomial degree employing
tensor products.

4. Lagrange-type shape functions

In order to define the set of Lagrange-type shape functions ξ of partial degree p on Tref, let
{x̂0, . . . , x̂p} be a set of unique supporting points defined on the interval [−1, 1] with x̂0 = −1,

x̂p = 1. Hence, the set of one-dimensional Lagrange-type shape functions {ξ̂i} associated to
{x̂i} for i ∈ {0, . . . , p} is given by

(12) ξ̂i(x̂) =

p∏
k=0, k 6=i

x̂− x̂k

x̂i − x̂k
.

Using ξ̂i, the set of two-dimensional tensor product Lagrange-type shape functions ξ = {ξα}
defined on the reference element Tref is given by

(13) ξα(x̂0, x̂1) = ξ̂α0
(x̂0) ξ̂α1

(x̂1)

for α ∈ A := {(α0, α1) | 0 ≤ αr < p, r = 0, 1}. It is noted that the shape functions ξα
and the supporting points x̂β := (x̂β0 , x̂β1) are associated via the Kronecker delta property
ξα(x̂β) = δαβ .

It is well-known that the set of Lagrange-type shape functions ξ = {ξα}α∈A defined by
(13) yields a higher-order partition of unity on the reference element Tref. Using the bijective
mappings (11), the mapped partition of unity functions ξα ◦Φ−1

T form local partitions of unity
on every element T of the mesh T . Let ι : A × T → N associate a unique index to every
mapped support point ΦT (x̂β). The aggregation of all of these mapped local partition of unity
functions associated to the same mapped supporting point, thus yields a global partition of
unity {ϕi}i∈M with M := ι(A, T ) and Ωi := suppϕi via

(14) ϕi
∣∣
T

:=

{
ξα ◦ Φ−1

T i = ι(α, T ),

0 otherwise

for i ∈ M and T ∈ T . As there is no shape function left over from the definition of the
partition of unity, the polynomial approximation sets are defined as V Ri ≡ {1}.

Given the definition of the extended finite element space (6) via the Lagrange-type partition
of unity functions (14), it is pointed out that all partition of unity functions ϕi with i ∈ K0∪K1

are enriched with the rotated/translated crack tip functions (9). This is depicted in Figure 2
for first- and third-order Lagrange-type partition of unity functions. In general, the distance
δ used in (7) for the definition of K0 and K1 has to be chosen independently of the mesh
density in order to achieve optimal convergence rates, see for instance Section 6 or [15, 49].
Obviously, if higher-order Lagrange-type partition of unity functions are chosen to improve
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support points for ϕi,

i ∈ M \ {J ∪K1}

support points for ϕi,

i ∈ K1

support points for ϕi,

i ∈ J

Figure 2. Visualization of enriched first- and third-order Lagrange-type par-
tition of unity functions ϕi for a half-way horizontally cracked square-domain.

the overall convergence rate, then the number of partition of unity functions to be enriched
with the crack tip functions increases drastically. Thus, computational cost is also drastically
increased, in particular, due to the expensive integration of the crack tip functions. Even
worse, for higher-order partition of unity functions, the condition numbers for the resulting
linear systems of equations increase drastically too. The latter is due to the smooth nature
of the crack tip functions away from the very crack tip and the high approximability of the
higher-order partition of unity functions for smooth functions.

To ease the above mentioned problems and to stay within the framework of the partition
of unity method, it is of advantage to have a partition of unity that is of lower-order in the
vicinity of crack tips and of higher-order away from crack tips. However, using the Lagrange-
type shape functions (13), it is difficult to handle elementwise anisotropic and, in particular,
varying polynomial degrees, e.g., elements with lower polynomial degrees in the vicinity of
crack tips and elements with higher polynomial degrees away from crack tips.

In order to evade the latter, it is suggested in [49, 63] to introduce additional first-order
shape functions in the vicinity of crack tips to be used solely for the crack tip enrichments as
depicted in Figure 3. However, this basically means that the concept of the partition of unity

support points for ϕi,

i ∈ M \ {J ∪K1}

support points for ϕi,

i ∈ J

support points for first-order,

Lagrange-type shape functions

Figure 3. Visualization of enriched third-order Lagrange-type partition of
unity functions ϕi and the additional first-order Lagrange-type shape func-
tions for a half-way horizontally cracked square-domain.

method is left aside. Moreover, the convergence rates for this approach are clearly sub-optimal,
cf. [49, Fig. 11]. Congruously, the solution proposed in [49] to achieve optimal convergence
rates is given in the section “Back to the PUFEM”. The idea described therein (without the
transition layer tending to zero) is basically the same as in [39], where a ‘ramp function’ is used
to cancel ‘unwanted terms’ in the transition layer between crack tip enriched and non-enriched
elements. It is noted that the definiton of the higher-order extended finite element space (6)
includes this ramp function technique for δ = r1 in (7) and (10).
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An alternative to the introduction of additonal lower-order shape functions as above, is the
definition of a global lower-order partition of unity along with some higher-order polynomial
enrichment functions. In the literature this technique is referred to as p-adaptivity in the gen-
eralized finite element method or as the hp-cloud method, see [13, 14] and [35, 55], respectively.
But then, there are some standard higher-order finite element methods that basically do the
very same. For instance, consider the following modified set of Lagrange-type shape functions

ξ̂0(x̂) =
1

2
(1− x̂), ξ̂p(x̂) =

1

2
(1 + x̂), ξ̂i(x̂) =

ξ̂0(x̂) ξ̂p(x̂)

ξ̂0(x̂i) ξ̂p(x̂i)

p−1∏
k=1, k 6=i

x̂− x̂k

x̂i − x̂k
(15)

for i = 1, . . . , p−1, where {x̂0, . . . , x̂p} is a set of unique support points defined on [−1, 1] with

x̂0 = −1 and x̂p = 1, as proposed in [29]. The shape functions ξ̂0, ξ̂p yield a linear partition of

unity on [−1, 1], where as the higher-order shape functions ξ̂i, i = 1, . . . , p−1 can obviously be

factorized into either ξ̂0 or ξ̂p and some remainder polynomials, which may serve as polynomial
enrichment functions.

Given the Lagrange-type shape functions (15) or the ramp function technique, it is possible
to define a higher-order extended finite element space Vh of some fixed global polynomial
degree. Then again, the intrinsic goal for all higher-order finite element methods is to obtain
exponential convergence rates. For arbitrary domains with, for instance, reentrant corners, this
remains unachievable as long as varying polynomial degrees cannot be modeled appropriately
in the sense of hp-FEM. In standard hp-FEM, elementwise varying polynomial degrees are
usually realized via hierarchical shape functions. The following section will discuss these
shape functions in terms of the PUM, allowing for an appropriate definition of an hp-adaptive
XFEM.

It is noted, that apart from their ability to easily allow for varying and, moreover, anisotropic
polynomial degrees, these hierarchical shape functions have proven to be highly efficient in hp-
FEM while significantly improving the condition number of the resulting linear system of
equations compared to Lagrange-type shape functions, cf. [75]. Due to their tensor product
structure and, in particular, their definition via a recurrence relation, these shape functions
and their derivatives can be evaluated numerically stable.

5. Hierarchical shape functions

Similar to the modified set of Lagrange-type shape functions (15), the entire set of hierarchi-
cal shape functions does not yield a partition of unity for polynomial degrees p > 1. However,
the subset of bilinear nodal modes of these shape functions does. The aim of this section
is to formally define the polynomial enrichment sets V Ri , i ∈ M, such that ϕiV

R
i , i ∈ M

generates the usual global hierachical basis functions of the p-method along with their well-
studied approximability properties. This definition is done in three steps: First, hierarchical
shape functions based on integrated Legendre and Gauss-Lobatto polynomials are introduced
and separated into nodal, edge and inner modes using a concise notation. Then, a simple
data structure is proposed that is capable of handling the so-called edge orientation problem.
Using a numbering based on that data structure, the sets of polynomials V Ri are defined via
an elementwise aggregation of suitably factorized edge and inner modes. A visualization of
such an factorization is depicted in Figure 4. It is noted that the partition of unity and the
polynomial enrichment sets V Ri for the modified set of Lagrange-type shape functions (15) can
be defined in the same fashion.

5.1. Hierarchical shape functions. A widely used family of hierarchical shape functions for
higher-order FEM is generated by tensor products of integrated Legendre or Gauss-Lobatto
polynomials, cf. [48, 61, 68]. Both types of polynomials are defined via the Gegenbauer
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Figure 4. Visualization of the factorization of a third-order hierarchical
shape function (left) into a bilinear partition of unity function (middle) and
some elementwise quadratic remainder polynomial (right).

polynomials {Gρi }i∈N0
given by the recurrence relation

(16) (i+ 1)Gρi+1(x̂) = 2(i+ ρ) x̂ Gρi (x̂)− (i+ 2ρ− 1)Gρi−1(x̂)

with Gρ0(x̂) := 1 and Gρ1(x̂) := 2ρx̂ for ρ ∈ R. The one-dimensional integrated Legendre

shape functions (κi ≡ 1) and the Gauss-Lobatto shape functions (κi =
√

(2i− 1)/2) up to a
polynomial degree p ≥ 1 are given by

(17) ξ̂0(x̂) := (1− x̂)/2, ξ̂1(x̂) := (1 + x̂)/2, ξ̂i(x̂) := κiG
−1/2
i (x̂)

for x̂ ∈ [−1, 1] and i = 2, . . . , p.

To define the set of two-dimensional Gegenbauer-type shape functions and to separate them
into nodal, edge and inner modes with possibly varying maximal polynomial degrees, let
b = (b0, b1) be the 2-tupel with values in N0 that is uniquely associated to each vertex, each
edge and the unit quadrilateral itself, as depicted in Figure 5(a) with p0, . . . , p5 ≥ 2. With
these preparations at hand, the nodal, edge and inner modes associated to their individual

2-tupel b are simply given by {ξα}α∈A(b) with ξα(x̂0, x̂1) := ξ̂α0(x̂0)ξ̂α1(x̂1), where

A(b) :=
{
α = (α0, α1)

∣∣ αr := br if br ∈ {0, 1}, otherwise αr ∈ {2, . . . , br}
}
.

It is noted that pi 6= pj results in anisotropic polynomial degree distributions. For p0 = p1 =
p2 = p3 and p4 = p5 = p0 − 2 Serendipity shape functions are generated, cf. [4, 68].

(0, 0) (1, 0)

(1, 1)(0, 1)

(p0, 0)

(1, p1)

(p2, 1)

(0, p3) (p4, p5)

(a)

0

1

2

3

0 1

23

(b)

Figure 5. Index tuples identifying nodes, edges and the reference quadri-
lateral itself (a). Visualization of natural edge orientations (b).

5.2. A simple data structure and the orientation problem. In most finite element
implementations, vertices, edges and elements of a decomposition T of Ω are respresented by
a special data structure which enables the storage of information like coordinates, polynomial
degrees and global numbering or allows for the generation of some information about its
connectivity. For the defintion of such a data structure, let an `-node be defined as a vertex
(` = 0), an edge (` = 1) or an element (` = 2) of T . Furthermore, let N` ⊂ N, 0 ≤ ` ≤ 2 be
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sets of indices which uniquely identify all `-nodes of T and let τ : T → N2 be a mapping that
identifies an element with its associated element index. In order to be able to formally access
the connectivity of each `-node in N`, let there be a mapping

N `
r : N` ×Z`r → Nr with Z`r :=

{
0, . . . ,

2`−r`!

r! (`− r)!
− 1
}
,

which uniquely associates each `-node with all of its adjacent r-nodes, 0 ≤ r ≤ ` ≤ 2. In
particular, N `

r (i, j) refers to the j-th adjacent r-node of the i-th `-node and N `
` (i, 0) refers to

the i-th `-node itself. A data structure with similar naming has been proposed in [27, 30].

To ensure aggregated edge modes and their factorizations to be continuous over edges, it is of
great importance to take the orientation of the edges into account. A natural local orientation
of edges resulting from the definition of ξ via a tensor product is depicted in Figure 5(b). This
orientation is equivalently given by

(18) D :=

(
0 1 3 0
1 2 2 3

)
,

where the entries of the j-th column denote the vertex indices of the edge with index j. For
a consistent definition of edge and vertex indices for each element in N2 and of vertex indices
for each edge in N1 in accordance with the natural orientation of edges (18), assume that for
all i ∈ N2 and all j ∈ Z2

1 , there exists a unique index νij ∈ Z1
0 such that

N2
0 (i,Drj) = N1

0

(
N2

1 (i, j), (r + νij) mod 2
)

for all r ∈ Z1
0 . This property is used to solve the so-called edge orientation problem implied by

the natural orientation D. For two neighboring elements, the orientation of the common edge
is generally not the same. To ensure continuity in the aggregation of edge modes associated to
a common edge, define the mapping h : N2×Z2

1 → {−1, 1}, h(i, j) := 2νij − 1. This mapping
will be used in (20) for the definiton of factorized and aggregated edge modes.

5.3. Construction of the partition of unity functions ϕi and the sets V Ri . For the
proper definiton of a higher-order XFEM with varying and anisotropic polynomial degrees,
assume some global degree distribution Pr : Nr → Nr that assigns some polynomial degrees
to each r-node in Nr for r ∈ {1, 2}. Note that there are no polynomial degrees associated
to 0-nodes, i.e. vertices, as their associated shape functions are bilinear by definition. Given
this degree distribution, define a mapping br : N2 × Z2

r → N2, r = 0, 1, 2 so that br(i, j) is
the 2-tuple associated to the j-the adjacent r-node of the i-th 2-node in N2 as depicted in
Figure 5, so that pk := P1(N2

1 (i, k)), k = 0, . . . , 3, and (p4, p5) := P2(i). Furthermore, let
g` : N` × T → Z2

` ∪ {−1} for ` ∈ {0, 1} with g`(i, T ) := j if there exists a j ∈ Z2
` satisfying

i = N2
` (τ(T ), j), and g`(i, T ) := −1 otherwise.

Considering the hierarchical shape functions defined in Subsection 5.1, it is easy to find that
the nodal modes yield a partition of unity on the reference element Tref, i.e.,∑

α∈{0,1}2
ξα ≡ 1.

Consequently, these modes yield local partitions of unity on every element T ∈ T , which can
easily be merged to a global partition of unity {ϕi}i∈M with M := N0 and Ωi := suppϕi via

(19) ϕi
∣∣
T

:=

{
ξα ◦ Φ−1

T j := g0(i, T ) 6= −1, α := b0(τ(T ), j),

0 otherwise

for i ∈M and T ∈ T .

The basic idea for the definition of the sets V Ri is to factorize the edge and inner modes by
the partition of unity functions (19). Choosing the partition of unity function associated to
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the first vertex of every edge for the factorization, the factorized edges modes for s ∈ N1 and
2 ≤ p ≤ P1(s) are defined as

(20) es,p
∣∣
T

:=

{
h(τ(T ), j)p ξα

ξβ
◦ Φ−1

T j := g1(i, T ) 6= −1, α ∈ A(b1(τ(T ), j)), p = maxr αr,

0 otherwise,

where β := b0(τ(T ), k) with k ∈ Z2
0 satisfying N2

0 (τ(T ), k) = N1
0 (s, 0). It is noted that

the factor h(τ(T ), j)p ensures the continuity of the factorized edge modes across the edge
N2

1 (τ(T ), j) as it solves the edge orientation problem for the hierarchical shape functions ξ.
Choosing the partition of unity function associated to the first vertex of every element for the
factorization, the factorized inner modes for t ∈ N2 and α ∈ A(b2(τ(T ), 0) are given by

(21) ft,α
∣∣
T

:=

{
ξα
ξβ
◦ Φ−1

T τ(T ) = t,

0 otherwise,

where β := b0(τ(T ), 0). With these preparations at hand, the polynomial enrichment sets are
defined as

(22)
V Ri :=

{
es,p

∣∣ s ∈ N1, i = N1
0 (s, 0), 2 ≤ p ≤ P1(s)

}
∪{

ft,α
∣∣ t ∈ N2, i = N2

0 (t, 0), α ∈ A(P2(t))
}
∪ {1}.

It is noted that the choice of the partition of unity function associated to the first vertex of
an edge and the first vertex of an element for the factorization in (20) and (21) is arbitrary.

It remains to show that the factorized edge and inner modes under the polynomial mapping
ΦT are polynomials. First, consider the factorized edge modes (20). Obviously, there exist
r, r̃ ∈ {0, 1}, r 6= r̃ with αr ≥ 2 and αr̃ = βr̃, so that

(23)
ξα
ξβ

(x0, x1) =
ξαr
ξβr

(xr) = καr
G
−1/2
αr (xr)

1
2 (1± xr)

.

By induction, it follows that G
−1/2
i (x)/(1 − x2), i ≥ 2, is a polynomial. Therefore, (23) is

a polynomial which shows that the factorized edge modes are also polynomials under the
mapping ΦT . Now, consider the factorized inner modes as defined in (21). There holds

(24)
ξα
ξβ

(x0, x1) = κα0
κα1

G
−1/2
α0 (x0)

1
2 (1± x0)

G
−1/2
α1 (x1)

1
2 (1± x1)

Again, since G
−1/2
i (x)/(1 − x2) is a polynomial, it follows that (24) is a polynomial as well

and, therefore, the factorized inner modes are also polynomials under the mapping ΦT .

6. Remark on the approximability of the higher-order XFEM space Vh
For the following discussion, let u = uW0 +uW1 +ũRH+uR be a decomposition of the solution

of the variational problem (2), where ũR, uR ∈ Hk(Ω;R2) with supp ũR =
⋃
i∈J Ωi. Assuming

that the crack tip functions (9) adequately model the displacement in the vicinity of the crack
tips, it is reasonable to suppose

(25) uW`
∣∣
ω`
∈ span
j∈{0,1}

{
(v ◦Ψ`) ej

∣∣ v ∈W}
for ω` :=

⋃
i∈K` Ωi, ` = 0, 1 and

(26) uW`
∣∣
Ω\Bε(P`)

= ūRH

for the individual crack tips P0, P1 of the crack and ūR ∈ Hk(Ω;R2) as well as some ε > 0
with Bε(P`) ( ω`.

To quantify the approximability of the extended finite element space (6) using the approx-
imability results of the PUM, i.e., using Theorem 1 in [8], it is necessary to find upper bounds
for the approximation error for the local approximation sets Vi on every patch Ωi, i ∈ M.
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Given the assumption (25), there holds uW0 , uW1 ∈ spanVi for all i ∈ K0 ∪ K1 ⊂ M. In
the general case, assuming appropriately shaped patches Ωi and V Ri to consist of appropri-
ate polynomials of degree pi ≥ 1, there exist some interpolation polynomials vRi , ṽ

R
i ∈ V Ri ,

supp ṽRi =
⋃
i∈J Ωi so that vi := ṽRi H + vRi ∈ spanVi satisfies

(27)
‖u− vi‖L2(Ω∩Ωi) . hµii p

−(k−1)
i ,

|u− vi|H1(Ω∩Ωi) . hµi−1
i p

−(k−1)
i

for all i ∈M\{K0∪K1}, where hi := diam Ωi and µi := min{k, pi+1}, cf. [9, 18, 59]. Hence,
employing vh :=

∑
i∈M ϕivi, the partition of unity property as well as (4) and (5), there holds

|u− vh|H1(Ω) . hµ−1 p−(k−1),

where h := maxi∈M hi and p := mini∈M pi, cf. [8]. Finally, the approximability for an
extended finite element solution uh ∈ Vh is given by the well-known Céa-Lemma,

(28) |u− uh|H1(Ω) . hµ−1 p−(k−1).

The catch in the approximation result (28) is, that it depends on the polynomial degree pi
for the sets V Ri and that it does not account for the approximability of the partition of unity
itself. Considering the definition of the extended finite element spaces Vh via the standard set
of Lagrange-type shape functions as discussed in Sections 4, there holds pi ≡ 0. Consequently,
the local approximation property (27) cannot be applied. For the modified set of Lagrange-
type shape functions and the hierarchical shape functions, there holds pi ≥ 1 depending on
the chosen polynomial degree distributions Pr. However, the local approximation property
(27) of the remainder polynomials (22) is unclear, as they are only defined elementwise on Ωi.
At best, there may hold p = minPr − 1 as the approximability of the bilinear partition of
unity itself is neglected in (28). Similar results were already given in Remark 4.2 in [5] and a
forthcoming paper was promised therein to address the problem above.

For the time being, the following more specialized approximation result will do. Given the
regularity assumption (26), the supports of uW0 and uW1 of the decompositon of u can be
limited using the ramp functions χ0 and χ1 as introduced in Section 3. Hence, there exist
some ûR, ŭR ∈ Hk(Ω;R2) with supp ûR =

⋃
i∈J Ωi, such that

u = χ0u
W
0 + χ1u

W
1 + ûRH + ŭR ∈ V.

Let K0,K1 ⊂ M be defined as in (7) and (10) with δ := r1. Using elementwise polynomials
v̂Rh , v̆

R
h ∈ spani∈M ϕiV

R
i ⊂ C0(Ω;R2) of degree p with supp v̂Rh =

⋃
i∈J Ωi, there holds

vh := χ0u
W
0 + χ1u

W
1 + v̂RhH + v̆Rh ∈ Vh,

so that

|u− vh|H1(Ω) . |ûR − v̂Rh |H1(Ω) + |ŭR − v̆Rh |H1(Ω).

For a quasi-uniform parallelogram mesh T as well as a Lipschitz domain Ω, the hp finite
element interpolation results given in [9, 18, 59] yield

|u− vh|H1(Ω) . hµ−1 p−(k−1),

where p is the polynomial degree of spanϕiV
R
i for all i ∈ M. The application of the Céa-

Lemma yields the approximability result for an extended finite element solution of (3). It is
noted that the use of the ramp functions χ` in the above approximation result implies that
the radius for the crack tip enrichment should be chosen independently of the mesh density.
For more interpolation results of the standard hp-FEM, the interested reader is referred to
[6, 7, 11, 42, 43, 61].
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7. Methodological aspects

This section summarizes a couple of methodological aspects necessary to obtain the results
presented in Section 8. In particular, well-acknowledged hp-adaptive refinement strategies are
commemorated and the handling of hanging nodes is discussed. For a broader overview of the
other subjects in this section as well as many other subjects not mentioned here at all, see for
instance [1, 40, 62].

7.1. hp-adaptive strategies. In adaptive finite element methods, meshes are automatically
refined and polynomial degrees are increased exclusively wherever some refinement indicator
suggests to do so. The aim is to generate more effective meshes accompanied by smaller
computational cost. In many practical examples, desired convergence properties can be shown
by numerical experiments, i.e., optimal algebraic rates in h-adaptivity and exponential rates
in hp-adaptivity. However, these properties are generally not guaranteed a priori.

Adaptive strategies are usually based on a reliable error estimate η = η(uh) satisfying

‖u− uh‖H1(Ω) ≤ Cη,
where C is a mesh-independent constant. An import assumption on the estimate η is its
representation as a sum of local error contributions ηT computable for each element T ∈ T ,

η2 =
∑
T∈T

η2
T .

In h-adaptive methods, mesh-refinement is based upon the error contributions by the indi-
vidual elements. Various criteria to select elements to be refined are proposed in the literature,
cf. [12, 74]. Here, three well-known criteria are commemorated. When applying a fixed frac-
tion criterion, a fixed fraction θ ∈ [0, 1] of all elements with the largest error contributions ηT
to the total error η is refined. Using a maximum criterion, all elements with an error larger
than a fixed fraction θ ∈ [0, 1] of the largest error associated to a single element are refined,
i.e, all elements T that satisfy ηT > θ maxT̃∈T ηT̃ . For the bulk criterion, the set of elements

T̃ to be refined is given by the elements with the largest error contributions to the total error
η such that

∑
T∈T̃ η

2
T > θ η2 for some θ ∈ [0, 1].

Using hp-adaptivity, one has to decide which mesh elements have to be refined and addi-
tionally for which the polynomial degree has to be increased. There is a variety of strategies
discussed in the literature, see for instance [3, 32, 50, 57]. Most of these strategies rely on
the estimation of the local regularity of the sought solution. If this local regularity is ‘suffi-
cient’, the polynomial degree is increased. Otherwise, the element is refined. The hp-strategy
applied in this paper is based on the estimation of the local regularity by two finite element
approximations on the same mesh but with different degree distributions, as proposed in [67].
For this purpose, let η2 =

∑
T∈T η

2
T and η̃2 =

∑
T∈T η̃

2
T be two error estimates corresponding

to an initial, elementwise defined degree distribution p = {pT ∈ N} and a second distribution
p̃ = {p̃T ∈ N}, respectively. Using the notation of Section 5, the polynomial degree distribution
Pr is then obtained via P2(t) := (pτ−1(t), pτ−1(t)) for all element indices t ∈ N2. The polyno-
mial degree for an edge s ∈ N1 can be defined applying the minimum rule P1(s) := minT∈Ts pT
or the maximum rule P1(s) := maxT∈Ts pT , where Ts ⊂ T is the set of all elements adjacent
to s, i.e., Ts := {T ∈ T | g1(s, T ) 6= −1}.

The main idea for the regularity estimation is to assume that the local error contributions
ηT and η̃T for T ∈ T are approximatively described by the well-known a priori estimates,

ηT ≈ CT p−%T+1
T , η̃T ≈ CT p̃−%T+1

T

with %T > 0, cf. [9]. Provided that pT 6= p̃T , %T can then be approximated by

%T ≈
log(η̃T /ηT )

log(pT /p̃T )
+ 1.
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Here, the parameter %T may be interpreted as a measure for the local regularity. In that sense,
the solution is sufficiently regular, if %T ≥ max{pT , p̃T }.

The first step of the hp-adaptive strategy is to compute η and to collect the mesh elements
with the largest error contributions in a set K ⊂ T , for example, using one of the h-adaptive
strategies described above. If the maximum rule above was used to determine the polynomial
degrees for the edges in T , then the second degree distribution p̃ is determined by p̃T := pT +1
for all T ∈ K and p̃T := pT otherwise. For the minimum rule, another set L containing all
elements of T adjacent to an element in K via an edge is determined and the second degree
distribution is given by p̃T := pT +1 for all T ∈ K∪L to ensure the full local polynomial space
on each element T ∈ K. The next step is to compute a second finite element approximation
along with some error estimator η̃ using the degree distribution p̃. In the last step, all elements
with insufficient local regularity are refined, i.e., all T ∈ K with %T < pT + 1, and the local
polynomial degree is increased for all elements T ∈ K with %T ≥ pT + 1. In Figure 6, the steps
of the hp-adaptive strategy are illustrated for the well-known L-shaped domain example with
a singularity at the re-entrant corner, cf. Example 2.1.4 in [45].

0 0.02

(a) (b) (c)

0 5.5

(d)

1 2

(e)

Figure 6. Visualization of the hp-adaptive refinement strategy: Error indi-
cator ηT in (a), marked elements K in (b), marked elements K ∪ L in (c),
regularity indicator %T in (d) and the degree distribution p after the refine-
ment in (e).

The computation of the additional error estimate η̃ obviously leads to high computational
cost. However, this is justifiable by the exponential convergence rates of the adaptive scheme,
see also Section 8. The proposed strategy is similar to the strategy proposed in [50], where
the intermediate step to determine η̃ is omitted. Instead, only the first estimate η from two
successive refinement steps are considered. However, error contributions of successive estimates
are not necessarily comparable when using adaptive h-refinements and p-enrichments. Thus,
those one-step strategies have to be applied carefully.

It is noted, that many h- and hp-adaptive strategies (including the strategy above) rely on
the heuristic assumption, that the error contributions given by ηT reflect the local discretiza-
tion error. Moreover, the increase of the local accuracy in areas with large error contributions
is assumed to significantly reduce the global discretization error. These assumptions are well-
justifiable in most cases and are confirmed by many numerical experiments. Though, conver-
gence and, in particular, optimality are not guaranteed or theoretically verified in general. A
rigorous verification of convergence and optimality of adaptive schemes is still an interesting
field of research, see for instance [22, 23, 52]. For results concerning some hp-adaptive methods
see also [34].

7.2. Error estimators. In this paper, a rather heuristic error estimator ηT = |uH −uh|H1(T )

based on a reference solution uH is used for some of the numerical experiments in Section 8.
This solution is obtained via a uniform mesh refinement (h/2) and a once uniformily increased
polynomial degree distribution p + 1, see also [28, 38]. Given the higher-order XFEM based
on the hierarchical shape functions discussed in Section 5, this estimator is straight forward
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to implement and yields the desired results. However, the implied computational cost is non-
neglectable compared to many other error estimators. Hence, this h/2, p+1 estimator may only
serve as a proof of concept for the hp-adaptive XFEM. For recent results on error estimators
for the XFEM, see for instance [19, 20, 37, 46, 58, 65].

7.3. Hanging nodes. Hanging nodes usually occur in the process of adaptive mesh refinement
whenever one element is refined but at least one of its neighboring elements is not, see also
Subsection 7.1. If these hanging nodes are not eliminated from the mesh using sophisticated
refinement strategies, they have to be taken care of in the construction of the partition of
unity and the higher-order enrichment functions. For the latter case, there are basically two
possibilities. First, special shape functions may be introduce on elements that have hanging
nodes on at least one of their edges, cf. [44, 69]. Second, the used (standard) shape functions
may be constrained to enforce continuity. The latter technique is frequently referred to as
constraint approximation, cf. [31, 60]. The approaches proposed in [44] and [31, 60] have
already been discussed and compared in [41] for first-order shape functions in the framework
of the XFEM.

As constraint approximation is the technique of choice for the handling of hanging nodes
in higher-order FEM, it is summarized here in all brevity. Consider the situation depicted
in Figure 7(a). To ensure continuity of aggregated modes associated to hanging edges via

T0

T2

T1

(a)

−1 1 3
Υ1−1 1

−3 −1 1
Υ2−1 1

(b)

Figure 7. Mesh with a single hanging node (a). Visualization of Υk for the
hanging edges resulting from the symmetric bisection via a hanging node (b).

constraint approximation, so-called constraints coefficients αki,j ∈ R, i, j ∈ I have to be found
for the set of shape functions ξ = {ξi}i∈I , such that

ξi ◦ Φ−1
T0

(x) =
∑
j∈I

αki,j ξi ◦ Φ−1
Tk

(x)(29)

for all x ∈ Ek = T0 ∩ Tk, k ∈ {1, 2} and all i ∈ I. Obviously, only shape functions ξi ◦ Φ−1
Tk

are of interest in (29) that do not vanish on Ek. Given the defintion of ξ via a tensor product

of one dimensional shape functions {ξ̂i}i∈{0,...,p}, it is sufficient to find coefficients α̂ki,j ∈ R,
i, j ∈ {0, . . . , p} such that

ξ̂i ◦ Φ−1
E0

(x) =

p∑
j=0

α̂ki,j ξ̂i ◦ Φ−1
Ek

(x)(30)

for all x ∈ Ek, k ∈ {1, 2}, where ΦEk : [−1, 1] → Ek is a bijective, affin linear mapping and
E0 = E1 ∪ E2. Let Υk(x) := akx + bk with ak, bk ∈ R satisfy Φ−1

E0
(x) = Υk ◦ Φ−1

Ek
(x) for all

x ∈ Ek, k ∈ {1, 2}. Hence, (30) is equivalent to

ξ̂i ◦Υk(x̂) =

p∑
j=0

α̂ki,j ξ̂i(x̂)

for x̂ ∈ [−1, 1] and k ∈ {1, 2}. Let an edge be symmetrically bisected by a single hanging node.
Thus, Υk can be defined as Υ1(x̂) := 1

2 (x̂− 1), x̂ ∈ [−1, 3] and Υ2(x̂) := 1
2 (x̂+ 1), x̂ ∈ [−3, 1]

as depicted in Figure 7(b).
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Considering the set of Lagrange-type shape functions (12) along with their support points
{x̂0, . . . , x̂p}, define functionals φj(v) := v(x̂j) for j = 0, . . . , p. Due to the Kronecker-delta

property ξ̂i(x̂
j) = δij , there holds α̂ki,j = φj(ξ̂i ◦ Υk) = (ξ̂i ◦ Υk)(x̂j). For the modified set

of Lagrange-type shape functions (15) with φj(v) as above, this Kronecker-delta property is
satisfied only for i, j = 1, . . . , p− 1. Hence, there holds

α̂ki,j = (ξ̂i ◦Υk)(x̂j) for i ∈ {0, . . . , p} and j ∈ {0, p},

α̂ki,j = 0 for i ∈ {0, p} and j ∈ {1, . . . , p− 1},

α̂ki,j = (ξ̂i ◦Υk)(x̂j)− α̂i,0 ξ̂0(x̂j)− α̂i,p (ξ̂p)(x̂
j) for i, j ∈ {1, . . . , p− 1}.

The functionals φj , j = 0, . . . , p for the integrated Legendre and Gauss-Lobatto polynomials,

φ0(v) := v(−1), φ1(v) := v(1), φj(v) :=
j(j − 1)(2j − 1)

2κ2
j

∫ 1

−1

ξ̂j(x) v(x)

ξ̂0(x) ξ̂1(x)
dx,

satisfy the Kronecker-delta property for i = 2, . . . , p and j = 0, . . . , p. Similar to the modified
set of Lagrange-type shape functions, there holds

α̂ki,0 = ξ̂i ◦Υk(−1), α̂ki,1 = ξ̂i ◦Υk(1) for i ∈ {0, . . . , p},

α̂ki,j = 0 for i ∈ {0, 1} and j ∈ {2, . . . , p},

α̂ki,j = φj(ξ̂i ◦Υk)− 2j − 1

2κ2
j

(
(−1)j α̂ki,0 + α̂ki,1

)
for i, j ∈ {2, . . . , p},

since φj(ξ̂0) = (−1)j (2j − 1)/(2κ2
j ) and φj(ξ̂1) = (2j − 1)/(2κ2

j ). Using suitable test points,
a linear system of equations may be derived for the above to obtain the actual constraints
coefficients without the integral representation implied by φi, see also [75]. However, it is
noted that this method produces large numerical inaccuracies for high polynomial degrees.
Alternatively, an explicit formula for α̂ki,j without the integral representation is available that
uses the recurrence relation (16) and admits a numerically stable evaluation, cf. [60].

Given the constraints coefficients above, it is possible to ensure continuity of the (standard)
higher-order shape functions over edges containing hanging nodes. As a consequence, nodal
modes associated to hanging nodes do not generate a self-contained partition of unity function,
but contribute to the partition of unity functions associated to non-hanging nodes as depicted
in Figure 8. Similarly, shape functions associated to hanging edges of a given constraining

Figure 8. Visualization of the constrained bilinear partition of unity func-
tions for a mesh with 2 hanging nodes.

edge do not define individual aggregated shape functions to be factorized, but contribute to
the aggregation of shape function associated to that constraining edge. The factorization
is then pursued via either adjacent constrained partition of unity function, as depicted in
Figure 9. Obviously, the remainder resulting from the factorization of edge modes associated
to constraining edges by either constrained partition of unity function is not necessarily a
polynomial anymore.
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Figure 9. Visualization of the factorization of a constrained third-order hi-
erarchical shape function associated to a constraining edge (left) into a con-
strained bilinear partition of unity function (middle) and some elementwise
polynomial or rational function (right).

A discussion on the constraint approximation for the higher-order XFEM based on the hier-
archical shape functions discussed in Section 5 with a focus on multi-hanging and unsymmetric
hanging nodes will be pursued in a forthcoming paper.

7.4. Integration. As in standard finite element methods, the integrals in the discrete varia-
tional problem (3) are computed on the individual elements of decomposition T of Ω and are
added up. However, for the XFEM there arise two difficulties for the numerical integration.

The first difficulty is due to the discontinuous Heaviside enrichment. In the XFEM, cracks
are allowed to be arbitrarily aligned in the domain under consideration. Hence, a crack path
may intersect a given element of a mesh almost arbitrarily. Considering the usual crack
propagation criteria, which provide an angle and some either predetermined or computed
length for the crack propagation from the current crack tip, it is reasonable to assume that a
crack ΓC can be represented by a polygonal chain. Thus, Delauney-like sub-triangulations can
be defined on each element T ∈ T cut by a crack, so that the edges of the sub-triangulation
align with the polygonal chain of the crack path, cf. [16, 51, 17]. Hence, the usual Gauss
quadrature of appropriate degree may be applied for the numerically exact integration of the
crack path functions on each sub-element. Integration techniques that do not require sub-
triangulations may for instance be found in [47, 54, 56, 71].

The second difficulty mentioned above is due to the crack tip functions which are in part
discontinuous along the crack but also imply a 1/

√
r singularity for their derivatives at the

crack tip. The discontinuity may for instance be handled with the sub-triangulations as above.
To account for the singularity at the crack tip, the sub-triangulation of the element containing
the crack tip may be chosen so that the crack tip is one of the vertices of each sub-element.
Hence, a Duffy transformation may be used to concentrate the usual quadrilateral-based Gauss
quadrature points towards the crack tip, cf. [36]. This integration technique, which is also
referred to as the ‘almost polar integration’, yields improved integration properties, cf. [49].
A generalized Duffy transformation which can be adjusted to match the strength of the sin-
gularity is proposed in [53]. In [15], the integration of the crack tip functions is done via a
transformation to a polar coordinate system, so that the 1/

√
r singularity of the derivatives of

the crack tip functions (9) vanishes. The downside of the latter approach is that higher-order
polynomials can no longer be integrated exactly.

7.5. Dirichlet boundary approximation. For higher-order finite element methods, it is
of great importance to model inhomogeneous Dirichlet boundary conditions appropriately.
Using the techniques proposed in [10], sufficiently regular inhomogeneous Dirichlet data can
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be approximated with the accuracy required for the expected convergence rates of the higher-
order finite element method.

8. Numerical Results

This section presents results obtained from the implementation of the higher-order XFEM
based on integrated Legendre shape functions as proposed in Sections 3 and 5. The following
numerical experiments for the model problem (1) for plane strain were carried out with Young’s
modulus E = 10000 and the Possion ratio ν = 0.25, as well as a fixed distance strategy for the
crack tip enrichment with a radius r = 1.0. The ramp function technique as commemorated
in Section 3 was not used to obtain the results below, except where explicitely noted.

A first benchmark problem is defined on a square domain Ω = [−2, 2]2 with the distribu-
tion of Dirichlet and Neumann boundary edges as depicted in Figure 10, where the sought
displacement u = (u0, u1) is a pure mode-I crack,

u0(θ, r) =
1 + ν

2E

√
r

2π
KI

(
(5− 8ν) cos

θ

2
− cos

3θ

2

)
,

u1(θ, r) =
1 + ν

2E

√
r

2π
KI

(
(7− 8ν) sin

θ

2
− sin

3θ

2

)
for polar coordinates (θ, r) of R2.

ΓC

Ω

ΓN

ΓD

Figure 10. Domain Ω = [−2, 2]2 and boundary distribution (left). Von
Mises stress and the scaled displacement for the first benchmark problem
(right).

Figure 11 depicts the convergence history obtained for the first benchmark problem, using
the h-version of the XFEM with fixed polynomial degrees p = 1, . . . , 4 and an uniform mesh
refinement strategy. These methods exhibit optimal algebraic convergence rates even though
no ramp function technique was used. Figure 12 illustrates the convergence rates obtained for
the p-version of the XFEM with uniformly increasing polynomial degrees and for the hp-version
of the XFEM, based on a fixed fraction criterion with θ = 0.2 and ηT = |u − uh|H1(T ). All
methods exhibit exponential convergence rates. In particular, the error for either hp-XFEM
is lower than that for the hp-FEM, where the crack is modeled through the doubling of edges.
Furthermore, it is shown that the convergence rates for the hp-XFEM with and without the
ramp function technique proposed in [39] are almost coincident. It is noted that the error
indicator in the hp-adaptive XFEM only increased the polynomial degrees due to sufficient
estimated regularity. Thus, there was no h-refinement pursued. To numerically verify the
reliability and efficiency of the error estimator introduced in Subsection 7.2, the H1 semi-error
|u − uh|H1(Ω) is depicted along with the h/2, p + 1 error estimator for uniform h-refinement
in Figure 13. The convergence rates for the error and the estimated error are the same up to
some constant for the individual polynomial degrees, respectively.
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Figure 11. Convergence history: Degrees of freedom vs. H1 semi-error |u−
uh|H1 for the h-version of the XFEM and uniform mesh refinement.
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Figure 12. Convergence history: Degrees of freedom vs. H1 semi-error |u−
uh|H1 for the p-uniform and the hp-adaptive version of the XFEM as well as
the classic hp-adaptive FEM.

A second benchmark problem defined on Ω ⊂ (0, 5)× (0, 4) is depicted in Figure 14, where
a zero displacement uD = (0, 0) is imposed on ΓD, a traction boundary condition g = (0, 1) is
imposed on ΓN1

and a zero traction conditon g = (0, 0) is imposed anywhere else, i.e., on ΓN0

and ΓC := [1, 2]× {2}.

In Figure 15, the convergence histories for the h-adaptive XFEM with p = 1 as well as the
hp-adaptive XFEM and FEM are presented using the h/2, p+ 1 error estimator introduced in
Subsection 7.2. The h-adaptive XFEM with a bulk criterion and θ = 0.5 exhibits an optimal
algebraic convergence rate, where as both hp-methods with a fixed fraction criterion and
θ = 0.2 exhibit exponential convergence rates. However, the estimated error for the hp-XFEM
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Figure 14. Domain Ω and the boundary distribution (left). Von Mises stress
and the scaled displacement for the second benchmark problem (right).
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is lower than that for the hp-FEM. The intermediate steps of the refinement for the hp-FEM
and the hp-XFEM with similar numbers of degrees of freedom are depicted in Figures 16
and 17. As expected, the mesh for the hp-FEM exhibits strong mesh refinements towards the

Figure 16. Visualization of the mesh and the polynomial degree distribution
for an intermediate step of the hp-XFEM with 16530 degrees of freedom (left)
and the hp-FEM with 17482 degrees of freedom (right).

reentrant corners as well as towards the crack tip. Similarly, the hp-XFEM also exhibits strong
mesh refinements towards the reentrant corners as expected. However, there is also some slight
refinement towards the crack tip. This refinement may be understood as the inability of the
crack tip functions to model the crack tip displacement field exactly. However, compared to
the refinement performed in the hp-FEM, this refinement is neglectable, see Figure 17.

Figure 17. Zoom (10%) of the mesh at the crack tips for the hp-XFEM (left)
and the hp-FEM (right).

The numerical results presented in this section, confirm the approximability results of the
higher-order XFEM as discussed in Section 6. Furthermore, the superiority of the hp-method
over the h-method as well as the superiority of the XFEM over the FEM in the framework of
linear elastic fracture mechanics are confirmed.

9. Concluding Remarks

In this paper, a higher-order XFEM was obtained from the combination of the XFEM
with standard higher-order FEM based on Lagrange-type and hierarchical tensor product
shape functions. A priori error estimates were numerically verified for the standard mode I
benchmark problem and optimal algebraic and exponential convergence rates were presented
for a problem with reentrant corners. Furthermore, the methodological aspects necessary
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for the presented numerical results were summarized. In particular, the handling of hanging
nodes via constrained approximation and an hp-adaptive strategy were discussed. For future
research, there remains a variety of challenges in the hp-adaptive XFEM:

• Apart from the well-known technical as well as modeling problems of the XFEM for
three space dimensions, the extension of the proposed higher-order XFEM is straight
forward due to the use of tensor-product shape functions.
• A discussion on the constraint approximation for the higher-order XFEM based on

the hierarchical shape functions with a focus on multi-hanging as well as unsymmetric
hanging nodes will be pursued in a forthcoming paper.
• The error estimator used in this paper is rather heuristic and computationally very

expensive. An analysis of the applicability of well-established error estimators for the
higher-order FEM as proposed in [2, 74] is part of our current research.
• The numerical experiments have pointed out that the crack tip functions spanning the

Westergaard field are insufficent for problems, where the sought solution is not the
Westergaard field itself. Hence, a generalization and an automatic adaptivity of these
functions similar to the research presented in [76] is of great interest.
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